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Abstract
Southwest Pacific nations are among some of the worst impacted and most vulnerable globally in terms of tropical cyclone 
(TC)-induced flooding and accompanying risks. This study objectively quantifies the fractional contribution of TCs to 
extreme rainfall (hereafter, TC contributions) in the context of climate variability and change. We show that TC contribu-
tions to extreme rainfall are substantially enhanced during active phases of the Madden–Julian Oscillation and by El Niño 
conditions (particularly over the eastern southwest Pacific region); this enhancement is primarily attributed to increased 
TC activity during these event periods. There are also indications of increasing intensities of TC-induced extreme rainfall 
events over the past few decades. A key part of this work involves development of sophisticated Bayesian regression models 
for individual island nations in order to better understand the synergistic relationships between TC-induced extreme rainfall 
and combinations of various climatic drivers that modulate the relationship. Such models are found to be very useful for not 
only assessing probabilities of TC- and non-TC induced extreme rainfall events but also evaluating probabilities of extreme 
rainfall for cases with different underlying climatic conditions. For example, TC-induced extreme rainfall probability over 
Samoa can vary from ~ 95 to ~ 75% during a La Niña period, if it coincides with an active or inactive phase of the MJO, and 
can be reduced to ~ 30% during a combination of El Niño period and inactive phase of the MJO. Several other such cases 
have been assessed for different island nations, providing information that have potentially important implications for plan-
ning and preparing for TC risks in vulnerable Pacific Island nations.
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1  Introduction

Tropical cyclones (TCs) play a prominent role in driving 
or contributing to extreme rainfall in different parts of the 
world (e.g., Lau et al. 2008; Knight and Davis 2009; Wang 
et al. 2009; Jiang and Zipser 2010; Chen et al. 2013; Vil-
larini and Denniston 2015; Khouakhi et al. 2017), and can 
cause devastating impacts through extensive flooding (e.g., 
Woodruff et al. 2013; Callaghan and Power 2014; Villarini 
et al. 2014; Power and Callaghan 2016; Aryal et al. 2019; 
Paerl et al. 2019) and landslides (e.g., Antinao and Farfán 
2013; Cogan et al. 2018). The extent of TC contributions 
to extreme rainfall—and hence, the nature of impacts asso-
ciated with TC-driven rainfall—can vary between regions 
depending on their geographical locations and exposure 
to TC incidences (e.g. Knight and Davis 2009; Jiang and 
Zipser 2010; Villarini and Denniston 2015; Zhang et al. 
2018), as well as their community vulnerability and adap-
tive capacity to TC risks (e.g., Peduzzi et al. 2012).

At a global scale, 10% of Florida’s annual rainfall is 
contributed by TCs (Knight and Davis 2007) while annual 
contributions of 20–40% has been reported over Taiwan 
and South-eastern China (Ren et al. 2006). In the Philip-
pines, TC contribution to annual rainfall ranges from 6% 
in the southern regions to 54% over the northern regions 
(Bagtasa 2017). Over Australia, during the peak TC sea-
son (January–March), TCs contribute greater than 30% to 
the rainfall total of coastal regions west of 120°E, while 
during December, TCs contribute approximately 60–70% 
to the total rainfall west of 115°E, making it one of the 
regions of the globe where this fraction is greatest (Dare 
et al 2012); some stations west of 115°E can have more 
than 70% of rainfall from TCs in the October through 
December period (Ng et al. 2015).

The highest fractional contributions of TC-induced 
extreme rainfall occur largely in the exposed coastal areas 
of eastern Asia (such as Japan and the Philippines), fol-
lowed by northwest Australia and the U.S. East Coast, 
with fractional contributions generally decreasing farther 
inland from the coast (Khouakhi et al. 2017). Over the 
south-eastern U.S. coast, major TCs (category 3–5) are 
found to produce the most extreme rainfall days, but tropi-
cal depression/storm days contribute most significantly to 
cumulative seasonal rainfall (8–17%, basin‐dependent) 
due to frequency of occurrence (Shepherd et al 2007). 
Extreme precipitation from TCs over the same region has 
been increasing over the past few decades and a significant 
increase in the contribution of TC precipitation to overall 
extreme precipitation by approximately 5–10% per dec-
ade has also been reported (Knight and Davis 2007). Over 
Australia, the study by Villarini and Denniston (2015) 
shows that more than half of the highest annual rainfall 

events are associated with TCs over the coastal regions and 
in particular over Western Australia. This study further 
shows that TC fractional contribution to extreme rainfall 
increases with largest rainfall events, with approximately 
66–100% of annual maximum in excess of 100 mm over 
Western Australia associated with TCs at over one third 
of the locations. Moreover, a larger probability of having 
an annual rainfall maximum related to TCs occurs during 
La Niña years which is consistent with the findings of 
Khouakhi et al. (2017).

The high volcanic Small Island nations in the southwest 
Pacific (SWP, see Fig. 1a, b) basin are also among some of 
the most impacted areas globally in terms of TC-induced 
flooding and accompanying risks (Nurse et al. 2014). How-
ever, current understanding of TC-induced extreme rainfall 
for these Island nations is mainly qualitative and, as far as we 
are aware, no literature as yet exists to objectively quantify 
TC contributions to extreme rainfall in the context of climate 
variability and change. Here, we attempt to reduce these 
knowledge gaps by investigating the nature and patterns of 
TC-induced extreme rainfall events for SWP Island nations 
and to examine case studies of events that have caused 
unprecedented impacts on local communities in order to 
better understand their occurrences.

A characteristic feature in the South Pacific Ocean is the 
South Pacific Convergence Zone (SPCZ; Vincent 1994). The 
SPCZ is a region of low-level moisture convergence that 
often provides much of the rainfall to SWP Island nations 
(e.g., Griffiths et al. 2003; McGree et al. 2019). TCs (and 
weak depressions) are frequently spawned within the SPCZ 
and can play a significant role in redirecting and transporting 
large amounts of moisture from the moisture-laden SPCZ to 
the islands that lie along TC trajectories. This mechanism 
of moisture transport for the SWP (i.e., from an already 
established background moisture convection) is similar to 
what is documented, for example, for the East Asia mon-
soon region where TCs can provide intense rainfall over the 
south China coast and Taiwan, or to higher latitude regions 
of the Korean Peninsula and Japan that often lie along TC 
trajectories (Guo et al. 2017). Both the SPCZ and TCs in 
the SWP region undergo substantial variability at multiple 
timescales, and so it is anticipated that TC-induced extreme 
rainfall will accordingly show similar patterns of variability. 
For the purpose of this study, we focus on intraseasonal to 
annual modes of climate variability (and not longer-term 
trends) due to the availability of limited time series of reli-
able TC data records for the SWP.

The Madden–Julian Oscillation (MJO; Madden and 
Julian 1971, 1994) is an eastward-propagating equatorial 
disturbance with a period of about 30–90 days (e.g., Zhang 
2005), and is a primary driver of variability in position of 
the SPCZ (Matthews et al. 1996; Matthews 2012; Haffke 
and Magnusdottir 2013) and SWP TC genesis and intensity 
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(e.g., Chand and Walsh 2010; Klotzbach 2014; Diamond 
and Renwick 2015) at the intraseasonal timescale. During 
the active phase of the MJO (which can be defined using 
indices such as those of Wheeler and Hendon (2004)), con-
vective activity associated with the SPCZ is enhanced over 
the SWP region (e.g. Haffke and Magnusdottir 2013). In 
particular, TCs are typically more frequent and intense over 
the SWP region during the active phase of the MJO when 
compared with inactive or weak (i.e. low amplitude) phases 
(Chand and Walsh 2010; Klotzbach 2014). Seasonally, SWP 

TCs are generally observed during the months of November 
to April with peak activity from January to March when 
the SPCZ is also more active. However, the passage of the 
MJO can substantially modulate within-season TC activity 
as described above.

At the interannual time scale, the El Niño-Southern Oscil-
lation (ENSO; e.g., Trenberth 1997; McPhaden et al. 2006) 
is a major driver of the SPCZ and TC spatial variability in 
the SWP basin. During El Niño events, the SPCZ and asso-
ciated convective activities are displaced farther northeast 

Fig. 1   a Location of the SWP 
Island nations relative to the 
globe, b average occurrence of 
TCs per decade over stations 
in the SWP Island nations for 
the period 1970–2018 (the total 
number of TCs that appeared 
within 500 km from each sta-
tion during the study period 
are used here) and c the overall 
mean monthly rainfall rate 
for November to April for the 
period 1970–2018
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while islands to the southwest often experience lower rain-
fall (e.g., Karoly and Vincent 1998; Folland et al. 2002; 
Griffiths et al. 2003). A southwestward shift in the loca-
tion of the SPCZ and accompanying rainfall, occur during 
La Niña events. As a result, TC activity is enhanced in the 
northeast region of the SWP basin during El Niño events, 
extending across to the Cook Islands and French Polynesia 
with the greatest incidence around the dateline (e.g., Basher 
and Zheng 1995; Kuleshov et al. 2008; Chand and Walsh 
2009, 2011a, b; Chand et al. 2013; Vincent et al. 2011; Jour-
dain et al. 2011; Ramsay et al. 2012; Diamond et al. 2013; 
Dowdy and Kuleshov 2012; Magee et al. 2017). In contrast, 
the opposite occurs during La Niña events when TC activity 
is displaced southwestward towards New Caledonia and the 
Coral Sea with relatively low activity east of about 170°E. 
Moreover, the Interdecadal Pacific Oscillation (IPO; e.g., 
Power et al. 1999)—which is the Pacific-wide manifestation 
of “ENSO-like” variability at the decadal timescale—also 
affects SWP climate either directly, for example, through its 
impact on the SPCZ (e.g., Folland et al. 2002), or indirectly 
by modulating ENSO teleconnections (e.g., Gershunov and 
Barnett 1998; Salinger et al. 2001). This has implications for 
TC activity at interdecadal timescales as well (e.g., Sharma 
et al. 2019).

From the brief review above, it is clear that TCs in the 
SWP region can undergo substantial variability at multiple 
timescales. However, it is less clear how extreme rainfall 
associated with TCs in this region is influenced by the differ-
ent modes of variability, and whether TC-induced extreme 
rainfall has changed over the past few decades. In the SWP 
Island countries, extreme rainfall events often have severe 
consequences, particularly those associated with TCs where 
accompanying destructive winds and storm surges can make 
emergency responses—and even post-disaster recovery 
efforts—near impossible for several weeks due to the remote 
locations of several local communities. Recent studies (e.g., 
McGree et al. 2014, 2019) have examined the variability 
and trends in observed total and extreme rainfall over SWP 
Island countries. They concluded that generally there had 
been little change in annual and seasonal total and extreme 
rainfall in the western tropical Pacific in the long-term over 
the historical record, but there had been significant interan-
nual and decadal variability. In the context of a warming 
climate, several studies (e.g. Dutheil et al. 2020 and the ref-
erences therein) report a decrease, in the range of 10% to 
60%, in TC frequency and a consistent intensification of 
TC-related precipitation under future climate over the SWP 
region. Some studies (e.g. Yamada et al. 2017; Zhang and 
Wang 2017) also indicate an increase in the frequency of 
intense TCs in the future climate over this region. There-
fore, a clearer understanding of TC-induced extreme rainfall, 
and the factors that modulate this connection, is integral 
for disaster risk mitigation and adaptation planning. It also 

establishes a baseline for understanding climate change 
impacts on TC-induced extreme rainfall for the region.

The scope of this paper is twofold. First, we provide 
improved understanding of the fractional contributions1 of 
seasonal maximum daily rainfall by TCs (hereafter, TC-
induced extreme rainfall) in the SWP. Specifically, we exam-
ine how these contributions are modulated by various modes 
of natural climate variability that operate in the region and 
whether TC-induced extreme rainfall has changed over the 
past decades—and if so, how? Second, we develop state-
of-the-art-statistical models to evaluate the relationships 
between extreme rainfall (both TC- and non-TC-induced) 
in the SWP and the combinations of climatic drivers that 
modulate them. The rest of the paper is organised as fol-
lows. Data and analysis methods are described in Sect. 2 
(with additional details provided in the Appendix). Section 3 
provides results and discussion, followed by Sect. 4 where 
we present the summary and conclusions.

2 � Data and methodology

2.1 � TC and rainfall data

TC data were obtained from the Southwest Pacific Enhanced 
Archive of Tropical Cyclones (SPEArTC) database (Dia-
mond et al. 2012), which comprises quality assured and col-
lated TC records from the 1840s for the SWP basin. Due to 
homogeneity issues associated with historical TC records 
prior to the satellite era (e.g., Landsea et al. 2006; Dowdy 
and Kuleshov 2012; Kuleshov et al. 2010), only data from 
July 1970 to June 2019 have been considered in the analyses. 
Note that TCs in the SWP region are spread over the two cal-
endar years (majority of the TCs occur between November 
to April), and so a TC season in this study is defined from 
July 1 of the first year up to June 30 of the following year. 
For convenience, each season may also be stated using only 
the first of the two relevant calendar years; for example, the 
season 1973/1974 may also be referred to as 1973. For the 
purpose of this study, we objectively define a TC as any 
system that reaches the 10-min sustained wind speeds of 
17 m s−1 during any point of its lifetime which is consistent 
with other studies (e.g. Chand and Walsh 2009). This defi-
nition is important as it allows the examination of extreme 

1  TC contribution here is referred to the ratio of the total number of 
TC-induced rainfall events (i.e., number of seasons when seasonal 
maximum rainfall are due to TCs) to the total number of events under 
consideration (i.e., total number of seasons). Note, as discussed later 
in the Methods section, TC seasons in the southwest Pacific are 
spread over the two overlapping seasons (i.e., July to June), and so a 
season is defined as a period from July of the first year to June of the 
second year.
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rainfall events that are only associated with developed TCs 
in the SWP, and not weak depressions or disturbances which 
cause “extreme” rainfall events but are not well-documented 
in the historical records. Such weak depressions and dis-
turbances are referred to as non-TC events throughout the 
paper.

Daily rainfall station data for the SWP Island nations were 
obtained from their respective National Meteorological and 
Hydrological Services (NMHSs). Only stations that have a 
near complete record of daily rainfall data since 1970 were 
included in the analyses; a record is considered near com-
plete if there are observations for a minimum of 330 days 
in a year (e.g., Villarini and Denniston 2015). Altogether 
52 stations satisfied this criterion. We note that daily rain-
fall data for some stations have undergone quality-control 
and homogeneity checks as part of previous studies that 
utilised these station data (e.g., McGree et al. 2014, 2019); 
the homogenised data are available at the Pacific Climate 
Change Data Portal (PCCDP 2020; http://www.bom.gov.au/
clima​te/pccsp​/). We also note that rainfall observations at 
some secondary observation sites may not fully account for 
rainfall received during a TC event. This may, for example, 
be due to a MkII 5" manual gauge (inner can capacity of 
200 mm) overflowing or a 0.2 mm tipping bucket mechanism 
of a TB3 rain gauge not fully capturing rainfall during a 
high intensity event. We acknowledge variation in observing 
equipment and observer skill across the study region which 
may present spatial inconsistencies. Since our emphasis is 
on extremes, further statistical tests are performed for each 
station time series to detect the presence of any artificial dis-
continuities in the parameters of interest (i.e., block maxima 
and peak-over-threshold values in our case). In particular, we 
implement two widely used nonparametric tests in this study 
(e.g., see Villarini et al. (2011), and references therein): 
Pettitt test to detect abrupt changes in the time series and 
Mann-Kendell test to determine presence of any monotoni-
cally increasing or decreasing patterns. Note that the Pet-
titt test is sensitive to data distributional assumptions and 
therefore can be inefficient in detecting breaks associated 
with extremes (Mallakpour and Villarini 2016). Thus, we 
utilise results from our Bayesian analysis as well to vali-
date results of the Pettitt test (see Appendix). We are also 
cautious of slowly varying, physically based changes in the 
time series of extreme rainfall as they can be considered 
another mode of nonstationarity (e.g., Villarini et al. 2009), 
and so the time series of each station were visually verified 
for clarity. Overall, none of our station data exhibited any 
significant monotonic trends or change-points (at the 5% 
significance level) and are free of slowly varying changes 
in the time series of extremes (see subsequent discussions), 
and therefore deemed appropriate for the analyses. To fur-
ther investigate the long-term trends in TC contributions, 
the National Centre for Environmental Prediction (NCEP) 

Reanalysis data (Kalnay et al. 1996) were also utilised. 
These data were obtained from the National Oceanic and 
Atmospheric Administration (NOAA) online portal (https​
://psl.noaa.gov/data/gridd​ed/data.ncep.reana​lysis​.press​ure.
html). In addition to that, the Global Precipitation Climatol-
ogy Project (GPCP: Adler et al. 2017; Huffman et al. 2001) 
daily precipitation analysis were also utilised here to obtain 
the mean rainfall climatology for each MJO phase over the 
SWP region.

2.2 � Measures of TC‑induced extreme rainfall

Our emphasis is on extreme rainfall due to TCs, and so we 
have utilised the two widely used measures of TC-induced 
extreme rainfall in this work: a block maxima approach and 
peaks-over-threshold (POT) approach. The block maxima 
approach encompasses the maximum 1-, 2- and 3-day2 (e.g., 
Villarini and Denniston 2015) rainfall events recorded for 
each TC season (12 months July–June) over the period under 
consideration (hereafter, seasonal 1-, 2- and 3-day rainfall 
maximum, respectively). If the event occurred at the time 
of passage of a TC—defined as the presence of the centre 
of a named cyclone within a 500-km radius3 of a station 
under consideration during a time window of ± 1 day (e.g., 
Villarini and Denniston 2015; Khouakhi et al. 2017)—then 
that rainfall event was considered as TC-induced rainfall. 
Following, for example, Villarini and Denniston (2015), we 
define the ‘TC contribution’ as the ratio of the total num-
ber of TC-induced rainfall events (i.e., number of seasons 
when seasonal maximum rainfall are due to TC) to the total 
number of events under consideration (i.e., total number of 
seasons).

It is important to note that the block maxima approach 
can have limitations, particularly with respect to extreme 
rainfall in the Pacific where non-TC events can occasionally 

2  Block maxima approach here consists of first grouping daily rain-
fall data into specified blocks for each season and then extracting 
the maximum value of the rainfall for that season. For 1-day block 
maxima, for example, we extract the maximum value of daily accu-
mulated rainfall for each season. Similarly for 2-day (3-day) block 
maxima, consecutive days are first summed to create a pool of 2-day 
(3-day) accumulated rainfall and then the maximum value is extracted 
for each season. Note that we prefer the term “seasonal maximum” as 
opposed to “annual maxima” as TC seasons in the southwest Pacific 
are spread over the two overlapping seasons (i.e., July to June).
3  The choice of 500-km radius is consistent with that of several past 
studies (e.g., Rodgers et al. 2000; Larson et al. 2005; Lau et al. 2008; 
Dare et al. 2012; Khouakhi et al. 2017). This estimate may be slightly 
conservative for TCs in the southwest Pacific where some systems 
can be larger (e.g., Chavas et  al. 2016). Without carrying out the 
time-consuming task of subjectively examining satellite images of 
individual TCs to determine their size, we use 500-km as the bound-
ing radius as it is likely to result in a conservative estimate of TC 
rainfall rather than an overestimate.

http://www.bom.gov.au/climate/pccsp/
http://www.bom.gov.au/climate/pccsp/
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html
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account for seasonal maximum (e.g., McGree et al. 2010, 
2014, 2019). In such cases, this method alone is not adequate 
to capture all TC-induced rainfall as it allows only one maxi-
mum value per season and discards other values which might 
otherwise be attributable to TCs. We additionally utilise the 
POT approach, where we include all values above a particu-
lar threshold. A number of methods have been suggested on 
how to determine thresholds for extreme rainfall (e.g., Coles 
2001). In our case, we obtain the thresholds of daily and 
multi-day totals associated with the 95th percentile using 
the generalised extreme value (GEV) distribution. The GEV 
method is a well-established statistical framework and has 
been successfully applied in several similar studies (e.g., 
Chu et al. 2009; Villarini et al. 2011; Villarini and Den-
niston 2015).

After identifying extreme rainfall events using both block 
maxima and POT approaches, each event was then binned 
into their respective MJO and ENSO phases that operated 
at the time of occurrence of the event. The MJO phases 
were obtained from the Australian Bureau of Meteorology 
website (BOM 2020; refer to Wheeler and Hendon (2004) 
for methodological details). For convenience, we grouped 
consecutive phases of the MJO together such that the active 
phases of the MJO in the SWP are those associated with 
groups 6 and 7 (MJO 6–7), and groups 8 and 1 (MJO 8–1) 
whereas the inactive phases are groups 2 and 3 (MJO 2–3), 
and groups 4 and 5 (MJO 4–5). In addition to these, cases 
where the MJO amplitude was less than one were grouped 
into the weak phase. The ENSO phases used here are those 
readily available from the Climate Prediction Centre website 
(CPC 2020). Each event was grouped into either El Niño, 
La Niña or neutral phase based on the Oceanic Niño Index 
(ONI) for the months of December-February (see Trenberth 
(1997) for details on ENSO classification).

2.3 � Statistical significance of TC contributions

Statistical significance of the TC-induced extreme rainfall 
contribution (against the null hypothesis of zero contribution 
as not all TCs in the Pacific contribute to seasonal maximum 
as discussed later) was evaluated using a non-parametric 
bootstrap resampling method (e.g., Efron and Tibshirani 
1991). Here the Monte Carlo algorithm was used to resa-
mple data—with replacement—from a pool of original 
data, maintaining the size of resampled data to that of the 
original data. Resampling was repeated for a total of 1000 
iterations, and the ratios of TC-contributions (ρ) were cal-
culated for each iteration, yielding a total of 1000 values. 
The two hypotheses (H0: ρ = 0; H1: ρ > 0) were then evalu-
ated at the 5% significance level (α = 0.05); TC-contributions 
are deemed statistically significant if ρα = 0.05 (which corre-
sponds to the 5th percentile of 1000 bootstrapped values) is 
greater than zero. Similarly, statistical significance of the 

difference between two independent data were obtained by 
comparing their 95% bootstrapped confidence intervals; 
non-overlapping intervals are indicative of statistically sig-
nificant differences.

2.4 � Bayesian model for TC‑induced rainfall 
probabilities

We developed probit regression models4 using Bayesian fit-
ting (e.g., Chand and Walsh 2011b, 2012) to evaluate the 
relationships between extreme rainfall and the combinations 
of various climatic drivers (MJO, ENSO and IPO) that mod-
ulate them. Such models can be used to assess probabilities 
of extreme rainfall for cases when, for example, one or more 
climatic drivers are favourable at the time of a TC. They can 
also help examine differences in probabilities between TC- 
and non-TC-induced extreme rainfall events.

We first determined the largest 1-day rainfall value 
for each season (i.e., seasonal maximum daily rainfall). 
Each seasonal maximum daily rainfall was then classified 
accordingly into respective binary classes of “0 s” and “1 s” 
depending on whether the value exceeded the median thresh-
old or not, yielding a time series of binary response variable 
for the station under consideration. The median rainfall cor-
responds to the 50th percentile of seasonal maxima for a par-
ticular station over the period under consideration. We then 
explored the state of the drivers (or predictors) associated 
with each seasonal maximum daily rainfall event: the pres-
ence of a TC, and the phases of the MJO, ENSO and IPO at 
the time of the event. Finally, we developed probit regres-
sion models as outlined below in the context of our analysis 
(reader is referred to Albert and Chib (1993) for mathemati-
cal formulations of probit regression models). For-ease-of-
interpretation, we focus on selected stations having records 
of past TC incidences that caused substantial damages to 
local communities in terms of extreme rainfall and flooding.

Let yi be a response variable such that yi = 1 when the 
value of seasonal maximum daily rainfall exceeds the 
median for the ith season (yi = 0 otherwise). If there exists an 
independent normally distributed latent variable Zi such that

4  Determining whether the probability of an event will exceed a par-
ticular threshold or not, conditional upon a set of predictor variables, 
is an example of a binary classification problem. Probit regressions 
can be considered a proper probability model for describing such 
binary response data. We use the Bayesian technique (as opposed to 
frequentist approach such as least square or maximum likelihood) to 
determine model parameter coefficients of our probit models. The 
Bayesian technique assumes that model parameters are not fixed but 
have a distribution. Therefore, inferences can be made by computing 
posterior probability density estimates of model parameters condi-
tioned on the observed data (extreme rainfall in our case). The pos-
terior distributions can then be used to make predictive inferences 
within a probabilistic framework.
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then for each season i, we define a binary class label yi = 1 if 
Zi ≥ 0 and yi = 0 if Zi < 0. Here β represents the model coef-
ficient associated with the respective predictor variable Xi 
and ɛi is an error term assumed to have a standard normal 
distribution with a mean of zero and variance of one. The 
predictor variable Xi (which can be either binary or continu-
ous) and the associated coefficient parameter vector β over a 
total of N years are specified as follows:

The values of predictor TCi = 1 if a TC is present (TCi = 0 
otherwise). Similarly, MJOi = 1 if the event coincided with 
the active phases and MJOi = 0 if the event occurred during 
an inactive phase; the phases of the MJO are defined fol-
lowing Wheeler and Hendon (2004). The ONI is those from 
the CPC (2020) and the IPO index, which is a measure of 
interdecadal variability, is from Henley et al (2015).

The value of Zi is not known as the exact posterior dis-
tribution of regression parameter β is not known. However, 
given the data yi, the posterior distribution of the regres-
sion parameter can be simulated in the Bayesian framework 
using a widely used Markov Chain Monte Carlo (MCMC) 
approach called the Gibbs sampler (Gelfand and Smith 1990, 
see also Appendix A1 for details). Thus, the values of Zi, and 
hence the corresponding binary class label variable Yi, can 
be obtained from the truncated normal distribution (e.g., 
Albert and Chib 1993) such that

The probability of rainfall exceeding a particular thresh-
old P(yi = 1), or not P(yi = 0), can then be expressed as

where L is the number of iterations of the Gibbs sampler 
(L = 5000 in our case).

Validity of several statistical assumptions, including 
model convergence and stationarity, are inferred from vari-
ous diagnostics available within the Bayesian framework. 

(1)�i = Xi�
� + �i, �i ∼ N(0, 1);i = 1, ...,N,

(2)Xi ∈
{
1, TCi,MJOi,ENSOi, IPOi

}
; i = 1, 2,… ,N,

(3)� ∈
{
�0, �TC, �MJO, �ENSO, �IPO

}
.

(4)
Zi
|||yi, � ∼ N(XT

i
�, 1)

truncated at the left by 0 if yi = 1 and,

(5)
Zi
|||yi, � ∼ N(XT

i
�, 1)

truncated at the right by 0 if yi = 0.

(6)P(yi = 1) =
1

L

L∑

i=1

Yi,

(7)P(yi = 0) = 1 − P(yi = 1),

For example, model convergence is inferred from the Gel-
man and Rubin (1992) diagnostics where different initial 
conditions are utilised for various chains of MCMC simula-
tion. After convergence, posterior distributions of all chains 
reach a similar steady state (Appendix A2). In our case, the 
convergence occurs at around 2000 iterations, and so we 
discard the first 2000 iterations as “burn-in” and use the 
subsequent 5000 iterations to obtain posterior density dis-
tributions of our model parameters. Model parameters can 
also be used to determine the validity of the stationarity 
assumption (which indicates that statistical properties of a 
variable do not change with time). The slow decay of auto-
correlation function derived from model parameters often 
indicates non-stationarity (e.g., Elsner et al. 2008). In our 
case, the autocorrelation values associated with each model 
parameter reaches zero fairly quickly, indicating no violation 
of the stationarity assumptions (Appendix A2).

The overall skill of our probit model for each station is 
assessed using the leave-one-out cross-validation (LOOCV) 
technique (e.g., Elsner and Schmertmann 1994). The 
LOOCV technique works by successively omitting each 
season’s observation and repeating the modeling proce-
dure to predict the omitted observation, with the resulting 
‘‘prediction’’ often referred to as the ‘‘hindcast’’. Statistical 
measures of categorical statistics such as contingency table, 
bias scores and Hansen-Kuipers scores (e.g., McBride and 
Ebert 2000) are derived from the hindcasts to evaluate model 
performances for each station (Appendix A3).

3 � Results and discussion

3.1 � Seasonal contributions

Figure 1b shows the occurrences of TCs per decade (that 
appeared within 500 km from each station) for each station 
during the study period; TC occurrences vary with latitude. 
Fewer than 15 TCs passing within 500 km occur for stations 
equatorward of 10°S (such as the Solomon Islands) where 
TC formations are rare (e.g., Chand and Walsh 2009) com-
pared to the regions poleward of 10°S (such as Vanuatu, Fiji, 
Samoa, New Caledonia and Tonga) where TC occurrences 
range between 15–35 per decade. Figure 1c further shows 
the overall (i.e. including TCs and non-TCs) average rainfall 
rate per month over the SWP nations for the November to 
April season for the period 1970–2018. The monthly rainfall 
rate during this season tends to be larger than 200 mm for 
regions mostly equatorward of 20°S. Over New Caledonia 
and Fiji, an east–west difference is also present: rainfall rate 
tends to be larger on the eastern-board (north eastern for the 
case of New Caledonia) than that over the western-board.

The fractional TC contributions to 1-, 2- and 3-day sea-
sonal maximum daily rainfall show a large regional-scale 
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variability (Fig. 2a–c). The larger contributions are gener-
ally over New Caledonia with some stations recording > 50% 
contributions, indicating that more than half of the seasonal 
maximum daily rainfall over this region is associated with 
TC passages. TC-induced contributions for Fiji and Vanu-
atu are also substantial (i.e., 30–40%). Table 1 provides a 
summary (i.e. average) of 1-, 2- and 3-day TC contribution 
to seasonal maximum rainfall for the different nations. It 
shows that Tonga has the weakest contribution followed by 
(in an increasing order when considering the 2 and 3-day 

percentages) Tuvalu, Solomon Islands, Fiji, Samoa, Vanuatu 
and New Caledonia.

It is important to note that the TC contributions over most 
stations and regions (Fig. 2 and Table 1) increase as the 
accumulation period (or days) increases. This is because 
TCs are often relatively slow-moving synoptic weather sys-
tems with large spatial extent in comparison to thunderstorm 
activities, and therefore are likely to contribute substantial 
amounts of rainfall in a particular region over a period of 
time. Also, TCs have strong rainfall rates, and thus, when 

Fig. 2   Maps showing the contribution of TCs to 1-, 2- and 3-day sea-
sonal maximum daily rainfall (a–c) as well as for rainfall exceeding 
the 95th percentile threshold (d–f the threshold is computed using the 

generalised extreme value theorem). The crosses denote the percent-
ages that are statistically different from zero at the 5% significance 
level
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accumulated over 3 days, the chance of having an extreme 
value is enhanced. The influence of TC translation speed 
should additionally be taken into consideration as TCs usu-
ally stay longer in some regions where they slowly intensify 
(e.g. Solomon Islands) and pass more rapidly over other 
regions (e.g. in the more southern part of the study region). 
This is evident when comparing the 1-day and 3-day TC 
contribution over different regions (Table 1, column 5) 
which shows that the percentage change is generally more 
over nations that are equatorward (e.g. Solomon Islands and 
Samoa) than those that are poleward (e.g. Vanuatu and New 
Caledonia).

Figure 2d–f shows the TC contributions to 1-, 2- and 
3-day rainfall exceeding the 95th percentile (P95) threshold 
obtained using an alternative POT approach. Similar to our 
findings above, TC contributions, in particular over New 
Caledonia are large (it exceeds 60% over some stations) sug-
gesting that TCs provide the majority of the extreme rainfall 
days. It is interesting to note that TC contribution is stronger 
on the west coast of New Caledonia than on the east coast 
while rainfall is stronger, on average, in the east coast than 
in the west coast (see Fig. 1c also). This implies that the west 
coast rainfall events are mostly associated with TCs, which 
is not the case for the east coast events. The same applies 
over Fiji where TC contribution is larger over the western 
then over the eastern board while rainfall is stronger, on 
average, in the east coast than in the west coast (see Fig. 1c 
also).

As outlined earlier, TCs in the SWP region are usually 
observed during the months of November to April, with 
peak activity occurring from January to March. Hence, it is 
useful to examine how TC contributions to extreme rainfall 
events compare for early, peak and late seasons: early sea-
son (October to December, OND), peak season (January to 
March, JFM) and late season (April to June, AMJ). Figure 3 
shows the contribution of TCs to 1-, 2- and 3-day seasonal 
maximum daily rainfall (column 1) and the contribution of 
TCs to 1-, 2- and 3-day rainfall exceeding the 95th percentile 
threshold (column 2) for these “targeted” seasons.

As expected, TC contributions to extreme rainfall are the 
largest during the peak season of JFM when TC activity 
also peaks. When considering the seasonal maximum rain-
fall metric (column 1), the contribution to extreme rainfall 
counts during this season exceeds 50%, in particular over 
New Caledonia and Vanuatu, indicating that more than half 
of the extreme rainfall events over these Island countries 
are due to peak season TCs. During other non-peak seasons 
(OND and AMJ), TC contributions are usually < 20%, as 
anticipated, due to fewer TCs.

Considering the 95th percentile threshold (P95—column 
2), the TC contribution exceeds 50% particularly over New 
Caledonia, Vanuatu and Fiji during JFM. Over New Caledo-
nia, TC contribution over some stations exceeds 70%. This 
shows that the most intense rainfall over the SWP Island 
nations—particularly over New Caledonia, Vanuatu and 
Fiji—are mostly due to TCs.

The positive association between TCs and extreme rain-
fall has also been reported over other regions. For example, 
a study by Villarini and Denniston (2015) shows that more 
than half of the highest annual rainfall events over Australia 
are associated with TCs over the coastal regions and in par-
ticular over the Western Australia. This study further shows 
that TC fractional contribution to extreme rainfall increases 
with the largest rainfall events; approximately 66–100% of 
annual maximum in excess of 100 mm over Western Aus-
tralia associated with TCs at over one third of the locations.

3.2 � Influence of the MJO

Given that the MJO significantly influences SWP TC activ-
ity as discussed earlier, we further examined the relation-
ship between different phases of the MJO and TC-induced 
extreme rainfall. Our findings (Fig. 4) show considerable 
variations in TC contribution to seasonal 1-, 2- and 3-day 
rainfall maximum during different phases of the MJO, with 
the contributions also varying regionally. During MJO 
phases 2–3 and 4–5, contributions west of 170°E are > 50% 
(statistically significant) over several stations (even greater 
than 80% for some stations). On the other hand, TC con-
tributions are generally < 40%, and even < 20%, for most 
of them (majority of which are also not statistically sig-
nificant) for regions east of 170°E. The peak contributions 
during these phases are over Vanuatu and New Caledonia. 
For MJO phases 6–7 and 8–1, TC contributions to extreme 
rainfall > 50% are observed mostly over regions poleward 
of 10°S, with the highest contributions generally occurring 
over New Caledonia and Vanuatu for both single and multi-
day rainfall events. TC contributions over regions east of 
170°E during these phases are also larger in comparison 
to those during MJO phases 2–3 and 4–5. During the weak 
MJO phase, TC contributions are < 50% over the majority 
of stations. The contributions during this phase, particularly 

Table 1   Average 1-,2- and 3-day TC contribution to seasonal maxi-
mum rainfall

Country 1 Day (%) 2 Day (%) 3 Day (%) % change (3–1 
Day)/1 Day

Tonga 16.52 20.43 20.59 24.69
Tuvalu 19.15 21.28 21.74 13.53
Solomon Islands 17.66 25.14 25.14 42.33
Fiji 24.93 28.98 29.95 20.17
Samoa 22.76 31.10 30.31 33.14
Vanuatu 31.22 34.62 34.99 12.07
New Caledonia 38.39 37.81 40.06 4.37
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Fig. 3   Maps showing the con-
tributions of TCs to 1-, 2- and 
3-day maximum daily rainfall 
for early (OND), peak (JFM) 
and late (AMJ) seasons (column 
1), as well as the contribution of 
TCs to 1-, 2- and 3-day rainfall 
exceeding the 95th (column 
2) percentile threshold. The 
crosses denote the percentages 
that are statistically different 
from zero at the 5% significance 
level
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east of 170°E, however, are generally greater than those dur-
ing the inactive phases (2–3–4–5), It should also be noted 
here that there are local differences in the percentage con-
tributions (such as the close presence of blue and red dots) 
during the different phases but the reasons for this is not 
clear at present.

These findings can be attributed to the suppression and 
enhancement of large-scale convective activity that influ-
ences TC activity during different phases of the MJO. The 
MJO tends to be active over the SWP region during phases 6, 
7, 8 and 1 and inactive during phases 2, 3, 4 and 5 (Wheeler 

and Hendon 2004). During the active phase of the MJO, 
convective activity associated with the SPCZ is enhanced 
over the SWP region (e.g. Haffke and Magnusdottir 2013). 
Hence, TCs are relatively more frequent (see normalised fre-
quency of TCs in Fig. 5c, d) and more intense during active 
phases of the MJO when compared with inactive or weak 
phases (Fig. 5a, b, e) (Chand and Walsh 2010; Leroy et al. 
2008; Klotzbach 2014; Ramsay et al. 2012). Differences in 
TC frequency between the active and inactive phases of the 
MJO are evaluated here in order to determine if the dif-
ferences in TC-induced extreme rainfall between these two 

Fig. 4   Maps showing the contribution of TCs to 1-, 2- and 3-day maximum rainfall during the different phases of MJO. The crosses denote the 
percentages that are statistically different from zero at the 5% significance level
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generalised active and inactive phases are indeed linked to 
each other (Fig. 5f). It is evident that TC occurrences during 
active phases of the MJO are larger than during inactive and 
weak phases, as reported in previous studies (Leroy et al. 
2008; Chand and Walsh 2010; Ramsay et al. 2012; Klotz-
bach 2014). Therefore, it is highly likely that the relatively 
larger contribution of TCs to extreme rainfall during the 
active phase of the MJO, as opposed to the inactive phase, 
is simply because there are more TCs.

3.3 � Influence of ENSO

We next examined the relationship between ENSO and TC-
induced extreme rainfall for the SWP (Fig. 6). Results show 
that TC contributions to seasonal 1-, 2- and 3-day rainfall 
maximum are considerably influenced by ENSO. During 

La Niña (Fig. 6a, e, i), TC contributions are larger over 
regions west of 170°E, particularly over New Caledonia and 
Vanuatu, where contributions can exceed 50% for some sta-
tions. For regions east of 170°E, TC contributions are gener-
ally < 40%. During ENSO Neutral years (Fig. 6b, f, j), TC 
contributions somewhat decrease for regions equatorward of 
15°S, but increase for regions poleward of 15°S and between 
160–180°E (i.e., over New Caledonia and Fiji where contri-
butions are > 60%). During El Niño events (Fig. 6c, g, k), TC 
contributions increase over Vanuatu and in the regions east 
of 170°E with the maximum contributions exceeding 50% 
over Fiji. In essence, larger contributions (i.e. > 50%) sys-
tematically shift towards the eastern parts of the SWP as the 
phase of ENSO changes from La Niña to El Niño (see also 
Fig. 6d, h, l). These changes are consistent with increased 
TC activity in the region east of 170°E during El Niño as 

Fig. 5   a–e Maps showing TC genesis locations (dots) and the number 
of TCs (in brackets) according to the phases of the MJO. Included are 
also the number of days for which the MJO phase occurred and the 
number of TCs relative to the number of days (i.e. normalised fre-
quency of TCs denoted as TCs day−1) for each MJO phase. The back-

ground is the mean precipitation pattern for each MJO phase obtained 
using the GPCP data. Differences in TC occurrences over each station 
between the MJO active (MJO 6, 7, 8, 1) and inactive (MJO 2, 3, 4, 
5) phases, and between El Niño and La Niña events for the periods 
1970–2018 are also shown in (f) and (g) respectively
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opposed to La Niña years (Fig. 5g). The above findings are 
also consistent with that reported over Australia, which lies 
west of the SWP region. Studies by Villarini and Denniston 
(2015) and Khouakhi et al. (2017) show that, over Australia, 
larger probability of TC-related annual maximum rainfall 
occurs during La Niña years.

3.4 � Long‑term changes in TC‑induced extreme 
rainfall

On average, TC numbers are likely to decrease in a warm-
ing climate, but their intensities are likely to increase (e.g., 
see Knutson et al. (2019) and Dutheil et al. (2020) for a 
review). The latter translates to an increase in the magni-
tude of extreme rainfall events associated with TCs. Here, 
we investigate whether TC contributions to extreme rainfall 
events have changed over recent decades, and if so, how? 
Fig. 7 shows the difference in TC contribution to 1-, 2- and 
3-day rainfall maximum between the periods 1994–2018 
and 1970–1993 for early, peak and late TC seasons (i.e., 
OND, JFM, and AMJ respectively). Overall, we find a slight 
increase in TC contributions during AMJ, and to some 
extent during OND, whereas the contribution generally 
decreases during JFM. During OND, TC contribution gen-
erally decreases over New Caledonia and Vanuatu (by more 
than 30% over some stations). However, a slight increase 
is observed over the Solomon Islands and regions east of 

170°E (mostly less than 10% increase). During JFM, there 
is an overall decrease in TC contribution for the majority of 
stations, but the decrease is more prominent over regions 
west of ~ 185°E (especially over Vanuatu and Fiji). For 
regions east of 185°E (i.e. Tonga and Samoa), TC contribu-
tion tends to increase (in excess of 30% over some stations). 
During AMJ, TC contribution increases slightly for most 
of the stations, especially for multi-day events (~ 0 to 10% 
increase).

One of the important factors to the difference in TC con-
tributions observed above could be linked to changes in the 
frequency of occurrences of TCs between the two periods 
under consideration (Fig. 8). Overall, TC numbers have 
decreased in the latter period, particularly over regions west 
of 185°E, although there is a slight increase over regions 
east of 185°E. The decrease in TC numbers west of 185°E 
could explain the observed decrease in TC contributions to 
extreme rainfall events over this region (particularly dur-
ing JFM). Similarly, the increase in TC contribution east of 
185°E could be related to the increase in TC occurrences 
over this region.

We note that even though TC contributions to extreme 
rainfall events have decreased over most of the SWP region 
due to a decrease in TC occurrences over the past few dec-
ades (as discussed above), it appears that the intensity of 
extreme rainfall events associated with individual TCs have 
somewhat increased (though not statistically significant at 

Fig. 6   Maps showing the contribution of TCs to 1-, 2- and 3-day sea-
sonal maximum daily rainfall during the different phases of ENSO: 
La Niña—column 1, Neutral—column 2 and El Niño—column 3. 
Column 4 shows the difference in the percentages between El Niño 

and La Niña years. The crosses denote the percentages that are statis-
tically different from zero at the 5% significance level. Note that col-
umn 4 has a separate colour scale
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the 5% confidence level) over most regions (Fig. 9, black 
plot). The difference in TC rainfall in a region (considering 
all stations) over the recent decades has been computed here 
using seasonal maximum associated with a TC. An exami-
nation of the large-scale conditions during the months of 
November to April show that the average specific and rela-
tive humidity at 700-hPa, as well as the TC potential inten-
sity (hereafter, PI), have increased during the latter half of 
the study period compared with the first half in the SWP 
(Fig. 10). Increasing humidity and PI conditions (Bister 
and Emanuel 2002; Emanuel 1995) favour intensification of 
TCs and associated convective activity, leading to increased 
precipitation. The increase in the number of stronger TCs 
(Category 3–5) over the SWP region in the recent decades 
has been confirmed by previous studies (e.g. Tauvale and 
Tsuboki (2019)). We have extended the analysis to non-TC 
related extreme rainfall (Fig. 9, red plot), which appears to 
have also increased over the majority of the Island nations 
(the difference in non-TC rainfall over the recent decades is 
computed in a manner similar to that of TCs as discussed 
above).

The findings here, particularly the increase in the mag-
nitude of TC associated rainfall, are consistent with that 
reported for the US region (Knight and Davis, 2007). The 

study by Knight and Davis (2007) shows that extreme pre-
cipitation from TCs over the south-eastern US has been 
increasing over the past few decades. However, in contrast, 
they report that the contribution of TCs to overall extreme 
precipitation has been significantly increasing by approxi-
mately 5–10% per decade.

The above findings for the SWP region show that while 
the frequency of extreme rainfall associated with TCs has 
decreased in recent decades, the magnitude of such rainfall 
has increased over the same period. This is consistent with 
the projected increase in the magnitude of extreme rainfall 
associated with TCs in a warming climate over the region 
(e.g. Dutheil et al. 2020 and the references therein) which 
needs to be taken into consideration in the context of future 
disaster mitigation and risk assessment.

3.5 � Extreme rainfall probabilities

The relationship between extreme rainfall events and co-
existing modulating factors (such as MJO, ENSO and 
IPO), including TCs as a source, are often complex in 
the SWP region (e.g., McGree et al. 2014). A prelimi-
nary analysis of selected station rainfall data for the SWP 
Island countries reveals large variability among TC- and 

Fig. 7   Maps showing the difference in the contribution of TCs to 1-, 2- and 3-day seasonal maximum daily rainfall between the periods 1994–
2018 and 1970–1993. The crosses denote the percentages that are statistically different from zero at the 5% confidence level
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non-TC-related seasonal maximum daily rainfall within 
each ENSO phase, as well as between different ENSO 
phases (not shown).

In order to better understand these complex relation-
ships, we developed state-of-the-art probit regression mod-
els using Bayesian fitting for selected stations in the SWP 
Island nations. We examined how the probabilities of the 
seasonal maximum daily rainfall are likely to have changed 
if those events were accompanied by different modulating 
factors. We also examined several cases of recent severe 
TC events that have caused substantial impacts at local 
scales in terms of extreme rainfall and flooding. Note here 
that rainfall activity is considered “high” (denoted “1”) 
if the probability of occurrence of seasonal maximum 
daily rainfall for a particular season is likely to exceed the 
median value for the station under consideration (Fig. 11); 
otherwise the rainfall activity is considered “low” (denoted 
“0”).

Figure  12 gives the posterior distribution of model 
parameters associated with different factors that modulate 
seasonal maximum daily rainfall for selected stations in the 
SWP (i.e. one station each for Solomon Islands, Vanuatu, 
New Caledonia, Fiji, Tonga and Samoa). The posterior 
density distributions on either side of the zero line pro-
vide insight into the relative influence of each parameter to 
the rainfall patterns. For example, a large proportion of the 
distribution associated with the parameter “TC” lie on the 
right side of the zero line, indicating that TCs are likely to 
contribute positively to seasonal maximum daily rainfall 
probabilities, as expected. However, the extent of contribu-
tions by different phases of the MJO, ENSO and IPO appear 
to vary between stations. For example, the negative phase of 
ENSO (i.e. La Niña) is likely to increase the probability of 
seasonal maximum daily rainfall for countries like Samoa 
and Fiji, as has been noted in some previous studies (e.g., 
McGree et al. 2014). Similarly, the active phases of the 
MJO are likely to play a key role in affecting rainfall prob-
abilities for stations like Samoa and Vanuatu. It is beyond 
the scope of the present study to investigate the physical 
mechanisms responsible for the different degree of modula-
tions observed for each station. Instead, we emphasise how 
combinations of these modulating factors are likely to influ-
ence the probabilities of seasonal maximum daily rainfall 
for stations under consideration (Table 2 and Figs. 13, 14, 
15, 16, 17, 18).

As expected, the probability of seasonal maximum daily 
rainfall activity exceeding the median value is enhanced 
substantially in the presence of a TC (as opposed to when a 
non-TC is present) for all stations under consideration, pro-
vided all other conditions remained constant. Over Samoa, 
for example, the probability of rainfall exceeding the median 
is higher when a TC is present during the time of an El Niño 
and an active phase of the MJO (Fig. 13a), as opposed to the 

Fig. 8   Maps showing the difference in TC occurrences between the 
periods 1994–2018 and 1970–1993

Fig. 9   Difference in mean seasonal maximum daily rainfall associ-
ated with TCs and non-TCs between the periods 1994–2018 and 
1970–1993
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time when a non-TC event is present for the same underly-
ing drivers (Fig. 13b). Similarly, the probability of rainfall 
exceeding the median is higher when a TC is present dur-
ing the time of a La Niña and an inactive phase of the MJO 
phase (Fig. 13g), as opposed to the time when a non-TC 
event is present for the same underlying drivers (Fig. 13h). 
All other stations under consideration for different coun-
tries show similar results (compare corresponding figures 
in Figs. 14, 15, 16, 17, 18).

However, the degree of enhancement of the probability of 
rainfall for TC and non-TC events can be largely controlled 
by prevailing background conditions at the time, primarily 
the ENSO and MJO. For example, the probabilities associ-
ated with the “high rainfall activity” for Samoa, Fiji and 
Solomon Island stations are greater when a TC is present 
during La Niña compared with when one is present dur-
ing El Niño (Samoa: Fig. 13a vs c and Fig. 13e vs g; Fiji: 
Fig. 14a vs c and Fig. 14e vs g; Solomon Islands: Fig. 15a vs 

Fig. 10   Maps showing differ-
ence in a relative humidity at 
700 hPa, b specific humidity 
at 700 hPa and c potential 
intensity at 700 hPa (PI) using 
the National Centre for Envi-
ronmental Prediction (NCEP) 
Reanalysis data (Kalnay et al. 
1996) for November to April 
between the periods 1994–2018 
and 1970–1993. Box encloses 
the SWP region
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c and Fig. 15e vs g). The inverse is true for the southernmost 
Island nations like Tonga (Fig. 17a vs c and Fig. 17e vs g) 
and New Caledonia (Fig. 18a vs c and Fig. 18e vs g) where 
the probabilities associated with “high rainfall activity” are 
greater when a TC is present during El Niño compared with 
when one is present during La Niña. The similar patterns 
of rainfall probability enhancement (and suppression) hold 
for non-TC events as well for each station. In addition, the 
ENSO appears to be the primary driver over all the regions 
in comparison to the MJO where the latter has greater 
influence only over Samoa and the Solomon Islands (see 
Table 3 which summarises the above findings on rainfall 
probabilities).

For completeness, we have also examined the probabili-
ties of occurrence of extreme rainfall activity associated with 
cases of recent severe TC events that have caused substantial 
impacts in different Island nations (Fig. 19). Overall, our 
models simulated very high probabilities of extreme rainfall 
for those TCs, which is consistent with observations. For 
example, in excess of 400 mm rainfall associated with severe 
TC Evan was recorded at one of the stations in Samoa. This 
event caused one of the worst flood-related disasters for 
Samoa. The model simulated ~ 70% probability of rainfall 
exceeding the median for this event. Similarly, TC Ita caused 
devastating impacts over the Solomon Islands in terms of 
flash flooding and extensive damage and losses to property 
and livelihoods. The model predicted over 65% chance of 
rainfall exceeding the median; the rainfall recorded at a sta-
tion in Solomon Islands was in excess of 300 mm in 24 h. As 
such, we see the application of these models for evaluating 
the exceedance probability of TC, and even non-TC, rainfall 

events if underlying climatic drivers are known. Such knowl-
edge can be very useful for decision-making and disaster 
risk reduction.

4 � Summary

In this study, we have examined the fractional contributions 
of tropical cyclones (TCs) to extreme rainfall over south-
west Pacific Island nations, namely Samoa, Fiji, Solomon 
Islands, Vanuatu, Tonga and New Caledonia. Data from a 
total of 52 homogenised daily rainfall stations for the period 
1970–2018, provided by the respective national meteorologi-
cal and hydrological services, have been utilised to compute 
the fractional contributions of TC-induced extreme rainfall 
using block maxima and the peak-over-threshold techniques. 
We show that TCs make significant contributions to extreme 
rainfall over most of the tropical southwest Pacific Island 
nations, with the most susceptible regions being New Cal-
edonia, Fiji, Vanuatu and the southern part of the Solomon 
Islands. Moreover, TC contribution to extreme rainfall gen-
erally increases when focus is shifted from single (1-day) 
to multi-day (2- and 3-day) rainfall accumulation periods. 
Seasonally, these contributions peak during the months 
January–February–March (JFM) which can be attributed to 
the peak TC activity occurring during the latter austral sum-
mer period. This peak is also well reflected in the monthly 
frequency of major floods as presented by McAneney et al 
(2017) for Fiji.

We have also examined the influence of the MJO on TC-
induced extreme rainfall by stratifying the contributions 
into the active and inactive phases of the MJO. It is appar-
ent from the analyses that TC contributions to seasonal 1-, 
2- and 3-day rainfall maximum differ significantly during 
the different phases of the MJO, with the contributions also 
varying regionally. The contributions tend to be significantly 
larger during the active phases of the MJO. The lower con-
tributions of TCs to extreme rainfall are observed during 
inactive and weak phases of the MJO. It is evident that there 
are more TC occurrences during the active phase of the MJO 
than during the inactive and weak phases, consistent with 
previous studies (Chand and Walsh 2010; Klotzbach 2014). 
Therefore, it is highly likely that the relatively larger contri-
bution of TCs to extreme rainfall during the active phase of 
the MJO, as opposed to during the inactive phase, could be 
primarily due to the larger number of TC occurrences during 
the active phase.

The relationship between ENSO and TC-induced 
extreme rainfall is also examined. We found that during 
La Niña years, TC contributions are larger (> 50%) over 
regions west of 170°E, and lower (< 40%) for regions east 

Fig. 11   Boxplot of seasonal maximum rainfall at selected stations. 
The grey area (box) shows the middle (50th percentile), 75th percen-
tile (top edge i.e. the upper quartile) and the 25th percentile (lower 
edge i.e. the lower quartile) values; the whiskers (vertical bars) show 
the values ± 1.5 × interquartile range about the upper and the lower 
quartiles and the asterisks are the outliers
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of 170°E. During ENSO neutral years, TC contributions 
somewhat decrease for regions equatorward of 15°S, but 
increase for regions poleward of 15°S and between 160°E 
and 180°E (i.e. over New Caledonia and Fiji where contri-
butions are > 60%). During El Niño years, TC contributions 
increase over regions east of 170°E. In essence, larger con-
tributions (i.e. > 50%) systematically shift towards the east-
ern portion of the southwest Pacific during El Niño years. 
These changes are consistent with the increased TC activity 
in the region east of 170°E during El Niño as opposed to 
La Niña years.

This study also investigated whether TC-induced extreme 
rainfall has varied over recent decades. Our results show 

that there is a slight decrease in TC contribution to extreme 
rainfall during the period 1994–2018 when compared with 
that during the period 1970–1993, particularly over the cen-
tral southwest Pacific regions and during JFM (statistically 
significant at the 5% confidence level over some stations). 
A contributing factor to this decrease could be an overall 
decrease in TC incidences over this region. We further 
showed that the intensity of extreme rainfall associated with 
individual TCs may have increased over recent decades for 
most Island nations, consistent with the increase in thermo-
dynamic environmental conditions such as humidity and TC 
potential intensity (PI) that control TC intensity and associ-
ated precipitation.

Fig. 12   Posterior density plots of Bayesian regression parameters 
(rows) for selected stations over each SWP Island nation. The dashed 
line is the zero reference and the asterisks indicate the 95% credible 

interval. ‘Beta’ refers to the posterior distribution associated with dif-
ferent model parameters, intercept (column 1), TC (column 2), and 
so on
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Finally, we developed state-of-the-art probit regression 
models in the Bayesian framework to evaluate synergistic 
relationships between extreme rainfall and the combinations 
of various climatic drivers that modulate them for selected 
stations in the southwest Pacific. These models have sub-
stantial skill in simulating the probabilities of extreme rain-
fall associated with both TC and non-TC events, particularly 
in simulating how the probabilities of seasonal maximum 
daily rainfall (i.e. whether rainfall would exceed the station 
median value or not) are likely to change if a TC event, for 
example, occurs in different phases of the MJO, ENSO and 
IPO. As expected, it is shown that the probability of seasonal 
maximum daily rainfall activity exceeding the median value 
is enhanced substantially in the presence of a TC for all 
stations under consideration, provided all other conditions 
remained constant. However, the degree of enhancement 
of the probability of rainfall for TC and non-TC events are 
largely controlled by prevailing background conditions at the 
time, primarily the ENSO and MJO. For the northernmost 
Island nations like Samoa, Fiji and the Solomon Islands, the 
probabilities associated with the “high rainfall activity” are 
greater when a TC is present during La Niña compared with 
when one is present during El Niño. The inverse is true for 

Table 2   Probability of occurrence of strong (above the median 
value) extreme rainfall events for different combination of modulat-
ing factors: El Nino and La Nina phases of ENSO (columns), active 
and inactive phases of the MJO (rows), and TC and non-TC events 
(bracket separated probability values–values outside the brackets are 
those associated with TCs and those inside with non-TCs)

IPO is positive in all the scenarios. Plots of probabilities for each 
region are also shown in Figs. 13, 14, 15, 16, 17, 18 to complement 
this table

Region MJO phases TC (non-TC) %

El Nino La Nina

Samoa MJO active 71 (40) 96 (90)
MJO inactive 31 (3) 76 (52)

Fiji MJO active 54 (1) 94 (34)
MJO inactive 53 (2) 93 (34)

Solomon Islands MJO active 15 (4) 48 (37)
MJO inactive 43 (28) 82 (76)

Vanuatu MJO active 22 (10) 6 (2)
MJO inactive 18 (10) 6 (2)

Tonga MJO active 83 (63) 78 (56)
MJO inactive 82 (65) 77 (58)

New Caledonia MJO active 96 (70) 42 (8)
MJO inactive 94 (68) 44 (10)

Fig. 13   Probability of occurrence of extreme rainfall events associ-
ated with different combinations of modulating factors (rows) for a 
selected station over Samoa. Binary labels “0” and “1” indicate below 

and above median seasonal maximum daily rainfall respectively. See 
Table 2 for exact values
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Fig. 14   Same as Fig. 13 but for a station in Fiji

Fig. 15   Same as Fig. 13 but for a station in Solomon Islands
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Fig. 16   Same as Fig. 13 but for a station in Vanuatu

Fig. 17   Same as Fig. 13 but for a station in Tonga
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the southernmost Island nations like Tonga and New Cal-
edonia where the probabilities associated with “high rainfall 
activity” are greater when a TC is present during El Niño 
compared with when one is present during La Niña. The 
similar patterns of rainfall probability enhancement (and 
suppression) are found for non-TC events as well for each 
station.

In summary, this study presents new and valuable infor-
mation about TC-induced extreme rainfall and its association 
with various modes of climate variability over the southwest 
Pacific, including the Island nations, on regional to local 
scales. Results here can have important implications towards 
development of disaster risk management strategies for the 
Pacific island nations.

Fig. 18   Same as Fig. 13 but for a station in New Caledonia

Table 3   Combinations of 
factors for highest and lowest 
probabilities for strong extreme 
rainfall for each station from 
Table 2

Note, the MJO factor has not been included for Vanuatu, Tonga and New Caledonia since its influence is 
not evident over these nations—the probability values between the active and inactive phase differ by 4 at 
most for these nations

Region Highest probability Lowest probability

Samoa 96%—TC/La Nina/MJO active 3%—Non-TC/El Nino/MJO inactive
Fiji 94%—TC/La Nina/MJO active 1%—Non-TC/El Nino/MJO active
Solomon Islands 82%—TC/La Nina/MJO inactive 4%—Non-TC/El Nino/MJO active
Vanuatu 22%—TC/El Nino 2%—Non-TC/La Nina
Tonga 83%—TC/El Nino 56%—Non-TC/La Nina
New Caledonia 96%—TC/El Nino 8%—Non-TC/La Nina
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Appendix

A1: Gibbs sampler

The frequentist approach assumes that values of regres-
sion parameters are fixed but unknown and are determined 
through a maximum likelihood procedure by maximising 
the likelihood function f(y|β) for the model. However, the 
Bayesian approach treats model parameter values not as 
fixed but as random variables, and inferences concerning 
the parameters are then obtained by combining the prior 
belief f(β) with the most frequent likelihood f(y|β) using 
Bayes’ rule such that

The posterior distribution f(β|y) is the probability den-
sity of β conditioned on the observation vector y. Prior 
belief f(β) refers to information about the values of param-
eters of interest without reference to the data. In our case, 
we use noninformative priors of mean of 0 and a variance 
of 106. This very large variance indicates very small pre-
cision (i.e., 10–6) and thus contributes little information 
about the data.

In practice, evaluating analytical solutions of Bayes’ 
equation is computationally difficult. Therefore, the Markov 

(8)f (�|y) ∝ f (�)f (y|�).

chain Monte Carlo (MCMC) simulation is often considered 
a desirable alternative to obtain the posterior distribution. 
A widely used MCMC simulation method is the Gibbs sam-
pler. The Gibbs sampler involves an iterative procedure that 
generates samples from the posterior distribution by succes-
sively using updates from previous samples on the current 
conditional. Suppose, for example, there are k components 
of the model parameter vector β, defined as β = [β1, β2, …, 
βk] and f(β|y) be its posterior distribution given the data y. 
The Gibbs sampling (Gelfand and Smith 1990) then pro-
ceeds as follows:

1.	 Select an arbitrary starting point β[0] = [β1
[0], β2

[0], …, 
βk

[0]] and set i = 0.
2.	 Generate β[i+1] = [β1

[i+1], β2
[i+1], …, βk

[i+1]] as follows:

3.	 Set i = i + 1 and repeat step 2 until meeting the required 
number of iterations.

(9)
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Fig. 19   As per Fig. 13 but for selected severe TC events in the SWP. Numbers in the brackets show the extreme rainfall associated with the 
selected TCs
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In this way, each component of β is visited sequentially 
and the posterior probability distribution of β conditioned 
on the data y (i.e., f(β|y)) is obtained. The sampling is 
implemented for a number of iterations until the output is 
stable. In our case, we sampled for the total of 7000 itera-
tions, and discard the first 2000 as a “burn-in”.

A.2: Model convergence and stationarity

Establishing convergence with the Gibbs sampler is a cru-
cial step in Bayesian inferences in order to avoid introduc-
ing artificial skill in forecasts. Multiple chains are often 
utilised to check convergence criteria. In our case, we run 
five chains in parallel. After 2000 iterations, all chains 
appear to reach a similar steady state indicating model 
convergence (e.g., see Fig. 20 for the case of Samoa). 
Moreover, the autocorrelations of each posterior distribu-
tion also reach zero fairly quickly (see also Fig. 20 for the 
case of Samoa). This indicates that stationarity assump-
tions are satisfied, and so our time series of station rainfall 
station are free of abrupt and slowly varying changes and 
periodicities.

A3: Statistical skill scores

The contingency table (Table 4) is used to determine:

1.	 The Hanssen–Kuipers score (HK), also known as the 
true skill statistic, following McBride and Ebert (2000) 
such that

where the last factor normalises the score between 
-1 and 1. This scale is preferred over other measures 
because it is independent of the distribution of events 
and non-events and facilitates the comparison of model 
skill across geographical and seasonal regimes.

2.	 The bias score, which is a measure of a relative fre-
quency for correctly predicting extreme rain events in 
our case, is determined as follows

Results of these scores are summarised in Table 5. Over-
all, probit models for all basins appear to perform reasonably 

(10)HK =
H

M + H
+

Z

Z + F
− 1,

(11)BIAS =
F + H

M + H
.

Fig. 20   An example for Samoa station showing (i) five chains for each model parameter where over 2000 iterations are utilised to check model 
convergence (a–e), and (ii) autocorrelations for each model parameter associated with 2000 iterations to check stationarity assumption (f–j)

Table 4   Schematic of the 2 × 2 contingency table

Modelled Observed

Yes No

Yes Hit (H) False alarm (F)
No Miss (M) Correct rejection (Z)

Table 5   Hanssen–Kuipers and bias scores for stations under consid-
eration

Note that HK scores range from − 1 to + 1, where positive values 
indicate better skill (+ 1 being perfect). Bias scores that are greater 
(less) than 1 are indicative of overestimation (underestimation) with 
the score of 1 representing no biases

Station HK score Bias score

Samoa 0.5 1.1
Fiji 0.5 0.8
Solomon Islands 0.4 1.1
Vanuatu 0.3 0.7
Tonga 0.3 0.7
New Caledonia 0.5 1.1
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well (HK scores > 0 for all cases), with noticeably insignifi-
cant biases (Bias ~ 1) for most stations.
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