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Abstract
Understanding the relationship between probabilistic and deterministic prediction skills is of important significance for 
the study of seasonal forecasting and verification. Based on the Brier skill score methodology, we have previously found a 
theoretical relationship between the probabilistic resolution skill and the deterministic correlation (i.e., anomaly correlation; 
AC) skill and a lack of necessary or consistent relationship between the probabilistic reliability skill and the deterministic 
skill in dynamical seasonal prediction. Here, we further theoretically investigate the relationship between the probabilistic 
relative operating characteristic (ROC) skill and the deterministic skill. The ROC measures the discrimination attribute 
of probabilistic forecast quality, another important attribute besides the resolution and reliability. With some simplified 
assumptions, we first derive theoretical expressions for the hit and false-alarm rates that are basic ingredients for the ROC 
curve, then demonstrate a sole dependence of the ROC curve on the AC, and finally analytically derive a relationship 
between the related ROC score and the AC. Such a theoretically derived ROC-AC relationship is further examined using 
dynamical models’ ensemble seasonal hindcasts, which is well verified. The finding here along with our previous findings 
implies that the discrimination and resolution attributes of probabilistic seasonal forecast skill are intrinsically equivalent to 
the corresponding deterministic skill, while the reliability appears to be the fundamental attribute of the probabilistic skill 
that differs from the deterministic skill, which constitutes an understanding of the fundamental similarities and difference 
between the two types of seasonal forecasting skills and predictability and can offer important implications for the study of 
seasonal forecasting and verification.

Keywords  Seasonal prediction · Dynamical forecast · Prediction skill · Probabilistic forecast · Deterministic forecast · 
Relative operating characteristic

1  Introduction

Seasonal climate prediction aims at predicting the anoma-
lous climate conditions in the next one or several seasons 
and its accuracy is extremely important for decision mak-
ing and risk management. In the past two decades, scien-
tists have devoted substantial efforts to developing complex 
general circulation models (GCMs) to perform seasonal 
climate prediction (Stockdale et al. 1998; Kanamitsu et al. 
2002; Saha et al. 2006, 2014; Luo et al. 2008; Molteni et al. 
2011; Merryfield et al. 2013; Liu et al. 2015; MacLachlan 
et al. 2015). Seasonal prediction using dynamical models is 
necessarily subject to the errors sources of initial condition 
and model uncertainties. To mitigate the adverse effects of 
these uncertainties on the forecasting accuracy, the strategies 
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of single-model ensemble (SME) and multi-model ensem-
ble (MME) forecasting have been widely adopted (Stock-
dale et al. 1998; Palmer et al. 2004). Based on the multiple 
forecast realizations from an ensemble, the final prediction 
can be made in two formats: the deterministic and proba-
bilistic formats. In the field of seasonal climate prediction, 
deterministic prediction usually refers to an ensemble-mean 
“point forecast” of a continuous predictand, while probabil-
istic prediction aims at predicting the occurrence probabili-
ties of some discrete event categories. It has been argued that 
probabilistic prediction can bring greater economic value 
for stakeholders than deterministic prediction (Richardson 
2006). For this reason, probabilistic prediction is usually 
deemed to be practically more valuable than deterministic 
prediction.

Along with developing dynamical forecast models, 
assessing and understanding model prediction skills is also 
an important component in the study of dynamical seasonal 
prediction, since it can provide useful feedbacks for model 
development. Since dynamical model forecasts can be pre-
sented in the two formats, model prediction skill can also 
be evaluated from two perspectives, the deterministic and 
probabilistic prediction perspectives. In seasonal climate 
prediction, the methodology for evaluating the determin-
istic forecast skill is simple, mainly in terms of the linear 
correlation between predicted and observed anomalies. Such 
deterministic skill is also often referred to as correlation or 
anomaly correlation (AC) skill (Saha et al. 2006). In con-
trast, the methodologies for evaluating probabilistic forecast 
skill appear much more complicated. A variety of specific 
methods have been proposed to measure the probabilis-
tic skill, among which the Brier skill score (BSS) method 
(Palmer 2000; Kharin and Zwiers 2003a; Wilks 2011) and 
the relative operating characteristic (ROC) method (Mason 
and Graham 1999; Palmer 2000; Kharin and Zwiers 2003b; 
Wilks 2011) appear to be the most commonly used ones. The 
BSS measures the probabilistic skill based on the relative 
mean square error criterion. The BSS itself is a measure of 
overall probabilistic skill and it can be further decomposed 
into two components, which measure the reliability and res-
olution attributes of probabilistic skill, respectively (Kha-
rin and Zwiers 2003a). The reliability quantifies how well 
forecast probabilities match in magnitude the correspond-
ing observed frequencies, whereas the resolution meas-
ures how different these observed frequencies are from the 
climatological probability. The ROC method gauges the 
probabilistic skill based on comparing the hit rates and the 
false-alarm rates (Mason and Graham 1999). Essentially, 
the ROC method measures the discrimination attribute of 
probabilistic skill, which refers to how different the condi-
tional probabilities of forecasts corresponding to observed 
event occurrence and nonoccurrence are from each other 
(Wilks 2011). The attributes of discrimination as well as 

reliability and resolution represent the most essential aspects 
of probabilistic forecast quality (Wilks 2011; Jolliffe and 
Stephenson 2012).

In the past two decades, based on the aforementioned 
methodologies, many studies have been done for assessing 
and understanding the seasonal prediction skills of dynami-
cal climate models (Yang et al. 1998; Pavan and Doblas-
Reyes 2000; Kirtman 2003; Doblas-Reyes et al. 2003, 2009; 
Palmer et al. 2004; Hagedorn et al. 2005; Graham et al. 
2005; Kang and Shukla 2006; Kirtman and Min 2009; Kha-
rin et al. 2009; Wang et al. 2009; Weisheimer et al. 2009; 
Zheng et al. 2009; Zheng and Zhu 2010; Chowdary et al. 
2010; Philippon et al. 2010; Alessandri et al. 2011; Li et al. 
2012; Yang et al. 2012, 2016; Kumar et al. 2013; Yan and 
Tang 2013; Kirtman et al. 2014; Beraki et al. 2015; Becker 
and van den Dool 2015; Tippett et al. 2017). While early 
studies mostly focused on examining the deterministic skill, 
recent studies have also paid significant attentions on inves-
tigating the probabilistic skill.

While the deterministic and probabilistic skills of dynam-
ical seasonal predictions are mostly assessed independently, 
some studies have put attentions on comparing them and 
investigating the relationship between them (Wang et al. 
2009; Cheng et al. 2010; Alessandri et al. 2011; Sooraj et al. 
2012; Yang et al. 2016; Athanasiadis et al. 2017). Actually, 
in early 1990s, Barnston (1992) noticed their possible exist-
ing relationship. It is quite valuable to study the relationship 
(or lack thereof) between the deterministic and probabilistic 
skills, since it can offer understanding of the similarities and 
differences between the two types of seasonal forecasting 
skills and provide new visions for further understanding the 
probabilistic forecast skill, which is usually not easy due 
to the complexity associated with the probabilistic issue. 
Moreover, from the perspective of practical application, if 
some specific relationship between the probabilistic and 
deterministic skills can be identified and established, it can 
also facilitate comparisons between probabilistic and deter-
ministic assessments of seasonal forecasting capability.

With evaluating the seasonal hindcasts from a MME 
made of 14 single models, Wang et al. (2009) found that 
the probabilistic skills of both BSS and ROC show a clear 
statistical relationship with the corresponding deterministic 
correlation skill for the seasonal prediction of precipitation 
and temperature. In analyzing the seasonal prediction skills 
of three dynamical forecasting systems and their MME, 
Athanasiadis et al. (2017) found that the probabilistic ROC 
skill is largely consistent with the corresponding determinis-
tic correlation skill in their large-scale spatial distributions. 
The forecast skills examined in the above studies are grid 
point skills calculated over a relatively short period, which 
may be subject to significant sampling uncertainty, obscur-
ing the underlying true relationship between probabilistic 
and deterministic skills. Using a longer ensemble hindcast 
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product of five models and evaluating the forecast skills in 
an area-aggregated way to alleviate the impact of sampling 
uncertainty, Yang et al. (2016) found that there is no sig-
nificant relationship between the probabilistic reliability 
and deterministic correlation skills but instead a strikingly 
good, quasi-deterministic relationship between the proba-
bilistic resolution and deterministic correlation skills, for 
the prediction of western North Pacific-East Asian summer 
monsoon. To further understand the observed relationship 
between probabilistic and deterministic skills, Yang et al. 
(2018) presented a theoretical consideration, where the rela-
tionship between the resolution and correlation skills was 
targeted. This theoretical consideration reveals that under 
certain simplified assumptions, a functional relationship 
can be analytically derived between the probabilistic reso-
lution and deterministic correlation skills. The theoretical 
derivations in Yang et al. (2018) were inspired by Kharin 
and Zwiers (2003a), where a probabilistic interpretation of 
seasonal potential predictability was proposed based on the 
BSS methodology. However, since without invoking the per-
fect model or perfect reliability assumptions, the theoretical 
framework in Yang et al. (2018) has significant conceptual 
difference from those in Kharin and Zwiers (2003a) and 
other previous studies (Kumar et al. 2001; Kumar 2009; 
Tippett et al. 2010, 2017). This difference has been further 
discussed in Yang et al. (2019) and Tippett (2019). Since 
current models are still far from perfect in reproducing the 
reality, the theoretical framework in Yang et al. (2018) shall 
be more reasonable and the derived theoretical relationship 
should be more suitable to represent the realistic situation. In 
the meantime, the diagnostic analysis in Yang et al. (2018) 
also confirmed that no necessary relationship exists between 
the probabilistic reliability and deterministic correlation 
skills, indicating that the reliability is a fundamental aspect 
of probabilistic forecast skill that differs from the determin-
istic skill in dynamical seasonal climate prediction.

As reviewed above, like the resolution skill, the ROC 
skill was also observed to show a good relationship with the 
deterministic correlation skill. Considering that the ROC 
skill reflects the discrimination, another important attrib-
ute of probabilistic skill in addition to the resolution and 
reliability, it is interesting and also necessary to perform 
an in-depth investigation of its relationship with the deter-
ministic skill from the theoretical point of view. This is the 
purpose of this study. Specifically, we provide a systematic 
and in-depth theoretical consideration, which ultimately 
demonstrates that there is also a theoretically determinis-
tic relationship between the probabilistic ROC skill and the 
deterministic correlation skill. This theoretically derived 
relationship can be well validated by GCM dynamical fore-
casts. The result of this study together with the results of 
Yang et al. (2018) is expected to contribute to an insightful 
understanding of the fundamental similarities and difference 

between probabilistic and deterministic skills in seasonal cli-
mate prediction. The paper is structured as follows. Section 2 
describes the ROC skill metrics for probabilistic forecasts. 
The detailed theoretical consideration is presented in Sect. 3. 
Section 4 focuses on verifying the theoretical consideration 
through analyzing the seasonal forecasting skills of current 
GCMs. Summary and discussion are given in Sect. 5.

2 � Description of the ROC skill metrics 
for probabilistic forecasts

The ROC methodology has its origin in the signal detec-
tion theory, which reflects the skill of a forecasting system 
based on comparing the hit rate (HR) and the false-alarm 
rate (FAR) (Mason and Graham 1999; Kharin and Zwiers 
2003b). The HR implies the proportion of events for which 
a warning was provided correctly, while the FAR implies the 
proportion of nonevents for which a warning was provided 
falsely. The ROC skill essentially depends on the extent to 
which the HR exceeds the corresponding FAR. For proba-
bilistic forecasts, a ROC curve can be constructed to show 
the different combinations of HRs and FARs given different 
forecast probability thresholds. On the basis of the ROC 
curve, a ROC score (ROCS) and ROC skill score (ROCSS) 
can be defined to quantify the probabilistic ROC skill.

The HRs and FARs that are essential ingredients in the 
ROC approach can be calculated from 2 × 2 contingency 
tables. Table 1 shows a standard 2 × 2 contingency table for 
the simplest case of the binary forecasting, where if an event 
is predicted to occur, a warning is provided. Here, H is the 
number of hits, for which an event occurred and a warning 
was provided; F is the number of false alarms, for which 
an event did not occur but a warning was provided; M is 
the number of misses, for which an event occurred but a 
warning was not provided; and C is the number of correct 
rejections, for which an event did not occur and a warning 
was not provided. Based on the contingency table, the HR 
and the FAR are defined as

(1)HR =
H

H +M
=

H

E
,

Table 1   2 × 2 contingency table for the verification of the binary fore-
casting

Observations Forecasts

Warning No warning Total

Event H M E

Nonevent F C E
′

Total W W
′

N
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where E and E′ represent the numbers of event occurrences 
and nonoccurrences, respectively, and the sum of E plus E′ 
is equal to the total number N of the forecast-observation 
pairs. For probabilistic forecasting, a warning can be pro-
vided when the forecast probability of an event exceeds 
some threshold. As such, given a probability threshold pth, 
a similar 2 × 2 contingency table can be obtained based on 
the data of forecasts and observations and a corresponding 
HR and FAR can then be calculated through formulas (1) 
and (2). Moreover, through successively varying the thresh-
old pth from one towards zero, a set of different pairs of HR 
and FAR can be finally calculated for probabilistic forecasts.

The ROC curve for probabilistic forecasts is constructed 
by plotting HRs (vertical axis) versus the correspond-
ing FARs (horizontal axis) in a unit square diagram (also 
referred to as ROC diagram). The ROC curve displays the 
full characteristics of HRs versus FARs for different forecast 
probability thresholds. Based on the ROC curve, the proba-
bilistic ROC skill can be evaluated. If the ROC curve lies 
above the diagonal line in the diagram, this means that the 
HRs exceed the FARs, and prediction is skillful. Contrarily, 
there is no skill or negative skill if the ROC curve coincides 
with or lies below the diagonal line. The ROCS, which is 
defined as the area beneath the ROC curve, is commonly 
used to further quantify the probabilistic ROC skill. The 
ROCS ranges from 0 to 1 and can be further transformed to 
the ROCSS that ranges from − 1 to 1 (i.e., having the same 
range as correlation). The transformation is through the for-
mula ROCSS = 2 × (ROCS − 0.5) . ROCS (ROCSS) greater 
than 0.5 (0) indicates a skill, while ROCS (ROCSS) equal 
to or lower than 0.5 (0) represents no skill or negative skill. 
In general, the larger the value of the ROCS or ROCSS, the 
better the probabilistic skill.

3 � A theoretical consideration 
for the relationship between probabilistic 
ROC skill and deterministic correlation 
skill

In this section, we present a theoretical consideration for 
the relationship between probabilistic ROC skill and deter-
ministic correlation (i.e., anomaly correlation; AC) skill in 
seasonal climate prediction. The prediction object that is 
focused on is the (seasonal-mean) climate anomalies. The 
probabilistic ROC skill is considered for the below-normal 
(BN), near-normal (NN), and above-normal (AN) categories 
that are defined based on the terciles of the observed clima-
tology and therefore have an equal climatological occurrence 
probability of 1∕3 . These categories are of particular interest 

(2)FAR =
F

F + C
=

F

E�
,

in seasonal climate prediction. Specifically, in this consid-
eration, with certain simplified assumptions, we first derive 
theoretical expressions for the HR and the FAR, then dem-
onstrate a sole dependence of the ROC curve on the AC, and 
finally derive and illustrate a theoretical relationship between 
the ROCS and the AC. The major assumptions used include 
that the underlying predictive probability density functions 
(PDFs) are normal, that the variances of the predictive PDFs 
are invariant from case to case, and that the means of the 
predictive PDFs and the corresponding observations obey a 
joint normal distribution. These assumptions were also used 
in Yang et al. (2018) for deriving the theoretical relationship 
between the probabilistic resolution and deterministic cor-
relation skills. The assumptions of normal distribution as 
well as invariant forecast variance have been argued to be 
in general good approximations for the prediction of sea-
sonal mean atmospheric anomalies (Van den Dool and Toth 
1991; Rowell 1998; Kumar et al. 2000; Wilks 2002, 2011; 
Tang et al. 2008; Weigel et al. 2008, 2009). This theoreti-
cal consideration has been initially inspired by the work of 
Kharin and Zwiers (2003b), but, as will be seen, has great 
differences from theirs.

3.1 � Theoretical expressions for the HR and the FAR

Let O be a binary random variable for the observed outcome 
of an event, one for occurrence and zero for nonoccurrence. 
Suppose that the number of forecast-observation samples is 
large enough. Then, the HR and FAR in (1) and (2) can be 
theoretically expressed as the following form:

where the notation P(⋅|⋅) denotes the conditional probability. 
For probabilistic forecasting, as stated previously, a warning 
is provided when the event forecast probability p exceeds a 
given threshold pth. Thus, the HR and FAR for probabilistic 
forecasting can be expressed as a function of the threshold 
pth as below:

where f (p|O) represents the conditional PDF of p given O , 
and Ωp denotes forecast probabilities p > pth . For the BN 
and AN categories, the upper bound of the domain Ωp is 
naturally one. However, note that for the NN category, the 

(3)HR = P(warning|O = 1),

(4)FAR = P(warning|O = 0),

(5)HR
(
pth

)
= ∫

Ωp

f (p|O = 1)dp,

(6)FAR
(
pth

)
= ∫

Ωp

f (p|O = 0)dp,
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domain Ωp is usually upper bounded by a value smaller than 
one. This is because the maximum possible forecast prob-
abilities for the NN category usually cannot reach one. By 
invoking the Bayes’ theorem, f (p|O) in (5) and (6) can be 
expressed as

where P(O|p) is the conditional probability of O given p , 
fp(p) represents the marginal PDF of p , and P(O) is the mar-
ginal probability of O . Substituting (7) into (5) and (6), the 
HR and FAR can then be expressed as below:

For theoretical convenience, we further consider an ideal 
case with a sufficiently large ensemble size. In this case, the 
forecast probability p is not subject to sampling fluctuation, 
exclusively determined by the underlying predictive PDF. 
Denote the mean and the variance of the predictive PDF 
by � and �2

e
 , respectively. If the predictive PDF is a normal 

distribution that can be fully characterized by its mean and 
variance, the forecast probability p is eventually a function 
of the � and �2

e
 only. If the forecast variance �2

e
 is further 

constant, then the HR
(
pth

)
 and FAR

(
pth

)
 in (8) and (9) can 

be rewritten as:

where f�(�) represents the marginal PDF of � and Ω� 
denotes the domain for all values of � for which p > pth.

Let x stand for the underlying continuous predictand and 
r denote the linear correlation between x and the predicted 
signal � , i.e., the AC skill. Note that x and � represent anom-
alies. As stated in Yang et al. (2018), a standard result in 
statistics is that if � and x follow a joint normal distribution, 
each of � and x will have a normal marginal distribution 
itself and the conditional PDF of x given � (denoted 

(7)f (p|O) = P(O|p)fp(p)
P(O)

,

(8)HR
(
pth

)
=

1

P(O = 1) ∫
Ωp

P(O = 1|p)fp(p)dp,

(9)

FAR
(
pth

)
=

1

P(O = 0) ∫
Ωp

P(O = 0|p)fp(p)dp

=
1

1 − P(O = 1) ∫
Ωp

[
1 − P(O = 1|p)]fp(p)dp.

(10)HR
(
pth

)
=

1

P(O = 1) ∫
Ω�

P(O = 1|�)f�(�)d�,

(11)

FAR
(
pth

)
=

1

1 − P(O = 1) ∫
Ω�

[1 − P(O = 1|�)]f�(�)d�,

fx|�(x|�) ) is a normal distribution with mean of r�x∕��� and 
variance of 

(
1 − r2

)
�2
x
 , where �x and �� represent the uncon-

ditional (climatological) standard deviation of x and � , 
respectively. Then, the conditional probability P(O = 1|�) 
in (10) and (11) can be evaluated as the integral of fx|�(x|�) 
over the event category interval 

(
xl, xr

)
 , which can be further 

expressed as:P(O = 1|�) = Φ

((
x
r
− r�

x
∕���

)
∕

√(
1 − r2

)
�2

x

)

Φ

((
x
l
− r�

x
∕���

)
∕

√(
1 − r2

)
�2

x

)
 , where Φ(⋅) represents 

the cumulative distribution function for standard normal 
distribution. As such, given the defining intervals (
−∞, �xΦ

−1
(1∕3)

)
  ,  

(
−�xΦ

−1
(1∕3),∞

)
  ,  a n d (

�xΦ
−1
(1∕3),−�xΦ

−1
(1∕3)

)
 for the BN, AN, and NN catego-

ries, respectively, and letting �s denote the standardized pre-
dicted signal �∕�� , the conditional probability P(O = 1|�) 
for these categories, after some manipulations as shown in 
Yang et al. (2018), can be expressed as:

where Φ−1
(⋅) is the inverse function of Φ(⋅) . As can be 

explicitly seen from (12), (13), and (14), the conditional 
probabilities for the three categories turn out to be a func-
tion of the standardized predicted signal �s and the AC skill 
r only.

Finally, by substituting the explicit expression 1√
2���

e
−

1

2
�2
s 

for normal PDF f�(�) into (10) and (11), invoking the fact 
that P(O = 1) = 1∕3 , and changing the integration variable 
from � to �s , we can rewrite the HR and FAR as

where P(O = 1|�) has the explicit expressions as in 
(12)–(14) and Ω�s

 denotes the domain for all values of �s for 
which p > pth . Because the entire integrands in (15) and (16) 
appear as a function of the integration variable �s and r only, 
the final integration results will depend on r and the 

(12)P
�
OBN = 1��� = Φ

�
Φ

−1
(1∕3) − r�s√
1 − r2

�
,

(13)P
�
OAN = 1��� = Φ

�
Φ

−1
(1∕3) + r�s√
1 − r2

�
,

(14)

P
�
ONN = 1��� = 1 − Φ

�
Φ

−1
(1∕3) − r�s√
1 − r2

�
− Φ

�
Φ

−1
(1∕3) + r�s√
1 − r2

�
,

(15)HR
�
pth

�
=

3√
2� ∫

Ω�s

P(O = 1��)e− 1

2
�2
s d�s,

(16)FAR
�
pth

�
=

3

2
√
2� ∫

Ω�s

[1 − P(O = 1��)]e− 1

2
�2
s d�s,
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integration domain Ω�s
 . As revealed in Appendix A, after 

denoting the model climatological standard deviation by �y 
and letting �m represent ��∕�y that reflects the model poten-
tial predictability, Ω�s

 can be established as below: for the 
B N  c a t e g o r y ,  Ω�s

= (−∞,�sth)  w h e r e 

�sth =

[
�x∕�yΦ

−1
(1∕3) −

√
1 − �2

m
Φ

−1
(
pth

)]
∕�m ; for the 

A N  c a t e g o r y ,  Ω�s
= (�sth,∞)  w h e r e 

�sth =

[√
1 − �2

m
Φ

−1
(
pth

)
− �x∕�yΦ

−1
(1∕3)

]
∕�m ; for the 

NN category, Ω�s
= (−�sth,�sth) where �sth is supposed to be 

nonnegative and ±�sth are two solutions of the �s for the 

e q u a t i o n  1 − Φ

((
�
x
∕�

y
Φ

−1
(1∕3) − �

m
�
s

)
∕

√
1 − �2

m

)

Φ

((
�x∕�yΦ

−1
(1∕3) + �m�s

)
∕

√
1 − �2

m

)
= pth . Both the �sth 

for the BN and AN categories and the ±�sth for the NN cat-
egory represent the threshold value of �s corresponding to 
the probability threshold pth in each case. According to the 
above discussion, we can understand that for any given r , the 
dependence of the HR and FAR on the pth can be trans-
formed to a dependence on the �sth , and the HR and FAR can 
be formally viewed as a function of �sth and r only. Since 
determining �sth still requires the knowledge of �x∕�y and �m 
in addition to pth , the HR and FAR actually also have an 
underlying dependence on �x∕�y and �m . In conclusion, 
besides explicitly depending on pth , the HR and FAR still 
fundamentally depend on r as well as �x∕�y and �m.

3.2 � Sole dependence of the ROC curve on the AC

Theoretically, the ROC curve is the curve of HR versus FAR 
when the probability threshold pth continuously varies from 
the maximum value for forecast probability to zero. As noted 
in the preceding subsection, this maximum value is equal 
to one for the BN and AN categories and is usually smaller 
than one for the NN category. We further demonstrate in 
this subsection that although HR and FAR for individual 
pth fundamentally depend on the AC skill (namely r) as well 
as �x∕�y and �m , the theoretical ROC curve, which reflects 
the “entirety” of HRs versus FARs when the pth sequen-
tially takes all the possible values, depends only on the AC. 
According to (15) and (16) and the associated discussions 
in the above subsection, the HR and FAR can be understood 
as a function of �sth and the AC, where �sth is further jointly 
determined by pth as well as �x∕�y and �m . However, based 
on the discussions in Appendix A, it can be revealed that 
when pth varies from the maximum value to zero, the cor-
responding �sth for the BN category varies from −∞ to ∞ , 
the �sth for the AN category varies from ∞ to −∞ , and the 
�sth for the NN category varies from 0 to ∞ , all irrespective 
of how large �m and �x∕�y are. Therefore, the ROC curve 
that represents the “entirety” of HRs versus FARs will be 

independent of pth , �x∕�y , and �m , and solely depend on the 
AC.

Sequentially taking sufficient values of the �sth from their 
continuous varying ranges described above corresponding to 
the variation of pth from the maximum value to zero, and 
then numerically calculating the integrals in (15) and (16) 
over varying domains ( Ω�s

) determined by these different �sth 
values, we can numerically obtain sufficient pairs of HRs and 
FARs and then construct the theoretical ROC curves for the 
three categories corresponding to any particular AC. As an 
illustration of the dependence of the theoretical ROC curves 
on AC, Fig. 1 shows the ROC curves constructed using the 
above method with AC of ± 0.2, ± 0.5, and ± 0.8, respectively. 
As can be seen, the ROC curves for the BN and AN catego-
ries are identical, which ought to result from the symmetric 
property of normal distribution. For a positive AC, the ROC 
curves for all the three categories lie above the diagonal line; 
the greater the AC is, the more the ROC curves bend towards 
the upper-left corner of the diagrams. For the same level of 
the AC skill, the ROC curves for the NN category are signifi-
cantly closer to the diagonal line that represents the “no-skill” 
situation than those for the BN and AN categories. This is 
actually related to the fact that the P(O = 1|�) has a much 
weaker dependence on the standardized predicted signal �s for 
the NN category than for the BN and AN categories, which is 
also the direct reason why the probabilistic resolution skill is 
usually lower in the former than in the latter (Yang et al. 2018; 
Van den Dool and Toth 1991).

For a negative AC, the ROC curves for the BN and AN 
categories lie below the diagonal line, which indicates a 
negative ROC skill; the more negative the AC is, the more 
the ROC curves bend towards the lower-right corner of the 
diagram, namely the more negative the ROC skill is. In con-
trast, the ROC curve for the NN category corresponding to 
a negative AC still lies above the diagonal line and appears 
to have the same shape as that for the positive AC of the 
same magnitude. With statistical correction by a regression 
procedure, bad forecasts with a negative AC could become 
as skillful as those with a positive AC of the same magni-
tude. The insensitivity of the ROC skill for the NN category 
to the sign of AC means that it can automatically recognize 
the effectively useful information contained in the forecasts 
with negative ACs. A similar insensitivity to the sign of AC 
was also found for the probabilistic resolution skill of each 
category in Yang et al. (2018).

3.3 � Theoretical relationship between the ROCS 
and the AC

Since the ROC curve theoretically depends only on the AC, 
as demonstrated in the above subsection, the ROCS (namely 
the ROC score), defined as the area beneath the ROC curve, 
necessarily depends only on the AC as well. In other words, 
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the ROCS has a deterministic relationship with the AC. This 
relationship can be revealed by calculating the areas under 
the theoretical ROC curves numerically. Instead of using 

this direct method, here we derive an analytical expression 
for the theoretical relationship between the ROCS and the 
AC, from which the relationship can be further numerically 
depicted. The detailed derivations are placed in Appendix B. 
According to Appendix B, the ROCS for the BN, AN, and 
NN categories can be expressed explicitly as below:
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9
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Fig. 1   Theoretical ROC curves for probabilistic forecasts of a, b the 
below- or above-normal category and c, d the near-normal category 
corresponding to values of the deterministic skill of anomaly corre-

lation ( r ; AC) equal to 0.2, 0.5, and 0.8 (top row) and equal to -0.2, 
-0.5, and -0.8 (bottom row)
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The structures of these expressions clearly imply that the 
ROCS appears as a function of the AC skill r only.

The integral expressions in (17)–(19) can be numerically 
evaluated, as depicted in Fig. 2. For the BN and AN cat-
egories, the ROCS appears as a monotonically increasing 
function of the AC over the full range of AC values and the 
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functional relationship is quasi-linear and symmetric with 
respect to the point (0, 0.5) that corresponds to a “no-skill” 
situation. A positive (negative) AC corresponds to a ROCS 
larger (smaller) than 0.5 that represents a positive (negative) 
ROC skill, which is consistent with the previous ROC curve 
results. Further, it is found that for the BN and AN catego-
ries the relationship between the ROCS and the AC highly 

Fig. 2   Theoretical relationship 
between the probabilistic skill 
of the ROC score (ROCS) and 
the deterministic skill of the 
anomaly correlation (AC). The 
purple solid curve represents 
the relationship for the below- 
or above-normal category, while 
the purple dashed curve rep-
resents the relationship for the 
near-normal category. The grey 
dashed line stands for the rela-
tion of ROCS = 0.5 × (AC + 1) , 
which is approached by the 
theoretical ROCS-AC relation-
ship for the below- and above-
normal categories
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approaches the linear relation of ROCS = 0.5 × (AC + 1) . 
With invoking the formula for the ROCSS (the ROC skill 
score) shown in Sect. 2, we can have an interesting result 
that the ROCSS for the BN and AN categories is approxi-
mately equal to the AC. For the NN category, the ROCS-
AC relationship is considerably nonlinear. Only when AC 
is positive, the ROCS appears as a monotonically increasing 
function of the AC. For the same AC, the ROCS is usually 
noticeably weaker than that for the BN and AN categories, 
which is also consistent with the previous ROC curve results. 
When AC is negative, the ROCS-AC relationship appears as 
a mirror of the relationship when AC is positive, which is 
consistent with the previous finding that the ROC curve for 
the NN category is only sensitive to the magnitude of AC.

The formulas from (3) to (11) have been discussed in 
literature (Kharin and Zwiers 2003b; Palmer et al. 2000). On 
the basis of (10) and (11) and further considering a perfect 
model scenario that the model-predicted signal and noise 
are identical to their true counterparts in the observed sys-
tem, Kharin and Zwiers (2003b) numerically demonstrated 
a deterministic relationship of the probabilistic ROC skill 
with the potential predictability of the observed system. The 
latter is defined as the ratio of the true predictable signal 
variance to the total observed variance, which is also equal 
to the square of the correlation between the true predict-
able signal and the observed predictand (denoted by �pot in 
Kharin and Zwiers (2003b)). However, this perfect model 
scenario is in general unrealistic, given that current dynami-
cal climate models still have significant problems in repro-
ducing the observed climate variability. Therefore, the above 
deterministic link obtained under the perfect model scenario 
between the probabilistic ROC skill of model forecasts and 
the potential predictability of the real world would not be 
able to faithfully reflect the reality. Different from Kharin 
and Zwiers (2003b), through this theoretical consideration, 
we have analytically derived a deterministic relationship of 
the probabilistic ROC skill with the deterministic AC skill 
that reflects the correlation between the model-predicted 
signal and the observed predictand. As seen from (12) to 
(19), our derived theoretical relationship does not rely on 
whether the model-predicted signal and noise match the true 
counterparts or not.

4 � Verifying the theoretical consideration 
with GCM seasonal forecasts

In this section, we aim at verifying the theoretical con-
sideration with GCM seasonal forecasts. Specifically, the 
focus is put on verifying the derived theoretical relationship 
between the ROCS and the AC. To this end, we use the 
historical forecast outputs of five coupled GCMs produced 
by the Ensemble-Based Predictions of Climate Changes 

and their Impacts (ENSEMBLES; Weisheimer et al. 2009) 
project. The five models are respectively from the UK Met 
Office (UKMO), Météo France (MF), the European Centre 
for Medium-Range Weather Forecasts (ECMWF), the Leib-
niz Institute of Marine Sciences at Kiel University (IFM-
GEOMAR), and the Euro-Mediterranean Centre for Climate 
Change (CMCC-INGV) in Bologna. The ENSEMBLES 
dataset contains at-least-7-month-long ensemble seasonal 
forecasts of multiple variables with nine members for each 
model, starting on the 1st of February, May, August, and 
November, respectively, for each year from 1960 to 2005. 
As in Yang et al. (2018), we focus on analyzing the GCM 
prediction skills for atmospheric circulation variables of 
200- and 500-hPa geopotential heights (G200 and G500) 
as well as variables of surface air temperature (SAT) and 
precipitation that are of direct socioeconomic impacts. The 
“observed” data for calculating skills for G200, G500, and 
SAT are from the National Centers for Environmental Pre-
diction/National Center for Atmospheric Research Reanaly-
sis product (Kalnay et al. 1996), while the “observed” data 
for precipitation are from the Climate Prediction Center 
Merged Analysis of Precipitation data set (CMAP; Xie 
and Arkin 1996). The precipitation prediction skills are 
calculated only for the period of 1979–2005, owing to the 
shorter time coverage of the CMAP data. We only target the 
1-month lead forecasts of the seasonal means of Decem-
ber–January–February (DJF), March–April–May (MAM), 
June–July–August (JJA), and September–October–Novem-
ber (SON). The skills of both the ROCS and the AC are 
calculated based on the standardized anomalies of model 
predictions and observation that are defined at each grid 
point relative to their own local climatologies. To avoid 
overfitting, the skills are evaluated in a leave-one-out cross-
validation manner, i.e., the anomaly is obtained relative to 
the climatological mean that is calculated with excluding the 
data for the current year. For the MME, forecasts are gen-
erated based on the grand ensemble of the cross-validated 
single-model standardized anomalies. The probabilistic 
ROC skills are calculated for the tercile-based categories of 
the BN, NN, and AN and the predicted probability of one 
event is estimated as the fraction of ensemble members fore-
casting the event to occur. As in many other studies, eleven 
probability threshold values evenly taken from one to zero 
with interval of 0.1 are empirically selected for calculating 
multiple pairs of HRs and FARs. We note the fact that, for 
the NN category, some of the given threshold values may 
exceed its maximum forecast probability value but does not 
affect the practical evaluation of its probabilistic ROC skill, 
since the values of the HRs and FARs associated with these 
thresholds are necessarily zero, not really contributing in the 
calculation of the area under the ROC curve.

A skill spatial analysis is first performed. Figure 3 dis-
plays the ROCS skill for the BN and AN categories for the 
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prediction of the DJF G200. Since the ROCS skills for these 
two categories are similar in size, only the averaged skill is 
shown for simplicity. For all the SMEs and the MME, the 
overall spatial patterns bear a strong resemblance among 
each other. The most remarkable feature is a strong skill belt 

within the tropics (30ºS–30ºN), in which most regions have 
a ROCS greater than 0.85 or equivalently a ROCSS larger 
than 0.7. In contrast, the extratropical prediction skill is in 
general notably weaker. However, a moderately good skill 
can be seen in some specific extratropical regions such as 

Fig. 3   Spatial distributions of the probabilistic skill of the ROC score 
for the prediction of DJF 200-hPa geopotential height at one-month 
lead by the five models of the ENSEMBLES and their multimodel 
ensemble (MME) over the period of 1960–2005. The skills shown 

here are averaged skills for the below- and above-normal categories. 
The character strings of ECMWF, IFM-GEOMAR, MF, UKMO, and 
CMCC-INGV denote the acronym names of the five models, respec-
tively (see the main text)
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the Pacific-North American region. The large-scale spatial 
feature of the ROCS skill is largely consistent with that of 
the AC skill displayed in Fig. 2 of Yang et al. (2018), which 
is also very strong in the tropics and generally weak but 
significant in certain regions in the extratropics. Figure 4 
displays the ROCS skill for the NN category. The ROCS 
for the NN category is noticeably lower than that for the 

other two categories. However, its distribution still features 
a distinct contrast between the tropics and the extratropics, 
fairly resembling that of the AC shown in Yang et al. (2018). 
It is seen that in terms of the probabilistic ROC skill, the 
MME seems not very advantageous over all the SMEs. A 
consistent result was also found in Yang et al. (2016, 2018) 
for the deterministic correlation skill and the probabilistic 

Fig. 4   As in Fig. 3, but for the predictions for the near-normal category
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resolution skill, which is in contrast to the situation for the 
probabilistic reliability skill.

We next focus on quantitatively verifying the theoretical 
ROCS-AC relationship through analyzing scatterplots. Fig-
ure 5 shows the scatterplots of ROCS versus AC using the 
data of grid point skills for the prediction of the DJF G200, 
with the theoretical ROCS-AC relationship also plotted for 
comparison. As seen, the grid point AC skills are mostly 
non-negative. The scatter patterns show a general covary-
ing tendency of the ROCS with the AC, which is basically 
consistent with what the theoretical curves indicate. How-
ever, the covarying relationship between the ROCS and the 
AC is obviously far from strong enough to be able to be 
approximately described as a deterministic relationship as 
expected by the theory. Yang et al. (2018) found that the 
relationship between the probabilistic resolution and AC 
skills of GCM forecasts is either clearly not as strong as 
expected from their theoretical result, if the examined skills 
are grid point skills. As discussed in Yang et al. (2018), the 
significant sampling error in estimating grid point forecast 
skills due to the small temporal sample size is likely the 
main reason for this “unsuccessful” validation. This kind of 
sampling uncertainty in estimating the ROCS skill has been 
especially pointed out for the ENSO prediction by Kirtman 
(2003). To better verify the theoretical relationship, we next 
adopt the strategy used in Yang et al. (2018) to examine the 
“large sample” zonally aggregated skills for the latitudes 
between 60°S and 60°N, which are calculated based on pool-
ing together the samples from different locations along the 
same latitude circles. As seen in Fig. 6a, when the skills are 
considered in the zonally aggregated sense, the observed 

relationship between the ROCS and AC for the prediction 
of the DJF G200 becomes remarkably stronger, capable of 
being described as a quasi-deterministic relationship, which 
is greatly consistent in shape with what the theory predicts. 
As further seen in Fig. 6b–d, the observed ROCS-AC rela-
tionships for the prediction of G200 for the MAM, JJA, and 
SON seasons also agree well with the theoretical result.

To further illustrate the consistency of the results for the 
GCM predictions with the theoretical results, we here give 
an example analysis of the ROC curve that underlies the cal-
culation of the ROC skill. Figure 7 presents the ROC curve 
diagrams for the probabilistic forecasts of the DJF G200 
aggregated within the tropical region of 30ºS–30ºN and for 
those aggregated within the midlatitude region of 60ºS–30ºS 
and 30ºN–60ºN. The aggregated ACs for the tropical pre-
diction for the SMEs and MME vary between 0.7 and 0.8, 
while the ACs for the midlatitude prediction are between 
0.2 and 0.4. As seen, the ROC curves for the BN and AN 
categories are close to each other for both the tropical and 
the midlatitude predictions. Further, for each of the BN, AN, 
and NN categories, the ROC curves for the tropical predic-
tion bend considerably more towards the upper-left corner of 
the diagrams than those for the midlatitude prediction for all 
the SMEs and the MME, which illustrates a significant ROC 
skill contrast between the tropical and midlatitude predic-
tions that is consistent with the contrast seen in the AC. A 
furthermore visual inspection reveals that the ROC curves 
for the tropical prediction look like the theoretical curve 
for AC equal to 0.8 displayed in Fig. 1 and the ROC curves 
for the midlatitude prediction are like the theoretical curve 

Fig. 5   Scatterplots of ROC score (ROCS) against anomaly correla-
tion (AC) with using the data of global grid point skills for the pre-
diction of the DJF 200-hPa geopotential height at one-month lead by 
the ENSEMBLES’ five single-model ensembles (SMEs) and their 
multimodel ensemble (MME) over 1960–2005 for the a below-nor-

mal (BN), b near-normal (NN), and c above-normal (AN) categories. 
The solid and dashed curves stand for the theoretical ROCS-AC rela-
tionships shown only over the AC range that is consistent with the 
data’s
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Fig. 6   Scatterplots of ROC 
score (ROCS) against anomaly 
correlation (AC) with using 
the data of zonally aggregated 
skills for the latitudes between 
60°S and 60°N for the predic-
tion of 200-hPa geopotential 
height at one-month lead by the 
ENSEMBLES’ five single-
model ensembles (SMEs) and 
their multimodel ensemble 
(MME) for the a DJF, b MAM, 
c JJA, and d SON seasons over 
the period of 1960–2005. The 
left, middle, and right columns 
are for the below-normal (BN), 
near-normal (NN), and above-
normal (AN) categories, respec-
tively. The solid and dashed 
curves stand for the theoretical 
ROCS-AC relationships shown 
only over the AC range from 
0 to 1
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for AC equal to 0.2 or 0.5. The above ROC curve analysis 
further verifies the theoretical consideration.

The good consistency between the theoretical ROCS-
AC relationship and the observed counterpart is not only 
seen in the prediction of G200. For the prediction of 
G500, an almost equally good consistency is also seen 
(figures not shown). Figures 8 and 9 further show the scat-
terplots of ROCS against AC for the predictions of SAT 

and precipitation, respectively. For the SAT prediction, the 
observed ROCS-AC relationship shows a very good consist-
ency with the theoretical counterpart (Fig. 8), which is even 
better than that for the G200 prediction. In contrast, for the 
precipitation prediction, the observed ROCS-AC relation-
ship is visibly less consistent with the theoretical counterpart 
(Fig. 9). As seen in Fig. 9, the scatters for large ACs notice-
ably spread and deviate downward from the theoretical curve 

Fig. 7   ROC curve diagrams for 
the probabilistic predictions of 
the DJF 200-hPa geopotential 
height at one-month lead aggre-
gated within the tropical region 
of 30ºS-30ºN (solid curves) and 
for those aggregated within the 
midlatitude region of 60ºS-30ºS 
and 30ºN-60ºN (dashed curves). 
The blue, green, and red curves 
are for the below-normal (BN), 
near-normal (NN), and above-
normal (AN) categories, respec-
tively. The character strings 
of ECMWF, IFM-GEOMAR, 
MF, UKMO, and CMCC-INGV 
denote the acronym names of 
the five models, respectively 
(see the main text). MME 
denotes multimodel ensemble
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Fig. 8   As in Fig. 6, but for the 
prediction of surface air tem-
perature at one-month lead
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Fig. 9   As in Fig. 6, but for the 
prediction of precipitation at 
one-month lead over the period 
of 1979–2005
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Fig. 10   As in Fig. 9, but for 
the forecast skills calculated 
using the transformed precipita-
tion data that are more normal, 
which are obtained by applying 
the Box-Cox transformation 
technique (see the main text)
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for the BN and AN categories. Yang et al. (2018) also found 
that the observed relationship between the probabilistic reso-
lution and AC skills for the precipitation prediction, even in 
the zonally aggregated sense, is still not very consistent with 
the corresponding theoretical result. As argued in Yang et al. 
(2018), as compared to other variables, the normal distribu-
tion and constant forecast variance assumptions may both 
be too ideal for the precipitation, which could lead to this 
unsatisfactory result. Nevertheless, we still can consider the 
observed ROCS-AC relationship for the zonally aggregated 
forecast skills of the precipitation as being fairly consist-
ent with the theoretical result, particularly compared to the 
situation seen previously for the grid point skills. To test the 
possible effect of the non-normality of the precipitation on 
the result, following Yang et al. (2018), the Box-Cox trans-
formation technique (Weigel et al. 2009) was further used to 
transform both the observed and model-predicted precipita-
tion data to be more normal and then the forecast skills using 
the transformed data were calculated and examined. As 
displayed in Fig. 10, the observed relationship between the 
ROCS and AC skills calculated using the transformed data 
is visibly more consistent with the theoretical result than 
the original ones. This improvement implies that the non-
normality of the precipitation distribution is a main reason 
why the observed ROCS-AC relationship for the prediction 
of precipitation is not well consistent with the theoretical 
result. As shown in Yang et al. (2018), the non-normality 
also appears as the main reason for the observed resolution-
AC relationship for the precipitation failing to closely follow 
the theoretical expectation.

5 � Summary and discussion

Significant interests have been recently placed on investigat-
ing the relationship between probabilistic and deterministic 
skills in dynamical seasonal climate prediction. Based on 
the BSS methodological framework, Yang et al. (2018) have 
previously presented a theoretical and diagnostic investiga-
tion of the relationships between the probabilistic resolution 
and reliability skills and the deterministic correlation skill. It 
was found that a functional relationship can be theoretically 
derived and practically verified between the resolution skill 
and the deterministic skill, whereas no good relationship 
can be identified between the reliability skill and the deter-
ministic skill. In this study, we further present an in-depth 
study of the relationship between the probabilistic ROC 
skill and the deterministic skill. The ROC skill measures 
the discrimination attribute of probabilistic forecast qual-
ity, another important aspect in addition to the resolution 
and reliability. Specifically, the probabilistic ROC skill is 
quantified based on the ROC curve and the related scores of 
the ROCS and ROCSS. The ROC skill is considered for the 

BN, NN, and AN categories defined based on the terciles of 
the observed climatology.

First, a systematic theoretical consideration has been pro-
vided. This consideration is based on the assumptions that 
predictive PDFs are normal, that predicted noise variance 
is constant among different cases for a fixed lead time, and 
that predicted signal and corresponding observation obeys 
a joint normal distribution. Specifically, based on the above 
assumptions, we first derive theoretical expressions for the 
HR and FAR of probabilistic forecasts as a function of the 
probability threshold pth and identify their determining fac-
tors. Based on these, we then demonstrate and illustrate 
that the ROC curve, as the curve of HR versus FAR given 
that pth varies from the maximum value to zero, has a sole 
dependence on the AC, the deterministic correlation skill. 
Based on these preceding results, we finally analytically 
derive and illustrate a deterministic relationship between 
the ROCS that measures the area beneath the ROC curve 
and the AC. The specific shape of the theoretical ROCS-AC 
relationship depends on which category is considered. For 
the BN and AN categories, the theoretical relationships are 
identical and quasi-linear. Further, an approximation to them 
can be given by ROCS = 0.5 × (AC + 1) , which also implies 
that the corresponding ROCSS is approximately equal to 
the AC. For the NN category, the theoretical relationship is 
nonlinear and according to this relationship, the ROC skill 
is insensitive to the sign but only sensitive to the magnitude 
of the AC. For positive ACs, the corresponding ROCS for 
the NN category is usually significantly smaller than those 
for the BN and AN categories. The theoretical ROCS-AC 
relationship has been argued to exist independent of whether 
or not the model-predicted signal and noise match the true 
counterparts in the observed system.

Subsequently, we have focused on verifying the theoreti-
cal consideration through analyzing the skills of the GCM 
seasonal forecasts provided by the ENSEMBLES project. A 
skill spatial analysis shows that the probabilistic ROC skill 
of the GCM forecasts is largely consistent in large-scale spa-
tial distribution feature with the corresponding deterministic 
correlation skill. Further scatterplot analyses find that when 
considered in a zonally-aggregated sense by which the bias-
ing effect of finite sample size is lessened, the probabilistic 
ROCS and deterministic AC skills of the GCM dynamical 
forecasts exhibit a good relationship that, in general, can be 
characterized as quasi-deterministic, whose specific feature 
is greatly consistent with that of the theoretically derived 
relationship. An additional analysis further confirms that the 
ROC curves for the GCM forecasts show a dependence on 
the AC that is consistent with what the theory predicts. In 
brief, the analysis of GCM dynamical forecasts verifies the 
theoretical result.

To summarize, the most important result of this study 
is that a deterministic functional relationship between the 
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probabilistic ROC skill and the deterministic correlation 
skill is theoretically revealed and practically verified in 
dynamical seasonal climate prediction. One practical use of 
the revealed theoretical relationship lies in that it can facili-
tate comparisons between probabilistic and deterministic 
assessments of seasonal forecasting capability. Especially, 
as stated above, a simple expression can approximately 
represent the revealed theoretical relationship for the BN 
and AN categories, which can further simplify its practi-
cal application. Furthermore, the result here together with 
the previous results of Yang et al. (2018) contribute to an 
understanding of the fundamental similarities and difference 
between probabilistic and deterministic skills in seasonal 
climate prediction. That is, the discrimination and resolu-
tion aspects of probabilistic skill are intrinsically equiva-
lent to the deterministic skill, while the reliability aspect 
of probabilistic skill appears to be the fundamental aspect 
that differs from the deterministic skill. This understanding 
undoubtedly can offer potential implications for the study of 
seasonal probabilistic forecasting in many aspects. In the fol-
lowing, we provide two examples of such implications. One 
example is on the recalibration in improving seasonal proba-
bilistic forecasts, which has also been discussed in Yang 
et al. (2018). Previous studies (Doblas-Reyes et al. 2005; 
Weigel et al. 2009) have shown that simple recalibration via 
appropriately rescaling dynamical models’ forecasts a pos-
teriori is able to improve the seasonal probabilistic forecast 
skill. However, the mechanism behind this improvement, 
to our knowledge, has not been fully understood in theory. 
Our above understanding of the similarities and difference 
between the probabilistic and deterministic skills can pro-
vide an implication on this issue. That is, only the reliability, 
rather than the discrimination or the resolution aspect of the 
probabilistic skill, would be possibly improved by the above 
recalibration strategy. This is because the latter aspects are 
intrinsically equivalent to the deterministic correlation skill, 
which is invariant by rescaling (only the case with positive 
AC is considered). Another example of such implications is 
about the specific role of ensemble spread in improving the 
seasonal probabilistic forecast skill. In ensemble prediction, 
ensemble spread (variance) is desired to be consistent in 
magnitude with the mean square error of ensemble mean 
(MSE) and a deviation of the ensemble spread from the MSE 
is believed to degrade the seasonal probabilistic forecast skill 
(Stan and Kirtman 2008). However, which aspect or aspects 
of the probabilistic skill can be directly influenced by the 
ensemble spread seems not being widely understood. For 
example, Stan and Kirtman (2008) seemed surprised by their 
finding that the probabilistic ROC skill is not reduced by a 
lack of ensemble spread in studying the ENSO prediction 
and predictability. However, according to our understanding 
highlighted above, the discrimination and resolution aspects 
of the probabilistic skill would not be able to be directly 

affected by the ensemble spread, since deterministic correla-
tion skill can only be affected by the error in ensemble mean. 
Only the reliability aspect that has fundamental difference 
from the deterministic skill could be directly influenced by 
the ensemble spread. As discussed in Yang et al. (2018), the 
reliability can be understood as a measure of the conditional 
bias of probability forecasts, which can be ultimately influ-
enced by the biases in ensemble mean as well as in ensemble 
spread. Therefore, improving the ensemble spread shall help 
improve the reliability aspect of the seasonal probabilistic 
forecast skill.

We note that the deterministic linkage revealed between 
the probabilistic ROC skill and the deterministic correlation 
skill in this study may also hint that a deterministic linkage 
perhaps equally exists between categorical forecast skill and 
the deterministic skill. Categorical forecast is another kind 
of forecast format especially preferred in operational centers, 
which provides an explicit judgement of which category will 
occur based on the underlying (probabilistic) forecast infor-
mation. The skill of categorical forecasts is usually measured 
by the Heidke skill score (HSS; O’Lenic et al. 2008), which 
was found to have a good correspondence with both the 
probabilistic ROC skill and the deterministic skill in diag-
nostic analysis of seasonal forecasts (Peng et al. 2012, 2013; 
Sooraj et al. 2012). As seen in the formulation of the HSS, 
the key concept for measuring the categorical forecast skill 
is that known as “hit” as well, which bears a general similar-
ity to the concept of the hit in the ROC method, despite their 
formally different definitions. As such, enlightened by the 
theoretical result of this study, a theoretical linkage between 
the categorical and deterministic skills of seasonal forecasts 
seems to be expectable. Actually, Kumar (2009) and Tippett 
et al. (2010) derived theoretical expressions for the relation-
ship between the HSS and the AC. Nevertheless, their deri-
vations are again based on the perfect model framework. A 
generalized exploration following the ideas of this study is 
needed in the future study to investigate and fully understand 
the relationship between the categorical and deterministic 
skills in seasonal climate prediction.

Appendix A: The determination of Ä�s

As stated in the main text, Ω�s
 represents the domain for 

all values of �s for which p > pth . In this appendix, we 
aim at establishing Ω�s

 based on investigating the func-
tional dependence of p on �s and then analyzing the inverse 
dependence of �s on p according to the former.

Provided that the underlying predictive PDF is normal 
with mean � and variance �2

e
 , the forecast probability p for 

the BN, AN, and NN categories can be expressed as
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Further, let �2
y
 denote the model climatological variance 

and �m stand for ��∕�y , which is equal to the correlation 
between the model-predicted signal � and a realization of 
the model predictive PDF (DelSole and Tippett 2007). The 
�m reflects the model potential predictability and differs from 
the actual skill r as well as the �pot that represents the poten-
tial predictability of the real world in Kharin and Zwiers 
(2003b). Moreover, according to the variance decomposition 
that �2

y
= �2

�
+ �2

e
 (DelSole and Tippett 2007), we have 

�e = �y

√
1 − �2

�
∕�2

y
= �y

√
1 − �2

m
 . Then, with the expres-

sion for �e and the definitions of �m and �s , (20)–(22) can be 
rewritten as

As seen, the forms of the above expressions for forecast 
probability p are similar to those for the conditional probability 
P(O = 1|�) shown in (12)–(14), except that there is an extra 
factor of �x∕�y before Φ−1

(1∕3) and �m is involved instead of 
r . In the following, based on analyzing the inverse dependence 
of �s on p according to these expressions, we determine the Ω�s

 
for the BN, AN, and NN categories, respectively.

For the BN category, for any particular values of �m and 
�x∕�y , pBN is a monotonically decreasing function of �s . By 
applying the Φ−1 operation on both sides of (23), we can 
obtain �s =

[
�x∕�yΦ

−1
(1∕3) −

√
1 − �2

m
Φ

−1
(p)

]
∕�m , where 

the subscript for p has been omitted for simplicity. Thus, 
given a threshold value pth of p , the corresponding threshold 
value of �s , denoted by �sth , can be solely determined 
through this relationship. Further, when p → 1 (the 

(20)pBN = Φ

(
�xΦ

−1
(1∕3) − �

�e

)
,

(21)

pAN = 1 − Φ

(
−�xΦ

−1
(1∕3) − �

�e

)
= Φ

(
�xΦ

−1
(1∕3) + �

�e

)
,

(22)pNN = 1 − pBN − pAN .

(23)

pBN = Φ

⎛⎜⎜⎜⎝

�xΦ
−1
(1∕3) − �y�m�s

�y

�
1 − �2

m

⎞⎟⎟⎟⎠
= Φ

⎛⎜⎜⎜⎝

�x
�y
Φ

−1
(1∕3) − �m�s

�
1 − �2

m

⎞⎟⎟⎟⎠
,

(24)pAN = Φ

⎛⎜⎜⎜⎝

�x
�y
Φ

−1
(1∕3) + �m�s

�
1 − �2

m

⎞⎟⎟⎟⎠
,

(25)

pNN = 1 − Φ

⎛⎜⎜⎜⎝

�x
�y
Φ

−1
(1∕3) − �m�s

�
1 − �2

m

⎞⎟⎟⎟⎠
− Φ

⎛⎜⎜⎜⎝

�x
�y
Φ

−1
(1∕3) + �m�s

�
1 − �2

m

⎞⎟⎟⎟⎠
.

maximum value), �s → −∞ . Therefore, the Ω�s
 for the BN 

category can be established as: Ω�s
=

(
−∞,�sth

)
 where 

�sth =

[
�x∕�yΦ

−1
(1∕3) −

√
1 − �2

m
Φ

−1
(
pth

)]
∕�m.

For the AN category, pAN is a monotonically increasing 
function of �s . With similar manipulation, we can obtain 
�s =

[√
1 − �2

m
Φ

−1
(p) − �x∕�yΦ

−1
(1∕3)

]
∕�m . With this 

relationship, given a threshold value pth of p , the corre-
sponding threshold value �sth of �s can also be solely deter-
mined. Further, in this case, when p → 1 (the maximum 
value), �s → ∞ . Therefore, the Ω�s

 for the AN category can 
b e  e s t a b l i s h e d  a s :  Ω�s

=

(
�sth,∞

)
 w h e r e 

�sth =

[√
1 − �2

m
Φ

−1
(
pth

)
− �x∕�yΦ

−1
(1∕3)

]
∕�m.

For the NN category, to our knowledge, an explicit 
“inverse function” expression as above for the �s as a func-
tion of pth cannot be given. However, our qualitative and 
numerical analyses reveal that pNN is an even function of �s 
and it monotonically increases with �s when 𝜇s < 0 and 
decreases with �s when 𝜇s > 0 . When �s → ±∞ , pNN → 0 ; 
and the maximum value of pNN (usually smaller than 1) is 
achieved at �s = 0 . Based on these functional properties, it 
can be understood that for the NN category, inversely, given 
a threshold value pth of p , there are usually two correspond-
ing threshold values of �s , which have the same magnitude 
but opposite signs. As such, after denoting the two threshold 
values of �s by ±�sth where �sth is supposed to be nonnega-
tive, the Ω�s

 for the NN category can then be formally estab-
lished as: Ω�s

=

(
−�sth,�sth

)
 where ±�sth are the two solu-

t i o n s  o f  t h e  �s  f o r  t h e  e q u a t i o n 
1 − Φ

((
�
x
∕�

y
Φ

−1
(1∕3) − �

m
�
s

)
∕

√
1 − �2

m

)
((

�x∕�yΦ
−1
(1∕3) + �m�s

)
∕

√
1 − �2

m

)
= pth.

Appendix B: The derivation of the theoretical 
expressions for the relationship 
between the ROCS and the AC

As defined as the area beneath the ROC curve, the ROCS 
can be expressed as the following integral form:

in which HR and FAR depend on the pth.
As revealed by (15) and (16) and the associated discus-

sions on Ω�s
 , the dependence of HR and FAR on the pth 

can be transformed to the dependence on the variable �sth . 
To avoid confusion, in this appendix, we use the notation 
H̃R(�sth) and F̃AR(�sth) to explicitly imply the functional 
dependence of HR and FAR on the �sth and rewrite (15) and 
(16) as below:

(26)ROCS =

1

∫
0

HRdFAR,
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Then, the ROCS can be expressed as

where Ω�sth
 represents the integration domain. On the 

basis of (27), (28), and (29), in the following, we derive 
explicit theoretical expressions for the relationship between 
the ROCS and the AC for each of the BN, AN, and NN 
categories.

For the BN category, by substituting the correspond-
ing explicit expressions for P(O = 1|�) and Ω�s

 into (27) 
and (28), we can obtain the expressions of H̃R

(
�sth

)
 and 

F̃AR
(
�sth

)
 as

Further, by using the first fundamental theorem of cal-
culus, we have

(27)H̃R(�sth) =
3√
2� ∫

Ω�s

P(O = 1��)e− 1

2
�2
s d�s,

(28)F̃AR(�sth) =
3

2
√
2� ∫

Ω�s

[1 − P(O = 1��)]e− 1

2
�2
s d�s.

(29)

ROCS =

1

∫
0

H̃R
(
�sth

)
dF̃AR

(
�sth

)
= ∫
Ω�sth

H̃R
(
�sth

)dF̃AR(�sth

)
d�sth

d�sth,

(30)H̃R
�
�sth

�
=

3√
2�

�sth

∫
−∞

Φ

�
Φ

−1
(1∕3) − r�s√
1 − r2

�
e
−

1

2
�2
s d�s,

(31)

F̃AR
�
�sth

�
=

3

2
√
2�

�sth

∫
−∞

�
1 − Φ

�
Φ

−1
(1∕3) − r�s√
1 − r2

��
e
−

1

2
�2
s d�s.

(32)

dF̃AR
�
�sth

�
d�sth

=
3

2
√
2�

�
1 − Φ

�
Φ

−1
(1∕3) − r�sth√

1 − r2

��
e
−

1

2
�2
sth .

Finally, as stated in Sect.  3.2, for the BN category, 
when pth varies from the maximum value (one) to zero, 
accompanied by that the FAR and the HR vary from zero 
to one, the corresponding �sth varies from −∞ to ∞ . This 
means that the integration domain Ω�sth

 can be expressed as 
Ω�sth

= (−∞,∞) . As such, the ROCS for the BN category 
can be ultimately expressed as

The structure of the integral expression in (33) clearly 
implies that the integration result will be independent of 
�s and �sth and define a deterministic mapping from r to 
ROCSBN . That is to say, the expression in (33) represents 
the theoretical relationship between the ROCS for the BN 
category and the AC.

For the AN category, after similar manipulations, we have

Then, provided that Ω�sth
= (∞,−∞) , the ROCS for the 

AN category can be expressed as

(33)

ROCS
BN

=
9

4�

∞

∫
−∞

⎡⎢⎢⎣

�
sth
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Φ

�
Φ
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e
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1

2
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sthd�
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(34)H̃R
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�
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�
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�
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3

2
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�
Φ
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(36)
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2
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The expression in (37) represents the theoretical relation-
ship between the ROCS for the AN category and the AC.

For the NN category, we have

Then, given that Ω�sth
= (0,∞) , we can finally obtain

which represents the theoretical relationship between the 
ROCS for the NN category and the AC.

(38)

∼

HR (�
sth
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sth
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