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Abstract
Of great importance for guiding numerical weather and climate predictions, understanding predictability of the atmosphere in 
the ocean − atmosphere coupled system is the first and critical step to understand predictability of the Earth system. However, 
previous predictability studies based on prefect model assumption usually depend on a certain model. Here we apply the 
predictability study with the Nonlinear Local Lyapunov Exponent and Attractor Radius to the products of multiple re-analyses 
and forecast models in several operational centers to realize general predictability of the atmosphere in the Earth system. 
We first investigated the predictability characteristics of the atmosphere in NCEP, ECMWF and UKMO coupled systems 
and some of their uncoupled counterparts and other uncoupled systems. Although the ECMWF Integrated Forecast System 
shows higher skills in geopotential height over the tropics, there is no certain model providing the most precise forecast for 
all variables on all levels and the multi-model ensemble not always outperforms a single model. Improved low-frequency 
signals from the air − sea and stratosphere − troposphere interactions that extend predictability of the atmosphere in coupled 
system suggests the significance of air − sea coupling and stratosphere simulation in practical forecast development, although 
uncertainties exist in the model representation for physical processes in air − sea interactions and upper troposphere. These 
inspire further exploration on predictability of ocean and stratosphere as well as sea − ice and land processes to advance our 
understanding of interactions of Earth system components, thus enhancing weather − climate prediction skills.

Keywords Atmosphere predictability · Coupled ocean − atmosphere system · Multi-model study · Nonlinear local lyapunov 
exponent · Attractor radius

1 Introduction

The predictability study is a continuous and important field 
in predictions of the atmosphere and ocean as dynamical 
stochastic systems. Since the results of Lorenz (1963, 1965) 
and Thompson (1957) were published, one has realized that 
chaotic systems are highly sensitive to a small initial error 
that can grow nonlinearly during the forecast, leading a so-
called predictability limit, by which the initial signals could 
not be identified and making the prediction meaningless. 
The upper limit of predicting reliable high-impact weather 
events has been estimated as 1 − 2 weeks (Lorenz 1969). 
Instead of this general estimate for the global atmosphere, 
the predictability limit varies with geographic locations and 
has also become an assessment indictor of numerical predic-
tion models (Mu et al. 2017; Duan and Zhao 2015).

Previous work employed various methods to estimate the 
predictability limits of the atmosphere with aids of obser-
vations and numerical models. Lorenz (1969) proposed a 
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concept called nature-analog over a large area (e.g., the north 
hemisphere) to estimate atmosphere predictability while it 
requires a long time series of 10 − 100 year data (Van den 
Dool 1994). Oseledec (1968) used the Lyapunov exponent 
to measure the average exponential rates of divergence or 
convergence of nearby orbits on a strange attractor. Then 
the largest Lyapunov exponent and various local or finite-
time Lyapunov exponents were used to measure the average 
predictability limit (Shimada and Nagashima 1979; Benet-
tin et al. 1980; Sano and Sawada 1985; Wolf et al. 1985; 
Yoden and Normura 1993; Kazantsev 1999; Ziehmann et al. 
2000). These methods only can be applied to circumstances 
of linear error growing, while the nonlinear local Lyapunov 
exponent (NLLE) was proposed to measure average growth 
of initial error taking account of the nonlinear behavior in 
chaotic systems (Li et al. 2006; Ding and Li 2007; Ding 
and Li 2007; Li and Ding 2009; Li and Wang 2008). Ding 
and Li (2007) demonstrated the superiority of the nonlinear 
Lyapunov exponent in determining the predictability limits 
of chaotic systems in comparison with linear counterpart: 
the linear and nonlinear average growth of errors are similar 
during short initial time while the nonlinear error growth 
departs from the linear one with the increasing time and 
finally saturates instead of constant exponential growth of 
linear counterpart. Furthermore, regardless the various mag-
nitudes of initial errors, the predictability limits estimated by 
nonlinear Lyapunov exponent are longer than ones estimated 
by linear counterparts. With time series of observational 
data, Li and Ding (2011) derived an algorithm to calculate 
the predictability limit for the atmospheric chaotic system 
without its governing equation. On the other hand, the pre-
dictability limit of a forecast model is defined as 95% of the 
saturated root mean square error (RMSE) between forecasts 
and observations (Dalcher and Kalnay 1987; Simmons and 
Hollingsworth 2002; Buizza 2010), but the error growth is 
largely influenced by model deficiencies (Orrell et al. 2001). 
To overcome this defect, Li et al. (2018) proposed a unified 
theory about the global and local predictability limit of a 
chaotic system consisting of a forecast model that includes 
three fundamental intrinsic properties: attractor radius (AR), 
global attractor radius (GAR), and global average distance 
(GAD).

Unlike using a single model and under a prefect model 
assumption (Rowell 1998; Kumar et al.2003; Reichler and 
Roads 2004), here we use multiple models from several 
operational centers including the Climate Forecast System 
version 2 (CFSv2) from the National Centers for Environ-
mental Prediction (NCEP) (Saha et al. 2010), Integrated 
Forecasting System (IFS) cycle 43R1 and 43R3 from the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) (Vitart 2014) and HadGEM3 in GloSea5 from 
the United Kingdom Met Office (UKMO) (MacLachlan 
et al. 2015). We also use the NCEP CFSR and ECMWF 

Interim reanalysis products to represent different realizations 
of the “real world”. The motivation of our study is to explore 
the estimated predictability limit distribution of “real world” 
and forecast models then generalize predictability limits of 
coupled models to mitigate the dependency of the individual 
prediction models.

This paper is organized as follows. After the introduc-
tion, Sect. 2 briefly describes the methods of the NLLE and 
AR as well as the data used throughout this study. Section 3 
presents the predictability limits obtained by NLLE and AR 
characteristics in multiple coupled reanalysis datasets. The 
predictability characteristics in multiple coupled prediction 
systems are provided in Sect. 4. Finally, summary and dis-
cussions are given in Sect. 5.

2  Methodology

2.1  Nonlinear Local Lyapunov exponent 
and attractor radius

2.1.1  Nonlinear local Lyapunov exponent (NLLE)

To estimate the predictability limits, nonlinear patterns in 
the behavior of error growth need to be considered (Lacarra 
and Talagrand 1988; Mu 2000). The NLLE, a new method 
to estimate the average rate of initial error growth based on 
a nonlinear dynamical model without linearizing the govern-
ing equations, is recently proposed and applied to investigate 
the predictability limits for an n-dimensional chaotic system 
or a single variable (Li et al. 2006; Ding and Li 2007; Ding 
and Li 2007; Li and Ding 2009; Li and Wang 2008). For 
an n-dimensional chaotic system, the nonlinear equation of 
error growth could be integrated along the reference solution 
x from t = t0 to t0+�,

where �1 = �(t0 +�), x0 = x(t0 ), �0 = �(t0 ), and �(x0, �0, �) 
is the nonlinear propagator. Then the NLLE is defined as:

where �(x0, �0, �) is the function of initial state x0 in phase 
space, the initial error �0 and time � . the NLLE of a single 
variable of the system is defined as:

The mean NLLE �i and relative growth of the initial error 
(RGIE) �i of the variables xi can be obtained by:

(1)�1 = �(x0 , �0, �)�0,

(2)�(x0, �0 , �) =
1

�
ln
‖‖�1‖‖
‖‖�0‖‖

,

(3)�i(x0, �0 , �) =
1

�
ln
||�i(t0+�)||
||�i(t0)||
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where ⟨⟩N denotes the ensemble average of samples with a 
large size.

To apply the NLLE to the study of atmospheric pre-
dictability, Li and Ding (2011) proposed a new algorithm 
searching for local dynamic analogs (LDA) using observa-
tional data. They obtained initial distance between the ref-
erence point and other points and corresponding evolution-
ary distance of two trajectories of these two points over 
a short time. Mathematically, initial distance di between 
the reference point x(t0) and other points in the time series 
x(tj) except temporal nearby points is given by

and the evolutionary distance de within a short period 
� = K𝚫 , � is the sampling interval of time series, between 
x(t0) and x(tj) is given by

Then we can base on the minimum of total distance 
dt = di +de to find out the local analog x(tk) (i.e. the 
nearest initial state in phase space) so the initial distance 
between x(t0) and  x(tk) can be written as:

when x(t0) and x(tk) travel along the reference trajectory 
and analogous trajectory, the distance become

so, the NLLE during the time interval ti−t0 could be 
calculated as

and i = 1, 2, 3,… ,M where M is the total number of 
time series.

Changing the reference points along the observation 
time series we can construct a series of NLLE and the cor-
responding ensemble mean NLLE, as well as the approxi-
mation of the RGIE. We can estimate the predictability 
limits of variable x by investigating the time when RGIE 
reaches 98% of its saturation level. Reaching a saturation 
value of RGIE in a chaotic system represents the mean 
distance between two random points on an attractor so 

(4)�i(�0 , �) = ⟨�i(x0, �0, �)⟩N, (N → ∞)

(5)�i(�0, �) = exp
[
�i(�0, �)�

]

(6)di =
|||x(t0) − x(tj)

|||

(7)de =

√√√√ 1

K + 1

K∑

i=0

[x(ti)−x (tj+i)]
2
.

(8)L(t0 ) =
||x(t0) − x(tk)

||,

(9)L(ti ) =
||x(ti) − x(tk+i)

||,

(10)�1(ti ) =
1

ti−t0
ln

L(ti)

L(t0)
,

that the initial value information is totally untraceable (Li 
and Ding 2015).

2.1.2  Optimal local dynamic analog (OLDA)

The LDA estimated by the above algorithm is the most anal-
ogous state against the reference state based on available 
observation so we call it as an estimated OLDA ( ̃OLDA ), 
which depends on the length of observation time series. 
With more observations, theoretically, there exists an OLDA:

where N is the length of observational data. The estimated 
initial error between the reference trajectory and ÕLDA is 
defined as �̃0(N) while the optimal initial error between the 
reference trajectory and OLDA is represented as �0 i.e.

There are two types of predictability limits, estimated 
predictability limit T̃P and optimal predictability limit TP 
determined by the ÕLDA and OLDA respectively, i.e.

With extended observational data, the attractor is gradu-
ally filled so it is more possible for NLLE method to find the 
OLDA. Furthermore, because the average divergence rate of 
OLDA is lower than that of ÕLDA , the T̃P is lower than that 
TP . To verify this point, we first run Lorenz63 model for  107 
time steps using a fourth-order Runge–Kutta time forward-
ing scheme ( 𝚫t = 0.01 ) and the model is spun up for first 
 106 time steps starting from (x, y, z) = (0, 1, 0) . We further 
apply the NLLE method with different lengths of time series 
to estimate the corresponding initial error and predictability 
limits, shown in Fig. 1. When data are more abundant, the 
initial error decreases and maintains a small value, indicat-
ing that ÕLDA gradually approach to OLDA with increasing 
predictability limits.

2.1.3  Attractor radius

Besides, Li et al. (2018) proposed three intrinsic properties 
of chaotic system called the AR, GAR and GAD between 
two attractors as more objective metrics. Consider x to be the 
state column vector on a compact attractor � , the expecta-
tion of the root mean square distance between all states on 
an attractor and the center of the attractor of an n-sphere is 
defined as the AR (RE) as:

(11)OLDA = lim
N→∞

ÕLDA(N),

(12)𝜹0 = lim
N→∞

𝜹0(N) and 𝜹0(N1) ≤ 𝜹0(N2),N1 > N2

(13)TP = lim
N→∞

T̃P(N) and T̃P(N1) ≥ T̃P(N2),N1 > N2

(14)RE =

�
E(‖x− E(x)‖2), x ∈ �
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where E is the expectation of the time series and ‖·‖ is the 
L2-norm of a vector. AR has a similar form as the standard 
deviation in statistics. The GAR is defined as the expectation 
of the root mean square distance between any two random 
points on an attractor:

The GAD between two attractors, �1 and �
2
 is written as:

A constant relationship between the GAR and AR exists 
as

simplifying the calculation of GAR. In terms of fore-
cast model, because of the model error, ARs of models 
and reanalysis are different and the GAD (i.e. the satu-
ration of model RMSE) is not same as the GAR. GAD 
is not suitable to be the threshold to measure predict-
ability because it contains the different model errors 
in different models according to its definition. We let 
Re = min(RE (𝚯1),RE(𝚯2)),Rg = min(RG (𝚯1),RG(𝚯2))  . 
The practical (potential) predictability limit can be described 
as the prediction ability based on the current available (opti-
mum) procedures. Therefore, the global practical predict-
ability limit (global potential predictability limit) is defined 

(15)RG =

�
E(R2

L
) =

�
E(‖x− y‖2), x, y ∈ �

(16)RG(𝚯1,𝚯2 ) =

√
R2

E
(𝚯1) + R2

E
(𝚯2) + d2(xE, yE).

(17)RG =
√
2RE

here as the time when the global ensemble average of 
RMSEs reaches the AR (GAR) for the first time.

2.2  Data, models and forecast systems

Reforecast data of coupled models used in this paper are 
all archived in S2S prediction experiment dataset (Vitart 
et al. 2017). We only use 00Z control forecast data to cal-
culate the errors. The Climate Forecast System Version 2 
(CFSv2) (Saha et al. 2014) from National Centers for Envi-
ronmental Prediction (NCEP) of runs out to 45 days initial-
ized for 4 times (00, 06, 12 and 18 UTC) per day over the 
11-year (1999 to 2010) based on Climate Forecast System 
Reanalysis (CFSR), and 11-member ensemble reforecasts of 
ECMWF Integrated Forecast System (IFS) ensemble predic-
tion system. IFS makes forecasts twice a week (Monday and 
Thursday 00Z) up to 46 days produced on the fly for last 
20 years and the reforecast atmosphere component initial 
condition is Interim (T255L60). Details of ECMWF-IFS 
could be found at https ://confl uence .ecmwf .int/displ ay/S2S/
ECMWF +Model  + Description + CY43R3. The UK Met 
Office (UKMO) HadGEM3 reforecast (Williams et al. 2015) 
is produced on the fly and initialized from Interim (atmos-
phere component) 4 times a month on 1st, 9th, 17th and 
25th extending to 60 days for 23 years (1993 − 2015) with 7 
ensembles per year. In Sect. 4.1, we introduce an uncoupled 
ensemble including GEPS reforecast from Environment and 
Climate Change Canada (ECCC) produced on the fly once a 
week up to 32 days with 4 members initialized from Interim, 

Fig. 1  Estimated predictability 
limits and ensemble average of 
initial error between analogous 
trajectories and reference trajec-
tories vary with length of time 
series from 1 × 104 to 5 × 106 in 
Lorenz63 model obtained by the 
LDA algorithm

https://confluence.ecmwf.int/display/S2S/ECMWF+Model
https://confluence.ecmwf.int/display/S2S/ECMWF+Model
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Table 1  Reforecast data needed in this research and their properties

NCEP-CFSv2 ECMWF UKMO- GloSea5

Model Coupled models
Reforecast Fixed On the fly On the fly
variables GHT, temperature, u, v components of wind at 200, 500 and 850 hPa
Time period 1999.1–2010.12 1996.1–2017.6 1993.1–2015.12
Run frequency 4 times a day at 00, 06, 12, 18 UTC Twice a week at Monday and 

Thursday
4 times a month 

on 1st, 9th, 17th, 
25th

Selected initial time 00Z
Forecast length 45 days 46 days 60 days
Initial condition CFSR Interim Interim
Spatial resolution of output data 1° × 1° 1.5° × 1.5° 1.5° × 1.5°

ISAC-CNR model reforecast up to 31 days runs every 5 days 
from The Institute of Atmospheric Sciences and Climate 
(CNR-ISAC) and GEFS Reforecast Version 2 consists of an 
11-member ensemble of forecasts, produced every day from 
00 UTC. Only control run of the ensemble model above 
is employed. The NCEP climate forecast system reanalysis 
(CFSR) and ERA-Interim are approximately equivalent to 
the observed atmosphere state to calculate predictability lim-
its of atmosphere using NLLE method and to verify the fore-
casts using AR method. Both CFSR and Interim run 4 times 
a day (00, 06, 12 and 18 UTC) for 39 years (1979 − 2017) 
and all the data at February 29th are eliminated. The annual 
cycle of time series is removed when apply to calculate the 
AR and GAR. Details of the reforecast are summarized in 
Table 1.

3  The characteristics of NLLE and AR 
in multiple coupled reanalysis products

The predictability limits of the real atmosphere obtained 
by the NLLE method represent the saturated “error” due to 
intrinsic variability in an observational dataset. The AR is 
the metric measuring the predictability limits of a forecast 
model. This section focuses on analyzing the distribution 
of the predictability limits of the atmosphere estimated by 
the NLLE method. We also analyze the AR of CFSR and 
Interim to get the sense of the different reflections of atmos-
phere in different reanalysis datasets.

CFSR has 360 × 181 grid points, and there are 
39a × 365(days/a) × 4(times/day) time reference points avail-
able at each grid points (following Li and Ding 2011). Since 
we only search the local dynamic analog in a season about 
± 45 days, totally 4(times/day) × 91(days) × 38a data points 
are available for analog searching. Except for a little lower 
spatial resolution, the Interim data are same as the CFSR 
in terms of number of reference points and points available 

for analog searching. Figure 2 shows the spatial distribution 
of predictability limits of geopotential height (GHT) by the 
NLLE method. At 200 hPa level, the predictability limits of 
the CFSR and Interim have nearly identical zonal patterns 
that the high values of 13 − 16 days appear over the tropics, 
Arctic and Antarctic, followed by 8–12 days over mid-high 
latitudes in the Northern Hemisphere and the lowest predict-
ability limits (4–6 days) are distributed over middle latitudes 
in the South Hemisphere. Reichler and Roads (2004) had a 
similar conclusion that the tropics and Antarctic are main 
regions with high predictability for which the dominant 
sources are both boundary conditions (e.g., signal coming 
from ocean and sea-ice components) and initial conditions. 
The high-latitude blocking and high-frequency baroclinic 
wave activity (Dalcher and Kalnay 1987; Renwick and Wal-
lace 1996) may contribute to the lower predictability limits 
over mid latitudes. Compared to 200 hPa, the predictability 
limits on 500 and 850 hPa have the similar distribution but 
with lower value. The predictability limits in global domain 
have a barotropic-like structure which decreases progres-
sively from the upper troposphere to the lower troposphere. 
The predictability limit is approximately the function of 
pressure just like the isobaric surface varies parallel to the 
isopycnic surface and the density is the function of pressure 
in barotropic structure. There are thought-provoking paral-
lels between our results and previous researches, e.g., Li 
and Ding (2011). A possible comprehension is that above 
the planetary boundary layer, synoptic-scale flow of the 
free atmosphere not directly retarded by surface friction 
may contribute to the higher predictability limit at upper 
levels. Additionally, stratosphere or stratosphere-troposphere 
coupling may be a source of predictability at upper tropo-
sphere (Baldwin and Dunerton 2001; Baldwin et al. 2003; 
Kuroda, 2008; Douville 2009; Li and Ding 2011; Hitchcock 
and Simpson 2014; Lim et al. 2019). It is noted that the 
zonal mean of GHT predictability limits over mid latitudes 
in the Southern Hemisphere is lower than that in the North 
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Hemisphere at 3 levels (not shown). There might be some 
dynamical mechanisms in Southern Hemisphere responsible 
for the GHT predictability and they need further research. 
Meanwhile, the misrepresentation of reanalysis due to scarce 
observations cannot be overlooked. The relative difference 
of the GHT predictability limits between CFSR and Interim 
(right panels of Fig. 2) is quite small in most of the regions 
globally. The largest zonal mean of relative differences is 
around 10% over the tropics. We see that potential predict-
ability limits of Interim are lower than ones of CFSR over 
tropical areas on different levels indicating that the error 
between reference trajectory and analogous trajectory in 
Interim diverges faster than in the CFSR.

Predictability limits of temperature in both CFSR and 
Interim show peaks over tropics and polar areas while val-
leys over mid latitudes (not shown). Specifically, they have 
high values above 10, 8 and 8 days over both the tropics 
and polar regions followed by 3 − 9, 3–7 and 3–7 days over 
mid latitudes at 200, 500 and 850 hPa, respectively. The 
predictability limit of wind speed shows a different zonal 
mean distribution with high values above 8, 6 and 5 days at 
the Northern Hemisphere subtropics followed by 4–7, 3–5 

and 2–5 days over both the polar regions and mid latitudes 
at 200, 500 and 850 hPa, respectively. There still exist the 
barotropic-like structures in predictability limits of both 
temperature and wind speed. The zonal mean predictability 
limits of temperature and wind speed are lower than those of 
GHT. Furthermore, those of wind speed is the lowest among 
these 3 variables. The predictability limit difference of tem-
perature and wind speed between two reanalysis datasets still 
exist on 3 levels as illustrated in Fig. 3. The predictability 
limit relative difference of temperature also shows a zonal 
distribution that at 200 hPa, it exceeds 15% over the tropics 
while is lower than 10% over other areas; at 500 hPa, it is 
approximately below 10% globally; at 850 hPa, the higher 
value is located in the tropics and Antarctica. Specifically, 
there is a lower potential predictability limit area for tem-
perature in Interim over the tropics at 200 and 850 hPa while 
a higher limit area over western tropical Pacific at 500 hPa 
and over Antarctica at 850 hPa. As shown in the right panels 
of Fig. 3, zonal mean of wind speed predictability limits 
shows a similar distribution to that of temperature but over 
tropical areas Interim has higher potential predictability 
limits of wind speed than CFSR. The relative difference 

Fig. 2  Spatial distributions of predictability limits (in days) using 
GHT in CFSR (left panels) and Interim (middle panels) by NLLE 
method and the corresponding relative difference (right panels) of 

predictability limits between two reanalysis datasets. Upper, middle, 
lower panels are at 200, 500 and 850 hPa, respectively
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of predictability limits of wind speed between Interim and 
CFSR is little larger than those of GHT over the tropics at 
200 and 850 hPa, but in other areas at 3 levels they may not 
have obvious differences. It is seen that although the differ-
ences in potential predictability between Interim and CFSR 
exist in all variables on 3 levels over various areas, these two 
sets of reanalysis data demonstrate generally similar distri-
bution of potential predictability limits.

Figure 4 illustrates the spatial distribution of GHT AR 
from CFSR and Interim and differences between them on 
various pressure levels. The 200 hPa GHT AR in trough and 
ridge systems and Southern Hemisphere westerlies is much 
higher than that in the tropics. Furthermore, the AR of both 
CFSR and Interim exists a relatively high value center in the 
central-east Pacific compared to other tropical regions. This 
high value center may refer to the westerly duct, theorized 
by Webster and Holton (1982), that mid-latitude disturbance 
propagates into the tropics through westerly duct located in 
the upper-tropospheric eastern Pacific. The GHT ARs at 500 
and 850 hPa have the similar zonal distribution patterns but 
lower values than 200 hPa. The ARs in Interim are lower 
than those in CFSR over most areas while the differences of 
ARs between CFSR and Interim are small.

For temperature and wind speed, the spatial distribu-
tion of the differences of ARs of CFSR and Interim on 3 

pressure levels are shown in Fig. 5. The differences in tem-
perature at 200 and 500 hPa are overall small but tempera-
ture in Interim varies more significantly over the westerlies 
and high-altitude areas than CFSR. Likewise, the wind 
speed ARs in Interim are a little larger in the westerly and 
polar regions than CFSR.

Both the ECMWF-IFS and HadGEM3 use ERA-Interim 
states as the initial conditions while the CFSv2 predic-
tions use CFSR states as initial conditions. Analyses above 
show that no matter the differences of predictability limits 
between the CFSR and Interim calculated by the NLLE or 
AR itself are relatively small for GHT, temperature and 
wind speed, suggesting that these 2 sets of reanalysis data 
can describe the roughly similar chaotic properties of the 
atmosphere. We should note that although Interim are only 
coupled with ocean–wave model (Dee et al. 2011) while 
CFSR has the ocean and sea–ice components, the sensitiv-
ity of predictability limits to different reanalysis datasets 
can be roughly omitted as the results shown above. It can 
be comprehended that the sources of ocean signal for rea-
nalysis are both ocean model and observation. Thus, the 
ocean signal from observation may make up the shortcom-
ing of Interim as an uncoupled reanalysis. Additionally, 
the AR values calculated from CFSR and Interim reanaly-
sis data are basically identical, so we will use the AR of 

Fig. 3  Difference (Interim 
minus CFSR) in temperature 
(left panels) and wind speed 
(right panels) predictability 
limits (in days) between CFSR 
and Interim. Upper, middle, 
lower panels are at 200, 500 and 
850 hPa, respectively
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two reanalyses as unified metrics to measure the model 
predictability limits next.

4  Predictability characteristics in multiple 
coupled prediction systems

4.1  The characteristic predictability of coupled 
prediction systems

Based on the characteristics of atmosphere potential pre-
dictability estimated through NLLE above, we now discuss 
the predictability of coupled forecast models from ECMWF, 
NCEP and UKMO which are world well-known operational 
forecast centers.

Figure 6 shows the practical predictability limits of GHT, 
temperature and wind speed from ECWMF-IFS. The GHT 
(left panels) has longer predictability limits than other 
variables on all pressure levels. In the upper troposphere 
(200 hPa), predictability limits are with the maximum in 
the most of the tropical belt around 30 days. While predict-
ability limits at 500 and 850 hPa are divided into two parts, 
Indo–Pacific warm pool and tropical Atlantic, where the 
predictability limits exceed 14 days. We will discuss more 

on this phenomenon to understand these conspicuous high 
values.

It is noticed that compared to Fig. 2, the predictability 
limits of ECWMF-IFS over the tropics are surprisingly 
longer than the upper limits calculated by the NLLE using 
observation. Theoretically, potential predictability limits 
of “real” atmosphere calculated by NLLE from reanalysis 
data should be longer than practical predictability limits of 
models (Li and Ding 2015) due to model error and initial 
error. It is understandable that the real atmosphere possesses 
the potential predictability limits due to its chaotic charac-
teristic regardless of the initial error. Despite we assumed 
that there is a perfect model, the predictability limit of this 
model is, at best, equal to the potential predictability limit. 
However, the model is actually an imperfect representation 
of the real atmosphere, its states will depart from the real 
atmosphere states with time. Although sometimes the initial 
errors may counteract with the model error at initial time, 
this kind of opposite effect may not always perpetuate since 
the evolution of the initial errors is intangible. Therefore, 
as long as the initial error and the model error make the 
estimation of model emerge a slight deviation from real 
atmosphere, the error would generally start growing. For 
example, in current operational forecast, the model errors in 

Fig. 4  The spatial distribution of AR of GHT obtained from CFSR (left panels) and Interim (middle panels) and the difference between two rea-
nalysis datasets (right panels). The upper, middle and lower panels are at 200, 500 and 850 hPa, respectively. Unit: m
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an imperfect coupled model result from the dynamic cores, 
couplers, numerical schemes, physical parameterization 
schemes and empirical parameters. Initial errors are from 
the misfitting forecast initial conditions obtained by assimi-
lation. The data assimilation includes two steps: the analysis 
step and the forecast step. In analysis step, the observation 
information is combined with the model first guess and it 
will bring the misrepresentation of observation, sampling 
error and uncertainty of assimilation schemes into the initial 
condition. While in forecast step, model initialized by the 
analysis field produce the forecast to the next observation 
as the next first guess and the model errors will also blend 
into the initial condition (Zhang et al. 2020). Thus, the errors 
between the forecast and observation grow faster than errors 
between reference trajectory and estimated analogous tra-
jectory in observation itself. Additionally, Li et al. (2018) 
verified this point using Lorenz63 model as real system with 
an imperfect forecast model. It showed that RMSE between 
the Lorenz63 model and the imperfect Lorenz63 model con-
verges to the GAD and the practical predictability limits of 
imperfect model are shorter than potential predictability of 
Lorenz63 model.

To comprehend this inconsistency, we select the point 
(120° E, 0°) ((120° E, 45° N)) where predictability limits 

of model are longer (shorter) than T̃P(N) and apply NLLE 
method to obtain T̃P(N) varying with length of time series. 
As shown in Fig. 7, at equator, the predictability limit dou-
bles from 9 to 18 days, however at the point (120°E, 45°N) 
it increases slightly with extended data. Constrained by cur-
rent length of observational data we may not be able to esti-
mate OLDA in the tropics so the T̃P over the tropics in Fig. 2 
are shorter than the TP which should still be longer than 
practical predictability limits of model forecast, but has not 
been available yet. While in mid-latitudes, T̃P is longer than 
practical predictability limits of forecast reflecting that T̃P in 
mid-latitude area is closer to TP than T̃P in the tropics. Thus, 
different geographic locations not only exist different T̃P(N) , 
but also require different length of observational data N to 
estimate the OLDA. What kinds of physical processes lead 
to the demand of longer observational data over the tropics 
needs to be addressed more in the future studies.

The reason of conspicuous high values in Fig. 6 need to 
further understand. Referring to the previous work (Reichler 
and Roads 2004, 2005), we learn that the low-frequency 
periodic oscillations such as MJO (Madden and Julian 1994), 
downward propagated stratospheric anomalies (Thompson 
et al. 2002), atmospheric teleconnection patterns represented 

Fig. 5  Difference in AR of tem-
perature (left panels) and wind 
speed (right panels) between 
CFSR and Interim. Upper, mid-
dle and lower panels are at 200, 
500 and 850 hPa, respectively
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in the 200 hPa height variability (Kumar et al. 2011) as well 
as boundary forcing from sea surface temperatures under-
neath (Shukla 1998) could extend the predictability by both 

initial-value and boundary-value. The Ensemble Empirical 
Mode Decomposition (EEMD) (e.g., Huang et al. 1998), a 
reliable method to process time series with instability and 
nonlinearity is applied to reveal the multi-time scale features 
and extract significant periods of the observational series in 
order to unveil this phenomenon.

Figure 8 shows the variance contribution of periods in 
different modes of GHT at 850 and 200 hPa statistically sig-
nificant at the 95% confidence level using EEMD method. At 
850 hPa, intraseasonal oscillations (ISOs) play a dominant 
role by which the variance contribution of the short periods 
(20–40 days) is more than 20%. But at 200 hPa, the variance 
contribution of long periods (2–4 years) is over 40% so the 
200 hPa GHT is more influenced by low-frequency signals 
than the 850 hPa GHT. The sources of predictability of the 
atmosphere in a coupled earth system include the propaga-
tion of the atmospheric initial signals, and the interactions 
between coupled components such as the atmosphere, ocean, 
land processes and sea ice etc., which may impose longer 
timescale information (Bauer  et al. 2015). Through the 
air–sea interaction or stratosphere–troposphere interaction, 
ocean and long-time scale oscillation within the atmosphere 

Fig. 6  Spatial distribution of practical predictability limits of GHT (left panels), temperature (middle panels) and wind speed (right panels) from 
ECWMF 46-day reforecast running twice a week (1996.01–2017.6). Upper, middle and lower panels are at 200, 500 and 850 hPa, respectively

Fig. 7  Estimated predictability limits (in days) of 200  hPa GHT in 
Interim vary with length of time series from 5 to 39 years at 120° E 0 
(red line) and 120° E 45° N (blue line)
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can suppress the high frequency variation signals and add 
the slow-varying signals to the atmosphere, extending the 
predictability limit. The quasi-biennial oscillation (QBO) in 
the zonal wind of the tropical stratosphere is an important 
predictability source and can be well forecasted for many 
months in advance (Boer and Hamilton 2008) and it is pos-
sible to modulate deep convection in the tropics (e.g., Colli-
more et al. 1998, 2003) so we speculate that maybe the high 
value of predictability limits over the tropics in ECMWF 
are related to QBO. Meanwhile, some researches show that 
ECMWF-IFS has relatively higher predicting skill compared 
to other models in S2S datasets (e.g., Lim et al. 2019; Gar-
finkel et al. 2018). Žagar et al. (2007) proved that the phase 
of the QBO has an impact on the background error variances 
and the recent model improvements, primarily in the model 
physics, have substantially reduced the errors in both wind 
and GHT throughout the tropical atmosphere.

To illustrate the sensitivity of predictability limits in mod-
els to the low-frequency signal, we use Butterworth of order 
1 (the Butterworth filter is a method that can extract the 
significant period of timeseries and obtain its main modes) 
to filter the period over 2 years for CFSR and Interim at each 
grid point. The AR presented in Sect. 3 is recalculated using 
the filtered reanalysis data, shown in Fig. 9. Compared to 
Fig. 6, the high value areas of practical predictability lim-
its of GHT in ECMWF-IFS are sensitive (insensitive) to 
the high-pass filter process over the tropics (mid-latitudes) 
and show a higher sensitivity than other 2 coupled mod-
els. Therefore, the low-frequency signals, e.g., QBO have 

significant impact of predictability limits in tropical GHT 
forecast and it is extremely urgent and important to develop 
model physics of QBO well represented in current numerical 
models to extend predictability limits of GHT.

The predictability limits of GHT, temperature and wind 
speed of CFSv2 are presented in Fig. 10. The GHT predict-
ability limits have low values in the tropics, about 3–8 days 
at 200 hPa, 4–8 days at 500 hPa and 6–10 days at 850 hPa, 
decreasing with altitudes. The GHT predictability limits in 
mid latitudes are similar on all 3 levels, about 8–12 days, 
as same as the ECMWF’s. The predictability limits of tem-
perature have a similar distribution to that of GHT at 200 
and 500 hPa. There is a high predictability over central 
tropical Pacific at 850 hPa. The wind speed predictability 
limits agree with the ECMWF patterns on all levels that the 
predictability decays from the upper troposphere to lower 
troposphere.

Consistent with the CFSv2 case, the practical predictabil-
ity limits of GHT of HadGEM3 have low values of 0–2 and 
1–6 days over the tropics at 200 and 500 hPa, respectively, 
whereas at 850 hPa the maximum predictability limits are 
over the tropics (Fig. 11). The temperature predictability 
limits of HadGEM3 have the similar spatial distribution to 
CFSv2 but with the weaker magnitudes over the tropics at 
200 and 500 hPa declining to 2–4 and 2–8 days, respectively. 
At 850 hPa, restricted by topography, the high-altitude areas 
exist low value in maps. The predictability limits of wind 
speed also show high values of 8–12, 6–11 and 4–8 days 
over prevailing westerlies at 200, 500 and 850 hPa, and show 
the lower value of 2–6 days over the tropics decreasing from 
upper troposphere to lower troposphere.

The impact of air–sea coupling on lengthening predict-
ability over the tropics in the lower troposphere is discussed 
below. To extend the general characteristics of predictabil-
ity limit between coupled and uncoupled models, the zonal 
mean profiles of predictability limits of temperature, 850 hPa 
GHT and mean sea level pressure of multi-model ensemble 
mean are shown in Fig. 12. The coupled multi-model ensem-
ble includes CFSv2, IFS and HadGEM3 and the uncoupled 
includes GEPS, ISAC-CNR Model and GEFS. In genal, 
zonal mean predictability limits of all variables in cou-
pled models is longer than those of uncoupled models and 
the mean predictability limits of coupled models improve 
remarkably in the tropics represented a near doubling in 
GHT and temperature. This general difference suggests 
that air–sea coupling in models contributes to improved 
synoptic-scale prediction skill in lower troposphere espe-
cially in the tropics. Zhao et al. (2021) compared atmos-
phere predictability limits among different configurations 
of the coupled conceptual model. It is showed that more 
accurate ocean boundary condition prolongs the atmosphere 
predictability limit. However, the improvement of prediction 
skill depends on variable. Compared to temperature, zonal 

Fig. 8  The periods of area mean GHT over tropical Pacific 
(20°  S–20°  N, 120°  E–80°  W) from Jan 1979 to Dec 2017 at a 
200  hPa and b 850  hPa. These periods are statistically significant 
at the 95% confidence level obtained by the EEMD method from 
Interim
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mean predictability limits of 850 hPa GHT increase further 
in both the tropics and mid-latitudes. Moreover, for coupled 
models, the predictability limits of 850 hPa temperature are 
lower over the tropics than other regions, but the 850 hPa 
GHT of coupled models have almost equal limits over the 
tropics to other areas. This could be explained by air–sea 
interactions in coupled models. Through air–sea interac-
tions, low-frequency signals imported to the atmosphere as 
the boundary condition could extend predictability of the 
atmosphere. Under such a circumstance, since the tempera-
ture only reflects the thermal properties at the current pres-
sure level while the GHT contains all information of the 
column underneath, the GHT could be impacted more than 
the temperature. For example, the zonal mean predictability 
limits of sea level pressure have similar behavior as ones of 
the 850 hPa GHT, but a little different from the tempera-
ture’s (Fig. 12c).

4.2  Generalized predictability and its uncertainty

Many previous relevant researches use certain model which 
only reflect predictability of one model. According to the 
Sect. 4.1, the predictability illustrates the model dependency. 

We try to mitigate model dependency to obtain the general-
ized predictability using multi-model ensemble. Just like the 
higher skills of ensemble mean forecasts than those of deter-
ministic forecast (e.g., Feng et al. 2019), many researches 
(e.g., Rajagopalan et al. 2002; Robertson et al. 2004; Dob-
las-Reyes et al. 2005; Stephenson et al. 2005) demonstrated 
multi-model ensemble combination (MMEC) increase pre-
diction skill due to error cancellation and nonlinearity of 
the skill metrics applied (Hagedorn et al. 2005) so the gen-
eralized predictability is also roughly estimation of MMEC 
prediction skill.

Figure  13 shows the generalized predictability lim-
its of coupled forecast models, CFSv2, ECMWF-IFS and 
HadGEM3 considered as a benchmark to reflect the mean 
characteristics of multi-model ensemble. The generalized 
predictability limits are the time by which the mean RMSE 
of 3 models reaches the average AR of CFSR and Interim 
at each grid point.

For the 200 hPa GHT, the high predictability limits of 
8–10 days are over mid-latitudes while the low predictabil-
ity limits of 3–8 days are in the tropics. There exists a high 
predictability dipole across the equator over central tropical 
Pacific. At 500 hPa, the predictability limits have similar 

Fig. 9  Same as Fig. 6 but after the Butterworth 2-year high-pass filtering
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patterns as at 200 hPa but with much higher values in the 
tropics, while the 850 hPa predictability limits increase over 
warm pool.

For temperature, the predictability limits of 2–5 days and 
6–10 days are observed in the tropics and mid-latitudes over-
all on all the pressure levels. For wind speed, the high (low) 
predictability limits are observed in westerlies (tropics) in 
all 3 levels but large values are in low troposphere increasing 
with height. In terms of variables, the GHT predictability 
limits over the tropics are the highest, while the wind speed’s 
is the lowest and the temperature’s is the middle.

The “generalized” predictability limits among 3 models 
over the tropics are far below the upper limits defined by 
the NLLE method, as shown by Figs. 2 and 13. This sug-
gests that, in general, the current forecast skill in the trop-
ics lag to that in mid-latitudes (Kanamitsu 1985; Reynolds 
et al. 1994), not only because of the spare observations but 
also due to the complex tropical dynamics. In the tropics, 
when the Coriolis parameter is small, maintenance of the 
quasi-geostrophic balance becomes difficult. Furthermore, 
the barotropic and convective instability and their interaction 
are dominated over the tropics and convective processes are 

represented by the sub-grid scale parameterizations, which 
are major challenges in modeling and it is expected that a 
great enhancement of predictability over the tropics could be 
accompanied with the improvement on modeling of tropical 
convective processes.

5  The distinction of predictability 
in different prediction systems

The distinction of predictability between single model and 
generalized predictability reflects prediction skill of single 
models and a measure to demonstrate whether MMEC could 
outperform the single model extending the practical predict-
ability. Figure 14 presents the distinction of GHT predict-
ability limits in different forecast models. The ECMWF-IFS 
provides a more accurate forecasts than other two models, on 
average, beyond 5 days on 200 and 500 hPa, and 3–5 days at 
850 hPa over the tropics. Comparing Fig. 6 with Fig. 2, we 
find that only the predictability limits of ECMWF-IFS have 
a similar pattern that has high values in tropical areas reach-
ing to the upper limits as that in the observed atmosphere 

Fig. 10  Same as Fig. 6, but from CFSv2 45-day reforecast running every 6 h (00, 06, 12, 18 UTC) from 1999 to 2010
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indicating that the forecasts of ECMWF-IFS are close to the 
maximum skill for deterministic forecasting without further 
reducing the initial state error (Froude et al. 2013). The pre-
dictability limits of CFSv2 have a distribution close to the 
ensemble mean states while the HadGEM3 has the limited 
forecast skill over the tropics at 200 hPa. It is also shown 
that the ECMWF-IFS has the higher forecast skill of GHT 
over the tropics on all 3 levels while the skills of CFSv2 
and HadGEM3 are lower than MMEC. The 3 models share 
common predictability limit characteristics in mid-latitudes. 
It is indicated that MMEC can locally improve the GHT 
prediction skill in extratropic by capturing more underlying 
uncertainties but does not enhance GHT skill in the tropics 
as far as ECMWF-IFS concerned. Practically, we should 
pay more attention to ECMWF-IFS forecast in tropic and to 
MMEC results in extratropic.

The difference of temperature against the ensemble mean 
is shown in Fig. 15. We find that none of the 3 models can 
provide an excellent forecast on all pressure levels globally. 
For example, although the ECMWF-IFS has relatively accu-
rate forecasts at 200 and 500 hPa in the tropics, its 850 hPa 
tropical (200 and 500 hPa extratropical) forecasts are not so 

good as the CFSv2’s (HadGEM3’s). Unlike GHT, extrat-
ropical temperature forecast in HadGEM3 beats the MMEC 
while as for lower troposphere temperature in extratropic we 
still need refer to results in MMEC.

The difference of wind speed predictability limits 
between individual models and the ensemble mean is shown 
in Fig. 16. It is found that the CFSv2 and ECMWF-IFS are 
complementary in the tropics. For example, the predict-
ability limits of CFSv2 at 200 hPa have high values over 
the tropical Indian Ocean and central east Pacific while 
the ECMWF-IFS’s have low values there by coincidence. 
The HadGEM3 predictability limits are mostly close to the 
ensemble mean. Because of probably good simulation of 
QBO in the ECMWF-IFS, it has better 200 hPa wind speed 
forecasts but still need to refer to the CFSv2 in some areas. 
Wind speed has great local uncertainty so MMEC could 
enhance the prediction skill in most of areas.

In summary, within these 3 models, there is no certain 
model providing a more accurate forecast than other 2 mod-
els for all 3 variables on all levels. Different models have 
different data assimilation methods, numerical schemes 
and physical parameterizations that may lead to their better 

Fig. 11  Same as Fig. 5, but from HadGEM3 60-day reforecast running every day from 1993 to 2015. The shaded areas indicate the forecast data 
default
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performances that have a latitude and variable dependency. 
Meanwhile, we understand that MMEC is not able to beat 
any single model in any location. According to Weigel et al. 
(2008), the effect of MMECC is to gradually widen the 
ensemble spread and to move the ensemble mean toward 
the “truth” and will improve the overall skill only if the par-
ticipating single model ensembles are overconfident. Thus, 
we need to refer to the ensemble mean and each individual 
model property to understand the generalized predictability 
and its uncertainties.

6  Summary and discussions

The multiple reanalysis and coupled prediction systems 
have been used to study the generalized predictability of the 
atmosphere in the coupled ocean–atmosphere system. The 
upper predictability limits of the atmosphere are first ana-
lyzed through the NLLE and AR methods using the NCEP 
CFSR and ECMWF Interim reanalysis products. Then, three 
world-widely known coupled forecast systems, ECMWF-
IFS, NCEP-CFSv2, and UKMO-HadGEM3 are selected to 
generalize the recognition of the atmosphere predictability 
in the coupled system. Based on the predictability limits 
of each coupled system, the distribution of generalized 

predictability limits is used to evaluate the average fore-
cast skill as a metric to measure the forecast ability of the 
atmosphere.

While different methods (i.e. NLLE and AR) and dif-
ferent reanalysis products (i.e. ECMWF Interim and NCEP 
CFSR) show nearly identical upper predictability properties 
of the atmosphere, it is found that the atmosphere upper 
predictability limits increase with height (maximum as 12, 
14 and 16 days for 850, 500 and 200 hPa tropical GHTs 
respectively). The predictability of temperature and wind 
speed is a little lower than that of GHT.

Our results of multi-model studies show that the predict-
ability of the atmosphere in coupled models is higher than 
in uncoupled models, especially for the GHTs of the low 
troposphere. Given that temperature only reflects the thermal 
properties in a current pressure level while GHT contains all 
information of the column, the air–sea interactions in cou-
pled models as the atmosphere boundary conditions could 
extend the predictability of GHT more than temperature 
indicating a significant impact of air–sea coupling on pre-
dictability in lower troposphere especially over the tropics.

Given that different models have different data assimila-
tion methods, numerical scheme and physics parameteri-
zation schemes, the distinction between the predictability 
characteristics of different models exist. None of them is 
able to provide more accurate forecasts for all variables on 
all pressure levels than others. Meanwhile MMEC cannot 

Fig. 12  Zonal mean profile of 
predictability limits of 850 hPa 
temperature (a), 850 hPa GHT 
(b) and mean sea level pressure 
(c) obtained from coupled mod-
els (blue line) and uncoupled 
models (red line) ensemble 
mean with standard devia-
tion in respective ensembles 
(filled curves). The coupled 
multi-model ensemble includes 
CFSv2, IFS and HadGEM3 
and the uncoupled one includes 
GEPS, ISAC-CNR Model and 
GEFS



3504 Y. Ma et al.

1 3

outperform the all participating models in all variables. 
We shall refer to multiple model results according to geo-
graphical location and variable in practical forecast. How-
ever, the generalized predictability as multi-model ensem-
ble indeed shows that the predictability of the tropics is far 
below the upper limits calculated by the reanalysis data, 
suggesting that the coupled models has a great potential 
to increase the predictability of the tropics, thus greatly 
enhancing model forecast skills.

Challenges still exist and need to be resolved in further 
studies. The most urgent one is that what kind of physical 

mechanisms that lead to the 2-year domain long period, 
ENSO, QBO, or other modes? How they affect the upper 
troposphere predictability so significantly? What kinds of 
dynamical mechanisms contribute to lower potential pre-
dictability over mid latitudes in Southern Hemisphere? 
The answers of these questions would greatly advance our 
understanding of atmosphere predictability and improve 
the coupled earth system model, enhancing the accuracy of 
atmosphere and ocean predictions. In addition, the predict-
ability limits of the other components such as the ocean, 

Fig. 13  Spatial distribution of temperature (left panels) and wind speed (right panels) mean practical predictability limits of IFS, CFSv2 and 
HadGEM3. Upper, middle and lower panels are at 200, 500 and 850 hPa, respectively
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Fig. 14  Differences of GHT practical predictability limits between individual models and the ensemble mean. Results from CFSv2, IFS and 
HadGEM3 are shown from the left to the right. Upper, middle and lower panels are at 200, 500 and 850 hPa, respectively



3506 Y. Ma et al.

1 3

Fig. 15  Same as Fig. 14, but for temperature
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sea ice and soil temperature and moisture are important 
and interesting research topics for the follow-up studies.

Acknowledgements This research is supported by the National Key 
R&D Program of China (2017YFC1404100, 2017YFC1404104), the 
National Natural Science Foundation of China (Grant No. 41775100, 
41830964) and Shandong Natural Science Foundation Project 
(ZR2019ZD12) as well as Shandong Province “Taishan” Scientist Pro-
gram and Qingdao “Creative and Leadership” Scientist Program. This 
research is also supported by Center for High Performance Computing 
and System Simulation, Pilot National Laboratory for Marine Science 
and Technology (Qingdao).

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creat iveco mmons 
.org/licen ses/by/4.0/.

References

Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anoma-
lous weather regimes. Science 294(5542):581–584

Baldwin MP, Stephenson DB, Thompson DW, Dunkerton TJ, Charlton 
AJ, O’Neill A (2003) Stratospheric memory and skill of extended-
range weather forecasts. Science 301(5633):636–640

Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numeri-
cal weather prediction. Nature 525(7567):47–55. https ://doi.
org/10.1038/natur e1495 6

Benettin G, Galgani L, Giorgilli A, Strelcyn J (1980) Lyapunov char-
acteristics exponents for smooth dynamical systems and for Ham-
iltonian systems; a method for computing all of them. Meccanica 
15(1):9–20. https ://doi.org/10.1007/BF021 28236 

Boer GJ, Hamilton K (2008) QBO influence on extratropical predic-
tive skill. Clim Dyn 31:987–1000. https ://doi.org/10.1007/s0038 
2-008-0379-5

Buizza R (2010) Horizontal resolution impact on short- and long-range 
forecast error. Q J R Meteorol Soc 136(649):1020–1035

Collimore CC, Hitchman MH, Martin DW (1998) Is there a quasibi-
ennial oscillation in tropical deep convection? Geophys Res Lett 
25(3):333–336

Collimore CC, Martin DW, Hitchman MH, Huesmann A, Waliser DE 
(2003) On the relationship between the QBO and tropical deep 
convection. J Clim 16:2552–2568

Dalcher A, Kalnay E (1987) Error growth and predictability in opera-
tional ECMWF forecasts. Tellus A 39(5):474–491

Fig. 16  Same as Fig. 14, but for wind speed

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature14956
https://doi.org/10.1038/nature14956
https://doi.org/10.1007/BF02128236
https://doi.org/10.1007/s00382-008-0379-5
https://doi.org/10.1007/s00382-008-0379-5


3508 Y. Ma et al.

1 3

Dee DP, Uppala SM, Simmons AJ et al (2011) The Interim reanalysis: 
configuration and performance of the data assimilation system. 
Q J R Meteorol Soc 137:553–597. https ://doi.org/10.1002/qj.828

Ding RQ, Li JP (2007) Nonlinear finite-time Lyapunov exponent and 
predictability. Phys Lett A 364:396–400

Doblas-Reyes FJ, Hagedorn R, Palmer TN (2005) The rationale behind 
the success of multi-model ensembles in seasonal forecasting. Part 
II: calibration and combination. Tellus A 57(3):234–252

Douville H (2009) Stratospheric polar vortex influence on North-
ern Hemisphere winter climate variability. Geophys Res Lett 
36:L18703. https ://doi.org/10.1029/2009G L0393 34

Feng J, Li JP, Zhang J, Liu DQ, Ding RQ (2019) The relationship 
between deterministic and ensemble mean forecast errors revealed 
by global and local attractor radii. Adv Atmos Sci 36(3):271–278. 
https ://doi.org/10.1007/s0037 6-018-8123-5

Froude LSR, Bengtsson L, Hodges KI (2013) Atmospheric predict-
ability revisited. Tellus A: Dyn Meteorol Oceanogr 65(1):19022

Garfinkel CI, Schwartz C, Domeisen DIV, Son S-W, Butler AH, White 
IP (2018) Extratropical atmospheric predictability from the quasi-
biennial oscillation in subseasonal forecast models. J Geophys Res 
Atmos 123:7855–7866. https ://doi.org/10.1029/2018J D0287 24

Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind 
the success of multi-model ensembles in seasonal forecasting—I. 
Basic concept. Tellus A: Dyn Meteorol Oceanogr 57(3):219–233

Hitchcock P, Simpson IR (2014) The downward influence of strato-
spheric sudden warmings. J Atmos Sci 71:3856–3876. https ://doi.
org/10.1175/JAS-D-14-0012.1

Huang NE, Shen Z, Long SR et al (1998) The empirical mode decom-
position and the Hilbert spectrum for nonlinear and nonstationary 
time series analysis. Proc Roy Soc Lond 454A:903–995

Kazantsev E (1999) Local Lyapunov exponents of the quasigeostrophic 
ocean dynamics. Appl Math Comput 104:217–257

Kumar A, Schubert SD, Suarez MS (2003) Variability and predictabil-
ity of 200-mb seasonal mean heights during summer and winter. 
J Geophys Res 108:4169. https ://doi.org/10.1029/2002J D0027 28

Kumar A, Chen M, Wang W (2011) An analysis of prediction skill of 
monthly mean climate variability. Clim Dyn 37:1119–1131

Kuroda Y (2008) Role of the stratosphere on the predictabil-
ity of medium-range weather forecast: a case study of win-
ter 2003–2004. Geophys Res Lett 35:L19701. https ://doi.
org/10.1029/2008G L0349 02

Lacarra JF, Talagrand O (1988) Short-range evolution of small pertur-
bations in a barotropic model. Tellus A 40:81–95

Li JP, Ding RQ (2009) Studies of predictability of single variable from 
multi-dimensional chaotic dynamical system (in Chinese with 
English abstract). Chin J Atmos Sci 33:551–556

Li JP, Ding RQ (2011) Temporal-spatial distribution of atmospheric 
predictability limit by local dynamical analogues. Mon Weather 
Rev 139:3265–3283

Li JP, Ding RQ (2015) Seasonal and interannual weather prediction. In: 
North G, Pyle J, Zhang F (eds) Encyclopedia of atmospheric sci-
ences, vol 6, 2nd edn. Academic Press and Elsevier, Amsterdam, 
Boston, pp 303–312

Li JP, Wang S (2008) Some mathematical and numerical issues in geo-
physical fluid dynamics and climate dynamics. Commun Comput 
Phys 3:759–793

Li JP, Ding RQ, Chen BH (2006) Review and prospect on the predict-
ability study of the atmosphere. In: Review and prospects of the 
developments of atmosphere sciences in early 21st century, China 
Meteorology Press, pp 96–104

Li JP, Feng J, Ding RQ (2018) Attractor radius and global attractor 
radius and their application to the quantification of predictability 
limits. Clim Dyn 51:2359–2374

Lim EP, Hendon HH, Boschat G, Hudson D, Thompson DWJ, Dowdy 
AJ, Arblaster JM (2019) Australian hot and dry extremes induced 
by weakenings of the stratospheric polar vortex. Nature Geosci 
12:896–901. https ://doi.org/10.1038/s4156 1-019-0456-x

Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 
20:130–141

Lorenz EN (1965) A study of the predictability of a 28-variable atmos-
pheric model. Tellus 17:321–333

Lorenz EN (1969) The predictability of a flow which possesses many 
scales of motion. Tellus 21:289–307

MacLachlan C, Arribas A, Peterson KA et al (2015) Global seasonal 
forecast system version 5 (GloSea5): a high-resolution seasonal 
forecast system. Q J R Meteorol Soc 141:1072–1084. https ://doi.
org/10.1002/qj.2396

Mu M (2000) Nonlinear singular vectors and nonlinear singular values. 
Sci China 43D:375–385

Mu M, Duan W, Tang Y (2017) The predictability of atmospheric and 
oceanic motions: further understanding, prospects and explora-
tion. Sci China Earth Sci 60:2001–2012. https ://doi.org/10.1007/
s1143 0-016-9101-x

Orrell D, Smith L, Barkmeijer J, Palmer TN (2001) Model error in 
weather forecasting. Nonlinear Process Geophys 8:357–371

Oseledec VI (1968) A multiplicative ergodic theorem: Lyapunov char-
acteristic numbers for dynamical systems. Trans Moscow Math 
Soc 19:197–231

Rajagopalan B, Lall U, Zebiak SE (2002) Categorical climate forecasts 
through regularization and optimal combination of multiple GCM 
ensembles. Mon Weather Rev 130:1792–1811

Reichler T, Roads JO (2004) Time–space distribution of long-range 
atmospheric predictability. J Atmos Sci 61:249–263

Reichler T, Roads JO (2005) Long-range predictability in the tropics. 
Part I: monthly averages. J Clim 18:619–633

Renwick JA, Wallace JM (1996) Relationships between North Pacific 
Wintertime Blocking, El Niño, and the PNA Pattern. Mon 
Weather Rev 124:2071–2076

Robertson AW, Lall U, Zebiak SE, Goddard L (2004) Improved com-
bination of multiple atmospheric GCM ensembles for seasonal 
prediction. Mon Weather Rev 132:2732–2744

Rowell DP (1998) Assessing potential seasonal predictability with an 
ensemble of multidecadal GCM simulations. J Clim 11:109–120

Saha S, Moorthi S, Pan H et al (2010) The NCEP climate forecast 
system reanalysis. Bull Am Meteorol Soc 91:1015–1057

Saha S, Moorthi S, Wu X et al (2014) The NCEP climate forecast 
system version 2. J Clim 27:2185–2208

Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum 
from a chaotic time series. Phys Rev Lett 55:1082–1085

Shimada I, Nagashima T (1979) A numerical approach to ergodic 
problem of dissipative dynamical systems. Prog Theor Phys 
61:1605–1616

Simmons AJ, Hollingsworth A (2002) Some aspects of the improve-
ment in skill of numerical weather prediction. Q J R Meteorol 
Soc 128:647–677

Stephenson DB, Coelho CAS, Doblas-Reyes FJ, Balmaseda M (2005) 
Forecast assimilation: a unified framework for the combination of 
multi-model weather and climate predictions. Tellus 57A:253–264

Thompson PD (1957) Uncertainty of initial state as a factor in the 
predictability of large-scale atmospheric flow pattern. Tellus 
9:275–295

Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric con-
nection to northern hemisphere wintertime weather: implications 
for prediction. J Clim 15(12):1421–1428

Van den Dool HM (1994) Searching for analogues, how long must we 
wait? Tellus A 46:314–324

https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2009GL039334
https://doi.org/10.1007/s00376-018-8123-5
https://doi.org/10.1029/2018JD028724
https://doi.org/10.1175/JAS-D-14-0012.1
https://doi.org/10.1175/JAS-D-14-0012.1
https://doi.org/10.1029/2002JD002728
https://doi.org/10.1029/2008GL034902
https://doi.org/10.1029/2008GL034902
https://doi.org/10.1038/s41561-019-0456-x
https://doi.org/10.1002/qj.2396
https://doi.org/10.1002/qj.2396
https://doi.org/10.1007/s11430-016-9101-x
https://doi.org/10.1007/s11430-016-9101-x


3509A multi-model study of atmosphere predictability in coupled ocean–atmosphere systems  

1 3

Vitart F (2014) Evolution of ECMWF sub-seasonal forecast skill 
scores. Q J R Meteorol Soc 140:1889–1899. https ://doi.
org/10.1002/qj.2256

Vitart F, Ardilouze C, Bonet A et al (2017) The sub-seasonal to sea-
sonal prediction (S2S) project database. Bull Am Meteorol Soc 
2017:98

Webster PJ, Holton JR (1982) Cross-equatorial response to middle-
latitude forcing in a zonally varying basic state. J Atmos Sci 
39(4):722–733

Weigel AP, Liniger MA, Appenzeller C (2008) Can multi-model 
combination really enhance the prediction skill of probabilistic 
ensemble forecasts? Q J R Meteorol Soc 134:241–260. https ://
doi.org/10.1002/qj.210

Williams KD, Harris CM, Bodas-Salcedo A, Camp J, Comer RE, Cop-
sey D, Fereday D, Graham T, Hill R, Hinton T, Hyder P, Ineson 
S, Masato G, Milton SF, Roberts MJ, Rowell DP, Sanchez C, 
Shelly A, Sinha B, Walters DN, West A, Woollings T, Xavier PK 
(2015) The Met Office Global Coupled model 2.0 (GC2) configu-
ration. Geosci Model Dev 8:1509–1524. https ://doi.org/10.5194/
gmd-8-1509-2015

Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lya-
punov exponents from a time series. Phys D 16:285–317

Yoden S, Nomura M (1993) Finite-time Lyapunov stability analysis 
and its application to atmospheric predictability. J Atmos Sci 
50:1531–1543

Žagar N, Andersson E, Fisher M, Untch A (2007) Influence of the 
Quasi-Biennial oscillation on the ECMWF model short-range-
forecast errors in the tropical stratosphere. Q J R Meteorol Soc 
133(628):1843–1853. https ://doi.org/10.1002/qj.152

Zhang S, Liu Z, Zhang X, Wu X, Han G, Zhao Y, Yu X, Liu C, Liu 
Y, Wu S, Lu F, Li M, Deng X (2020) Coupled data assimilation 
and parameter estimation in coupled ocean–atmosphere models: 
a review. Clim Dyn 54(11–12):5127–5144

Zhao HR, Zhang SQ, Li JP, Ma YW (2021) A study of predictability 
of coupled ocean–atmosphere system using attractor radius and 
global attractor radius. Clim Dyn Online. https ://doi.org/10.1007/
s0038 2-020-05534 -6

Ziehmann C, Smith LA, Kurths J (2000) Localized Lyapunov expo-
nents and the prediction of predictability. Phys Lett A 4:237–251

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/qj.2256
https://doi.org/10.1002/qj.2256
https://doi.org/10.1002/qj.210
https://doi.org/10.1002/qj.210
https://doi.org/10.5194/gmd-8-1509-2015
https://doi.org/10.5194/gmd-8-1509-2015
https://doi.org/10.1002/qj.152
https://doi.org/10.1007/s00382-020-05534-6
https://doi.org/10.1007/s00382-020-05534-6

	A multi-model study of atmosphere predictability in coupled ocean–atmosphere systems
	Abstract
	1 Introduction
	2 Methodology
	2.1 Nonlinear Local Lyapunov exponent and attractor radius
	2.1.1 Nonlinear local Lyapunov exponent (NLLE)
	2.1.2 Optimal local dynamic analog (OLDA)
	2.1.3 Attractor radius

	2.2 Data, models and forecast systems

	3 The characteristics of NLLE and AR in multiple coupled reanalysis products
	4 Predictability characteristics in multiple coupled prediction systems
	4.1 The characteristic predictability of coupled prediction systems
	4.2 Generalized predictability and its uncertainty

	5 The distinction of predictability in different prediction systems
	6 Summary and discussions
	Acknowledgements 
	References




