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Abstract
While various studies explore the relationship between individual sources of climate variability and extreme precipitation, 
there is a need for improved understanding of how these physical phenomena simultaneously influence precipitation in the 
observational record across the contiguous United States. In this work, we introduce a single framework for characterizing 
the historical signal (anthropogenic forcing) and noise (natural variability) in seasonal mean and extreme precipitation. 
An important aspect of our analysis is that we simultaneously isolate the individual effects of seven modes of variability 
while explicitly controlling for joint inter-mode relationships. Our method utilizes a spatial statistical component that uses 
in situ measurements to resolve relationships to their native scales; furthermore, we use a data-driven procedure to robustly 
determine statistical significance. In Part I of this work we focus on natural climate variability: detection is mostly limited 
to DJF and SON for the modes of variability considered, with the El Niño/Southern Oscillation, the Pacific–North Ameri-
can pattern, and the North Atlantic Oscillation exhibiting the largest influence. Across all climate indices considered, the 
signals are larger and can be detected more clearly for seasonal total versus extreme precipitation. We are able to detect at 
least some significant relationships in all seasons in spite of extremely large (> 95%) background variability in both mean 
and extreme precipitation. Furthermore, we specifically quantify how the spatial aspect of our analysis reduces uncertainty 
and increases detection of statistical significance while also discovering results that quantify the complex interconnected 
relationships between climate drivers and seasonal precipitation.

Keywords Extreme value analysis · Spatial statistics · Station data · Natural variability · El Niño/Southern Oscillation · 
Pacific–North American pattern · North Atlantic Oscillation

1 Introduction

Globally, extreme precipitation in the observational record 
has been shown to contain nonstationarities over the past 
fifty to one hundred years (Hartmann et al. 2013; Donat et al. 
2016; Papalexiou and Montanari 2019), and this result has 
been verified in numerous studies over the contiguous United 
States (CONUS; Kunkel 2003; Easterling et al. 2017; Risser 
et al. 2019a). As such, there is a keen interest in attributing 
these trends to specific climate drivers, often anthropogeni-
cally-based (Min et al. 2011; Zhang et al. 2013; Fischer and 
Knutti 2015). However, an important component of detect-
ing trends and subsequently attributing them to anthropo-
genic climate change is an appropriate characterization of 
the natural variability inherent to extreme precipitation from 
the observational record. Furthermore, a robust quantifica-
tion of the natural variability in extreme precipitation from 
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the observational record is relevant for improving seasonal 
and subseasonal predictability as well as evaluating climate 
models’ ability to capture these relationships.

The literature contains a large number of studies that 
explore the relationship between climate variability and 
extreme precipitation, for example the El Niño–Southern 
Oscillation (ENSO; Gershunov 1998; Cayan et al. 1999; 
Gershunov and Cayan 2003; Cannon 2015), the Pacific 
Decadal Oscillation (PDO; McCabe and Dettinger 1999), 
the Atlantic Multidecadal Oscillation (AMO; Enfield et al. 
2001), the North Atlantic Oscillation (NAO; Durkee et al. 
2008), the Pacific North American pattern (PNA; Archam-
bault et al. 2008), and the Artic Oscillation (AO; Goswami 
et al. 2006). Almost all of these studies explore individual 
relationships between a single climate index and extreme 
precipitation; furthermore, such analyses often compare 
years from high/positive phases of the index versus low/
negative phases of the index (similar to the so-called “com-
posite analysis” in Zhang et al. 2010), which discretizes the 
fundamentally continuous relationships between the indi-
ces and extreme precipitation. Alternatively, Zhang et al. 
(2010) and Armal et al. (2018) develop statistical methods 
that simultaneously explore the joint relationships between 
a set of climate indices and extreme precipitation. Zhang 
et al. (2010) use a nonstationary extreme value analysis over 
CONUS wherein certain aspects of the generalized extreme 
value (GEV) distribution vary according to ENSO, NAO, 
and PDO. Armal et al. (2018) jointly explore the influence of 
ENSO, NAO, PDO, AMO, and global mean temperature on 
the frequency of extreme precipitation over CONUS, but do 
not explicitly evaluate the relationships between the drivers 
and extreme precipitation. Instead, these drivers are used as 
a proxy for natural variability in an assessment to determine 
where there is a meaningful anthropogenic influence on the 
frequency of extreme precipitation.

All of these studies maintain an underlying reliance on 
weather station data over CONUS, and while Zhang et al. 
(2010) and Armal et al. (2018) importantly consider joint 
relationships between climate variability and extreme pre-
cipitation their methods do not explicitly include a spatial 
component. As such, their results are limited to the weather 
station locations themselves and can neither resolve how 
these relationships translate to a high spatial resolution 
nor take advantage of the innate spatial coherence of these 
relationships. Resolving these relationships to a high spa-
tial resolution is critical for understanding the behavior of 
extreme precipitation at their native scales which is often 
what is most relevant for impacts, and failing to borrow 
strength spatially can result in an unnecessarily large signal-
to-noise ratio (SNR) in the resulting estimates (see, e.g., 
Risser et al. 2019b who achieve a reduction in the SNR by a 
factor of about two by using a spatial analysis). Furthermore, 
spatially-complete and spatially-resolved estimates of these 

relationships are needed for evaluating modern high-reso-
lution climate models (e.g., the HighResMIP experiment, 
Haarsma et al. 2016). In lieu of incorporating a spatial sta-
tistical approach to in situ measurements, one must rely on 
gridded daily products of precipitation for model evaluation 
(see, e.g., Wehner 2013). While gridded products are the 
most appropriate data source to use for evaluating climate 
models (Chen and Knutson 2008; Gervais et al. 2014), a 
number of recent analyses specifically quantify potential 
errors when using daily gridded products to characterize 
local extremes (King et al. 2013; Timmermans et al. 2019; 
Risser et al. 2019b).

To address all of these issues, in this paper we use long-
term records of high quality in situ measurements of daily 
precipitation to jointly consider seasonal relationships with 
a set of climate drivers. A critical component of our method 
is that we provide a single framework for characterizing the 
historical signal (anthropogenic forcing) and noise (natural 
variability) in seasonal mean and extreme precipitation. Our 
analysis utilizes the spatial extreme value analysis devel-
oped in Risser et al. (2019b) which allows us to explore 
the various relationships at their native scales. Furthermore, 
after accounting for a set of climate drivers, we develop a 
method for isolating the influence of individual drivers on 
the magnitude and frequency of extreme events using a pos-
terior predictive approach which statistically constructs cli-
mate scenarios for comparison. We then use a data-driven 
approach to quantify uncertainty and test the significance of 
individual relationships between climate drivers and extreme 
precipitation (following Risser et al. 2019a), resulting in a 
high-resolution “probabilistic” data product for each cli-
mate driver considered that quantifies its relationship with 
extreme precipitation and indicates where the relationship is 
statistically significant. The initial motivation (and primary 
contribution) of this work involves seasonal extreme precipi-
tation, but we also present results from a parallel analysis of 
seasonal mean precipitation and compare the mean versus 
extreme relationships.

Here, in Part I of this work, we focus on summarizing 
the natural variability of precipitation, with attribution of 
anthropogenic influences reserved for a separate analysis in 
Part II (Risser et al., “Quantifying the influence of anthro-
pogenic forcing on in situ measurements of seasonal and 
extreme daily precipitation”, in prep.). The detectability 
for natural modes of variability is mostly limited to DJF 
and SON, particularly for extreme precipitation, with the 
El Niño/Southern Oscillation, the Pacific–North American 
teleconnection pattern, and the North Atlantic Oscillation 
exhibiting the largest influence. It is important to note that 
we have at least some detection of statistical significance 
in all seasons in spite of extremely large (> 95%) back-
ground variability in both mean and extreme precipitation. 
In this paper, we define background variability to be any 
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residual variability not characterized by anthropogenic forc-
ings (e.g., greenhouse gases), other external forcings (e.g., 
solar or volcanic), and known large-scale modes of climate 
variability (e.g., ENSO or the PNA), e.g., due to chaos in 
the atmosphere; see Sect. 4.1 for further details. Finally, we 
identify several areas where our methodology provides new 
insights, including a discussion around the ways in which 
our approach improves upon single-station and composite 
analyses and arrives at new results that reveal the complex, 
interconnected nature of the relationships between climate 
drivers and precipitation.

The paper proceeds as follows: in Sect. 2, we describe and 
justify the modes of climate variability that we will consider 
in the paper, as well as the data sources (both in situ meas-
urements of precipitation and climate variability indices). 
Section 3 describes our statistical methods, and results are 
presented and discussed in Sect. 4. Section 5 concludes the 
paper.

2  Data sources and modes of climate 
variability

2.1  In situ measurements of precipitation

The weather station data used for this study consist of meas-
urements of daily precipitation from the GHCN-D database 
(Menne et al. 2012). Specifically, we use measurements from 
the n = 2504 weather station records (of 21,269 total) that 
have at least 66.7% non-missing daily values over December 
1, 1899 to November 30, 2017. Denote these stations as S ; 
the geographic distribution of the stations in S is shown in 
Fig. C.1. For each year t ∈ {1900,… , 2017} , each station 
� ∈ S , and each season (subscript suppressed for simplicity) 
we extract two quantities: 

1. the seasonal average daily precipitation rate Zt(�) (mm 
day−1 ), and

2. the seasonal maximum daily precipitation total Yt(�) 
(mm), also referred to as seasonal Rx1Day,

as long as there are at least 66.7% non-missing daily values 
for the station in the season/year of interest; otherwise, the 
extreme/mean measurement is set to NA. Note that the index 
t refers to a “season year” where, for example, the DJF sea-
son for 1950 is comprised of December 1949 to February 
1950. Also, while allowing any proportion of missing values 
(here, 1/3) will necessarily bias extremes downward, as long 
as the measurements are missing at random this will not sig-
nificantly influence estimates of return values (see Appendix 
C of Risser et al. 2019a). As an aside, we also considered 
analyzing extreme seasonal five-daily totals (often referred 
to as Rx5Day) and found that the results were consistent 

whether using either Rx1Day versus Rx5Day (see Appen-
dix 2 for further details).

2.2  Candidate climate variability indices

Based on the large body of literature summarized in Sect. 1, 
the set of climate variability indices that could be considered 
for our analysis are numerous. However, given that we seek 
to construct a single framework for evaluating a set of joint 
relationships between the indices and extreme precipita-
tion, a process-based a priori understanding is critical. This 
problem is exacerbated by the fact that there are a variety 
of ways to incorporate climate variability in a nonstationary 
extreme value analysis model (e.g., shifts and/or rescaling 
in the overall distribution) and, furthermore, given the large 
number of potential climate variability indices, it is impor-
tant to choose a set of candidate sources of variability to 
preserve degrees of freedom for fitting statistical models.

The set of candidate indices or drivers considered in 
our analysis are the natural logarithm of atmospheric car-
bon dioxide concentration, the ENSO Longitude Index, 
the Pacific/North American pattern, the Arctic Oscillation 
(sometimes referred to as the North Annular Mode), the 
Atlantic Multidecadal Oscillation, the North Atlantic Oscil-
lation, and the stratospheric aerosol optical depth due to 
volcanoes (denoted vSAOD). This set of indices have been 
carefully chosen based on the existing literature (see below) 
as representative of different relatively independent/uncor-
related sources of climate variability (e.g., Atlantic, Pacific, 
etc.). With the exception of the Atlantic Multidecadal Oscil-
lation, we have opted to include high-frequency modes of 
variability in order to optimize the year-to-year variance 
explained (as opposed to low-frequency modes of variability, 
which would optimize predictability). The high-frequency 
counterpart of the AMO is the Atlantic Meridional Mode 
(AMM): unfortunately, the AMM is only available back to 
1948 based on the fact that its calculation requires 10 m 
winds over ocean regions between 75 E and 15 W, 21 S to 
32 N. The AMO is correlated with the AMM on the sea-
sonal timescale during 1948-present (roughly 0.65 in DJF, 
MAM, and JJA and 0.8 in SON), and furthermore AMO is 
a reasonably suitable replacement for the AMM in explain-
ing variability in tropical cyclones (Huang et al. 2018). As a 
final note, our analysis quantifies joint relationships between 
this set of drivers and precipitation in each season; however, 
the DJF analysis excludes the Arctic Oscillation due to its 
strong coupling with (and high correlation with) the North 
Atlantic Oscillation (see also Rogers and McHugh 2002, 
who find that the NAO and the AO are largely inseparable 
during the winter months but form distinct regional patterns 
in the spring, summer, and autumn seasons).

In spite of the breadth of our analysis, there are a number 
of indices that are known to influence extreme precipitation 
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over CONUS that we have excluded from consideration. For 
example, Wang et al. (2017) introduce the so-called dipole 
index (DPI), which describes the amplitude of a quasi-sta-
tionary centered over CONUS. O’Brien et al. (2019) showed 
that in California, this mode of variability accounted for by 
far the largest fraction of extreme precipitation at the sea-
sonal timescale. However, the statistics of DPI appear to 
be fairly nonstationary over time (specifically, there was 
recently a sharp increase in its variance), which complicates 
its use as a non-anthropogenic source of natural variability. 
In addition, there are many indices with known relation-
ships to seasonal total and daily extreme precipitation, such 
as the Madden–Julian Oscillation (Jones 2000; Zhou et al. 
2012; DelSole et al. 2017), the quasi-biennial oscillation 
(Mundhenk et al. 2018; Gray et al. 2018), and ocean eddies 
(Sugimoto et al. 2017; Jan et al. 2017), but measurements 
of these indices are not available (or trustworthy) before the 
satellite era. Given that we set out to conduct a century-long 
analysis, these indices are excluded for now, although we 
plan to explore these sources of variability in a follow up 
analysis focused on a shorter time record.

It should be noted that because climate indices are 
obtained from various observational and reanalysis datasets, 
there could be non-negligible uncertainties in the indices 
used in this study. While one could develop a statistical anal-
ysis to account for such uncertainties, this is not straightfor-
ward and is beyond the scope of this paper. Instead, we note 
that we have only chosen indices that have low uncertainty 
between data sources (e.g., PNA and AO agree nicely from 
the different observational sources, while the QBO showed 
essentially complete disagreement). Furthermore, since 
any uncertainty in the indices would likely increase as one 
goes further back in time, we conducted a sensitivity analy-
sis which showed that the signals identified are consistent 
whether the analysis considers 1950-present or 1900-present 
(see Appendix 1). This result gives us confidence that the 
longer-term results included in the paper are robust to uncer-
tainties in the index values.

For each of the following indices, we obtain monthly 
mean values over 1900–2017 (as described below), and 
then construct the seasonal average time series for each of 
December–January–February (DJF), March–April–May 
(MAM), June–July–August (JJA), and September–Octo-
ber–November (SON). The seasonal average time series and 
seasonal correlations among the indices are provided in the 
Supplement (Figs. C.2 and C.3, respectively). The exception 
is atmospheric carbon dioxide, for which we use the same 
annually-averaged time series for each seasonal analysis.

2.2.1  Pacific sources of variability

El Niño–Southern Oscillation The most well-known and 
widely studied mode of natural variability stemming from 

the Pacific oceanic basin is known as the El Niño–South-
ern Oscillation (ENSO). ENSO is a coupled ocean–atmos-
phere interaction that cycles between its positive (El Niño) 
and negative (La Niña) phases every 2–7 years (Philander 
1985). During El Niño events, an initial equatorial East/Cen-
tral Pacific positive sea surface temperature (SST) anomaly 
weakens the tropical zonal SST gradient in turn reducing the 
strength of the Walker circulation and associated trade winds 
(Lindzen and Nigam 1987). The weakening of the Walker 
circulation further allows the positive SST anomaly to grow 
and migrate eastward resulting in a positive ocean–atmos-
phere feedback known as the Bjerknes feedback (Bjerknes 
1969). The anomalously warm SSTs proximal to the cli-
matologically cool waters of the East Pacific cold tongue/
upwelling region result in steep zonal SST gradients, which 
in turn, initiate and fuel strong and sustained deep convec-
tion (Hoerling et al. 1997; Sabin et al. 2013). The anomalous 
convective activity excites a quasi-stationary Rossby wave 
train that alters the configuration of the global atmosphere 
driving remote temperature and precipitation responses both 
near and far alike (Horel and Wallace 1981; Dai and Wigley 
2000; Alexander et al. 2002). In particular, for CONUS, the 
quasi-stationary northeast Pacific Aleutian low is strength-
ened resulting in enhanced stormtrack activity and vapor 
transport, which in turn, drive extreme precipitation and 
alter climatological precipitation patterns CONUS wide 
(Chiodi and Harrison 2013; Patricola et al. 2020). Dur-
ing El Niño years, wintertime intense precipitation occurs 
more frequently across the western US, the southwest, the 
Gulf Coast including Florida, and the Central US, while the 
intermountain west, the northern Great Plains and the Ohio 
river valley tend to experience the opposite (Patricola et al. 
2020; Carleton et al. 1990; Schubert et al. 2008; Larkin and 
Harrison 2005; Cannon 2015). To a large extent, ENSO 
impacts are most prominent during the boreal winter in the 
midlatitudes and extra-tropics, however, a summer signal in 
precipitation frequency has been detected across the north-
ern US (Higgins et al. 2007).

Across the large number of indices used to quantify 
ENSO, we choose to use the ENSO Longitude Index (ELI, 
Williams and Patricola 2018), which is a sea surface tem-
perature-based index that summarizes the average longitude 
of deep convection in the Walker Circulation. Unlike, e.g., 
the Niño3.4 index, ELI compactly characterizes the differ-
ent spatial patterns or “flavors” of observed and projected 
ENSO events. In addition to its connection to physical mech-
anisms, Patricola et al. (2020) show that the ELI maximizes 
the predictability of both mean and extreme precipitation 
over CONUS. This is because ELI characterizes the zonal 
shifts in deep convection that initiate the Rossby wave train 
response that influences mid-latitude precipitation. Monthly 
ELI values are calculated from 1854 to present based on the 
ERSSTv5 data set following Williams and Patricola (2018). 
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Large values of ELI correspond to El Niño conditions, while 
small values of ELI correspond to La Niña conditions.

Pacific/North American Pattern The leading mode of 
Pacific atmospheric variability is known as the Pacific/
North American (PNA) pattern and is defined as the second 
Rotated Empirical Orthogonal Function (EOF) of 500mb 
heights between 20◦ N and 90◦ N (Wallace and Gutzler 
1981; Barnston and Livezey 1987). The PNA is most active 
during the boreal winter, where in its positive phase is asso-
ciated with low pressure anomalies over the north Pacific 
and southeastern US and high pressure anomalies over 
the western US The PNA pattern is most active during the 
boreal winter, but can also alter precipitation patterns in the 
Spring and Autumn shoulder seasons. Leathers et al. (1991) 
undertake a comprehensive study of PNA-precipitation 
correlations across CONUS and find February/March anti-
correlation across the Ohio river valley and the Northeast, 
and similar anticorrelation across much of the western US/
Great Plains regions from OND season. Harding and Snyder 
(2015) found that the negative phase of the PNA strength-
ens the Great Plains low level jet which tends to enhance 
precipitation over the North Central US, and further, that 
negative PNA events less than one standard deviation are 
associated with the majority of heavy 5-day precipitation 
events. Furthermore, the negative PNA has been linked with 
the Midwest flood events of June–July 1993 and May–June 
2008 (Patricola et al. 2015).

The Pacific Decadal Oscillation (PDO) is another mode 
of Pacific variability that has been studied in depth with 
respect to its influence on precipitation over the US (e.g., 
Zhang et al. 2010). However, we chose to include the PNA 
in our analysis instead of PDO for several reasons. First, as 
a technical matter, the PDO shows strong seasonal correla-
tion in the winter and spring with PNA, and hence a statisti-
cal analysis should only include one of these indices (also, 
PDO is highly correlated with ENSO in all seasons). More 
importantly, Newman et al. (2016) show the PDO is not 
an independent mode but rather an integrator of independ-
ent signals at different spatio-temporal scales. The PNA, on 
the other hand, is an independent mode of variability (1st 
EOF of 500mb heights) and has direct physical linkage to 
extreme precipitation. The physical mechanisms by which 
PDO drives extreme precipitation are nebulous at best due 
to the characteristic timescales involved.

Measurements of the Pacific/North American pattern 
(PNA) are available from NOAA’s Climate Prediction 
Center (https ://www.cpc.ncep.noaa.gov/produ cts/preci p/
CWlin k/pna/month _pna_index 2.shtml ), but measurements 
are only provided from January, 1950 to present. We obtain 
measurements for the first part of the 20th century based on 
the 20th Century Reanalysis version 2 (20CRV2c; https ://
www.esrl.noaa.gov/psd/gcos_wgsp/Times eries /Plot/) which 
covers 1851–2011. Note that to make these two data sources 

comparable, we use NOAA’s monthly mean PNA index 
constructed using the modified pointwise method (see the 
above link for further detail). The monthly time series from 
these two data sources show strong agreement during their 
overlapping time periods (with a correlation of 0.965). The 
final monthly time series used in this analysis consists of the 
20CRV2c time series for 1900–1949, the arithmetic mean 
of the 20CRV2c and NOAA time series for 1950–2011, and 
the NOAA time series for 2012–2017.

2.2.2  Atlantic sources of variability

Atlantic Multidecadal Oscillation The Atlantic Multidecadal 
Oscillation (AMO) describes fluctuations in sea surface tem-
peratures between the north and equatorial Atlantic which 
occur on the order of 60–70 years, and feature a warm/cool 
northern/equatorial Atlantic in the positive AMO phase 
and the opposite pattern in the negative phase (Schlesinger 
and Ramankutty 1994; Kerr 2000). The AMO is most often 
defined as an area averaged, detrended, 10-year low-pass 
filtered time-series of north Atlantic SSTs, which allow the 
low-frequency character to be separated from seasonal to 
interannual SST fluctuations which can be introduced by 
atmospheric forcing (Schlesinger and Ramankutty 1994; 
Enfield et al. 2001). However, we note that there are differ-
ent methods to detrend SSTs and thus quantify the AMO in 
the observational records (Frankignoul et al. 2017). While 
calculation methods can slightly affect the magnitudes of 
observed AMO, the timing of observation-based AMO 
phase shifts is relatively insensitive to calculation methods 
(Enfield and Cid-Serrano 2010). Here we use the traditional 
AMO index as defined by Enfield et al. (2001) because it 
is relatively convenient to use (Zhang et al. 2019) and well 
documented by NOAA’s Earth System Research Labora-
tory. Many studies have focused on quantifying the various 
climatic impacts stemming from the AMO. For example, 
McCabe et al. (2004) found that the positive phase of the 
AMO increased the probability for 20-year drought fre-
quency across most of CONUS, but in particular the south-
west and Great Lakes regions. Enfield et al. (2001) found 
that the Mississippi River outflow and the Lake Okeechobee 
(Florida) inflow vary by 10% and 40% respectively between 
the positive and negative phases of the AMO with the sea-
sonal correlation with precipitation highest in the summer. 
Further, they found that the precipitation patterns associated 
with ENSO are also affected by the AMO phase, motivat-
ing the need for a joint analysis among these two modes of 
variability.

A time series of the AMO is available from NOAA’s 
Earth System Research Laboratory (https ://www.esrl.noaa.
gov/psd/data/times eries /AMO/) based on the monthly 
Kaplan sea surface temperature (SST) data set. Specifi-
cally, the AMO is calculated as the area-weighted average 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/month_pna_index2.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/month_pna_index2.shtml
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Plot/
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Plot/
https://www.esrl.noaa.gov/psd/data/timeseries/AMO/
https://www.esrl.noaa.gov/psd/data/timeseries/AMO/
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SST anomaly over the North Atlantic ocean (approximately 
0 ◦ N to 70◦ N) with the climate change signal removed by 
detrending the averaged SST data.

North Atlantic Oscillation The North Atlantic Oscilla-
tion (NAO) is an internal mode of atmospheric variability 
describing a meridionally oriented dipole pressure pattern 
centered over the north Atlantic ocean (Hurrell et al. 2003). 
The NAO is often quantified using a station-based difference 
in sea level pressures over the north Atlantic or a regionally 
defined EOF analysis. Results of the EOF-based descrip-
tion typically yield the NAO as the first leading mode of 
variability of sea-level pressures (or other levels) in the 
northern hemisphere (Hurrell and Deser 2010; Nigam and 
Baxter 2015). Regardless of how the NAO is defined, results 
indicate that there is no preferred timescale on which the 
NAO varies and thus the NAO can show a large amount of 
seasonal variability as well as interannual and decadal vari-
ability (Hurrell and Deser 2010). Due to its center of action 
over the north Atlantic, the NAO’s strongest climatological 
impacts affect Europe, in the same way the PNA center of 
action being over the Pacific primarily affects North Amer-
ica. However, studies have shown that the NAO can have 
notable impacts across North America, particularly from the 
central US to the eastern seaboard. For example, the nega-
tive NAO phase is associated with anomalous northerly flow 
over the eastern US and lower atmospheric pressures con-
ducive to increased storminess (Wallace and Gutzler 1981; 
Hurrell 1995). Similarly, Hartley and Keables (1998) found 
that the negative phase of the NAO can drive exceptionally 
high snowfall totals during New England winters.

NAO index values (from Jones et al. 1997) were obtained 
from the web site of the Climate Research Unit (CRU) of 
the University of East Anglia (https ://cruda ta.uea.ac.uk/
cru/data/nao/), which provides monthly values from 1821 
to present.

2.2.3  Long‑term secular trends

The natural logarithm of atmospheric carbon dioxide con-
centration is chosen as a physically-based covariate for 
describing long-term secular trends in the distribution of 
mean and extreme precipitation due to the radiative forc-
ing of the climate system by anthropogenic greenhouse 
gases. As has been well-established since the seminal work 
by Arrhenius (1897), the radiative forcing by and global 
mean temperature response to increasing CO2 , the primary 
anthropogenic greenhouse gas (IPCC 2013), is proportional 
to the logarithm of the concentration of CO2 (Etminan et al. 
2016). Globally-averaged or local surface temperature is 
another covariate commonly used to quantify changes in 
seasonal precipitation. However, temperature-based covari-
ates include both natural and anthropogenic forcings, while 
atmospheric CO2 reflects a purely human influence. Since 

we explicitly include a set of natural modes of variability 
in the analysis, it makes more sense to characterize trends 
via a covariate that isolates the anthropogenic effect on the 
global climate system.

The measurements of atmospheric carbon dioxide ( CO2 ) 
concentrations are a combined time series of data used as 
input for climate models (from the International Institute for 
Applied Systems Analysis or IIASA; see https ://tntca t.iiasa 
.ac.at/RcpDb ) and the record from the Mauna Loa Observa-
tory (MLO). The MLO measurements are the most widely 
used data set of CO2 concentrations, but unfortunately these 
measurements begin in 1958. The IIASA values, on the 
other hand, cover a much longer record (starting in 1765) 
and are also based on observations, although the IIASA only 
provides annually averaged measurements. The annually-
averaged MLO time series and the IIASA values are almost 
identical for their overlapping period (with a Pearson cor-
relation of > 0.99 ), and so we use the IIASA values for 
1900–1957 and the arithmetic mean of the two time series 
for 1958–2017. Note that unlike the other indices, which 
consider seasonal average time series, for CO2 we use the 
same annual time series for each seasonal analyses.

2.2.4  Other sources of variability

Arctic oscillation (AO). The AO is defined as the non-sea-
sonal leading EOF mode of sea level pressures poleward 
of 20◦ N (Thompson and Wallace 2000). The AO positive 
phase features negative surface pressure anomalies and 
enhanced westerly winds creating a strong polar vortex. The 
negative AO phase results in the opposite pattern thereby 
leading to a weak polar vortex, which is associated with 
cold air outbreaks where cold polar air masses can more 
easily advect south to the midlatitudes. In addition to the 
AO causing surface temperature impacts, it is also associated 
with precipitation impacts as well. Guan and Waliser (2015) 
found that during the AO negative phase, wintertime atmos-
pheric river (AR) frequency is enhanced in the subtropical 
Pacific offshore of the western US, in turn driving increased 
AR related precipitation in California. Further, during the 
negative AO phase, increased summertime precipitation 
occurs throughout the central US due to an equatorward shift 
of the eddy driven jet (Hu and Feng 2010).

Measurements of the Arctic oscillation are available from 
NOAA’s National Centers for Environmental Information 
(https ://www.ncdc.noaa.gov/telec onnec tions /ao/), but unfor-
tunately the measurements are only provided from January, 
1950 to present. To obtain measurements for the first part 
of the 20th century, we use the AO index calculated from 
the 20th Century Reanalysis version 1 (20CR; from https ://
www.esrl.noaa.gov/psd/gcos_wgsp/Times eries /Plot/) which 
covers 1871–2012. The monthly time series from these two 
data sources show strong agreement during their overlapping 

https://crudata.uea.ac.uk/cru/data/nao/
https://crudata.uea.ac.uk/cru/data/nao/
https://tntcat.iiasa.ac.at/RcpDb
https://tntcat.iiasa.ac.at/RcpDb
https://www.ncdc.noaa.gov/teleconnections/ao/
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Plot/
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Plot/
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time periods (with a correlation of 0.987). The final monthly 
time series used in this analysis consists of the 20CR time 
series for 1900–1949, the arithmetic mean of the 20CR and 
NOAA time series for 1950–2012, and the NOAA time 
series for 2013–2017.

Stratospheric aerosol optical depth due to volcanoes 
(vSAOD) Volcanic eruptions are a highly intermittent but 
important type of variability that affect global precipita-
tion patterns. By introducing reflective aerosols into the 
stratosphere that persist for several years, volcanic erup-
tions reduce the amount of sunlight absorbed by the cli-
mate system, cool the Earth’s surface, and thereby reduce 
the energy available for evaporation (Robock 2000). The 
resulting reduction in global land precipitation and increased 
incidence of droughts have been detected for volcanic erup-
tions during the 20th century (Gillett et al. 2004; Lambert 
et al. 2005) including the most recent major eruption by Mt. 
Pinatubo in 1991 (Trenberth and Dai 2007). The appropri-
ate index to characterize the radiative forcing and resulting 
reduction in global mean surface temperature is the aerosol 
optical depth (AOD), a unitless measure of the amount of 
light reflected by stratospheric aerosols. For the AODs< 1 
typical of volcanic eruptions, to a good approximation the 
reduction in sunlight is proportional to AOD.

For the first part of the historical record, we utilize the 
AOD data set from Sato et al. (1993) which provides meas-
urements of global monthly mean AOD at 550nm from Janu-
ary, 1850 to October, 2012 (data accessed from https ://data.
giss.nasa.gov/model force /strat aer/). A more up-to-date time 
series of volcanic SAOD is provided by Schmidt et al. (2018) 
and Mills et al. (2016) (data provided via personal communi-
cation with Dr. Anja Schmidt), which covers January, 1975 
to December, 2015. Finally, for the last 2 years (2016–2017), 
we use a constant measurement of 0.004, because in recent 
years the global average is approximately 0.004 (Schmidt 
et al. 2018; Friberg et al. 2018) and the volcanic activity 
in 2016 and 2017 has been at similar levels as the previous 
years. As with the other indices, we take the arithmetic mean 
of the monthly time series for the overlapping time window 
(January, 1979 to October, 2012).

3  Statistical methods

3.1  Spatial extreme value analysis

We now outline a framework for characterizing changes over 
time in the climatology of extreme precipitation, as well as 
quantifying uncertainty and determining statistical signifi-
cance. The core of the methodology used here is the spa-
tial extreme value analysis outlined in Risser et al. (2019b), 
which enables a characterization of the spatially-complete 
climatology of extreme precipitation based on measurements 

from irregularly observed weather stations. Two features are 
novel about this approach: first, one can estimate the dis-
tribution of extreme precipitation even for locations where 
no in situ measurements are available; second, the analysis 
can be applied even for a large network of weather stations 
over a heterogeneous spatial domain like CONUS, which is 
critical for the results in this paper. Furthermore, the under-
lying Gaussian process models provide a natural method for 
resolving the information provided by a set of in situ meas-
urements to their native scales (i.e., a high-resolution grid) 
in such a way that the spatial length scale of the interpolation 
varies across the geographic domain (i.e., we use a second-
order nonstationary covariance function; see Risser 2016).

For a full description of the methodology used, we refer 
the reader to Risser et al. (2019b). (Note that all of the 
following is applied separately to each 3-month season.) 
In summary, the method consists of two steps: first, one 
obtains estimates of the climatological features of extreme 
precipitation in each season based on measurements from 
an individual weather station using the generalized extreme 
value (GEV) family of distributions. When considering the 
approximately 90 daily measurements in a given season, the 
cumulative distribution function (CDF) of Yt(�) (which is 
the seasonal maximum daily precipitation measurement in 
year t at station � ) can be well-approximated by a member 
of the GEV family

(Coles et al. 2001, Theorem 3.1.1, page 48), defined for 
{y ∶ 1 + 𝜉t(�)(y − 𝜇t(�))∕𝜎t(�) > 0} . The GEV family of 
distributions (1) is characterized by three space-time statis-
tical parameters: the location parameter �t(�) ∈ R , which 
describes the center of the distribution; the scale parameter 
𝜎t(�) > 0 , which describes the spread of the distribution; 
and the shape parameter �t(�) ∈ R . The shape parameter 
�t(�) is the most important for determining the qualitative 
behavior of the distribution of daily rainfall at a given loca-
tion. If 𝜉t(�) < 0 , the distribution has a finite upper bound; if 
𝜉t(�) > 0 , the distribution has no upper limit; and if �t(�) = 0 , 
the distribution is again unbounded and the CDF (1) is inter-
preted as the limit �t(�) → 0 (Coles et al. 2001).

Technically, the GEV distribution is only the asymptotic 
(limiting) distribution for the sample maximum as the block 
size approaches infinity. In practice, of course, one has finite 
sample sizes, and in a block maxima framework there is a 
fundamental tradeoff between small block sizes (resulting 
in increased bias but smaller variance) and large block sizes 
(leading to a better approximation but larger variance). In 
this work, we choose seasonal blocks of approximately 90 
measurements; however, a 90-day season may have many 

(1)

G�,t(y) ≡ P(Yt(�) ≤ y) = exp

{
−

[
1 + �t(�)

(
y − �t(�)

�t(�)

)]−1∕�t(�)}

https://data.giss.nasa.gov/modelforce/strataer/
https://data.giss.nasa.gov/modelforce/strataer/
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fewer “independent” measurements of precipitation, due to 
either zero rainfall days, missing data, or the temporal auto-
correlation innate to a time series of daily weather. When 
limiting oneself to return periods well within the range of the 
data (we later consider 10-year return values, which satisfies 
this criteria), Risser et al. (2019a) (Appendix C) verify that 
the GEV approximation is appropriate for seasonal maxima, 
in the sense that the bias is small and the bootstrap uncer-
tainties are well-calibrated, even when the number of inde-
pendent measurements of daily precipitation in a season is 
quite small.

While many studies subset the observational record to 
focus on years with a specific phase of a climate variability 
index (e.g., the composite analysis in Zhang et al. 2010), 
we instead utilize the entire observational record to both 
include all phases of each index and also disentangle the 
joint relationships between the various indices and extreme 
precipitation. Our approach to relating year-to-year changes 
in the seasonal CDF of extreme precipitation to the candi-
date set of climate variability indices identified in Sect. 2 
(and similar to the analyses in Zhang et al. 2010; Risser and 
Wehner 2017) is to explicitly model changes in the GEV 
parameters as varying according to log CO2 , ELI, AO, PNA, 
vSAOD, AMO, and NAO. In what follows, we assume that 
the center of the extreme value distribution changes linearly 
with these modes of variability while the scale and shape 
parameters are fixed over time; all quantities vary spatially 
over the domain. In other words, we assume

where [X]t indicates the measurement of index X in year t. 
We henceforth refer to �0(�) , {�j(�) ∶ j = 1,… , 7} , �(�) , and 
�(�) as the climatological coefficients for location � , as these 
values describe the climatological distribution of extreme 
precipitation in each year. Note that modeling changes in 
the center of the GEV distribution in this way is related to 
multiple (mean) regression. While statistically modeling the 
shape parameter as a constant over time is common (e.g., 
Cooley et al. 2007; Risser and Wehner 2017), we choose to 
also model the scale parameter as constant over time (unlike 
Zhang et al. 2010). The various climate variability indices 
clearly may influence the width of the GEV distribution for 
some parts of CONUS; however, overall there is a “degrees 
of freedom” consideration wherein adding statistical param-
eters to an analysis with a fixed amount of data results in a 
loss of efficiency in estimation. Furthermore, related attribu-
tion studies opt for a more parsimonious representation that 
does not attempt to characterize changes in the GEV scale 

(2)

�t(�) =�0(�) + �1(�)[log CO2]t + �2(�)[ELI]t + �3(�)[AO]t

+ �4(�)[NAO]t + �5(�)[PNA]t + �6(�)[AMO]t + �7(�)[vSAOD]t,

�t(�) =�(�),

�t(�) =�(�),

parameter (Min et al. 2011; Westra et al. 2013; Zhang et al. 
2013). To specifically assess the choice of how to model the 
scale parameter, we conducted a sensitivity analysis wherein 
the scale was allowed to change log-linearly with all the 
climate drivers. We then assessed the quality of this statisti-
cal model versus the constant scale model as defined in Eq. 
(2) via the Akaike Information Criteria (AIC), which is a 
metric for determining which statistical model best describes 
variability in observed data, as well as the proportion of 
variance explained (see Sect. 3.3). The results are shown 
in Table D.1; overall, the constant scale statistical model 
is better in terms of AIC, and also explains essentially the 
same amount of variability. Therefore, we choose to focus 
on changes in the center of the GEV distribution in this 
analysis.

Once we have estimated the climatological coefficients 
independently at each station, the second step of our analysis 
is to apply a spatial statistical approach using second-order 
nonstationary Gaussian processes to infer the underlying 
climatology over a fine grid via kriging. This approach is 
applied to each climatological coefficient separately and 
yields gridded fields of best estimates of the climatological 
coefficients, denoted

where G is the 0.25◦ grid of M = 13073 grid cells over 
CONUS. These gridded estimates summarize the infor-

mation contained in the seasonal maxima regarding their 
relationship with the various climate indices and pre-
sent this information at the native scales of precipitation 
extremes (i.e., at a high resolution). While the coefficients 
{�̂j(�) ∶ j = 1,… , 7} could be used to infer the strength of 
the relationship between each index and extreme precipita-
tion, we instead quantify how each index individually influ-
ences the distribution of extremes in two ways: first, by 
exploring differences in 10-year return values (following, 
e.g., Risser et al. 2019a), and second, by exploring changes 
in the return probability of a fixed magnitude event (i.e., 
the risk ratio; see for example Risser and Wehner 2017). 
These two metrics evaluate changes in the magnitude and 
frequency, respectively, of extreme events, and provide use-
ful insights in to how the climate indices influence extremes. 
We now provide further details on each analysis.

For the first comparison, we compare estimated return 
values for a large versus small value of an individual 

(3)
{
�̂0(�), {�̂j(�) ∶ j = 1,… , 7}, �̂(�), �̂(�) ∶ � ∈ G

}
,
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climate index while holding all other indices constant. In 
other words, we use the fitted statistical model and best 
estimates in Eq. (3) to construct artificial climate “sce-
narios” by plugging in the desired climate index values. 
Let �k− and �k+ represent vectors of climate index values 
where index k ∈ {ELI, AO,NAO, PNA,AMO, vSAOD} is 
set to its seasonal 5th and 95th climatological value (over 
the entire 1900–2017 period), respectively, and all other 
indices are fixed at their seasonal climatological mean; this 
isolates the effect of an individual driver while simultane-
ously accounting for variability in precipitation due to all 
other drivers in the analysis. The change in return value of 
interest for index k at grid cell � is denoted

where w�(�(⋅)) is the 10-year return value at grid cell � when 
the climate indices are fixed at the conditions specified by 
�(⋅) . The return value specifies that the seasonal Rx1Day will 
exceed w�(�(⋅)) once every 10 years, on average; so, �k(�) 
describes how the magnitude of a fixed probability extreme 
daily event changes based on individual drivers. Given the 
form of the CDF in (1), we can write down a formula for our 
best estimate of the return period ŵ�(�(⋅)) in terms of the best 
estimates of the climatological coefficients from (3):

(Coles et al. 2001), where �̂�(⋅)
(�) is the estimated location 

parameter from (2) using the best estimates from (3) evalu-
ated at the conditions specified by �(⋅).

For the second comparison, we use the so-called risk 
ratio to summarize how each index individually influences 
the probability of a fixed magnitude extreme event. The 
risk ratio is actually a ratio of probabilities, each of which 
describes the likelihood of a fixed event occurring in a 
particular climate scenario; the risk ratio is often used in 
event attribution studies to compare a world with anthro-
pogenic influences (e.g., greenhouse gas emissions) ver-
sus a world without these forcings (National Academies of 
Sciences et al. 2016). Instead, we use the risk ratio as 
a way to compare the probabilities of experiencing an 
extreme precipitation event for a large versus small value 
of an individual climate index while holding all other indi-
ces constant; again, this isolates the effect of an individual 
driver while simultaneously accounting for variability in 
precipitation due to all other drivers in the analysis. As 
before, we use vectors of climate index values �k− and �k+ 
to summarize high versus low values of index k; the risk 
ratio for index k at grid cell � is then

(4)�k(�) = w�(�k+) − w�(�k−),

(5)

ŵ�(�(⋅)) =

{
�̂�(⋅)

(�) −
�̂(�)

�̂(�)

[
1 − {− log(1 − 1∕10)}−�̂(�)

]
, �̂(�) ≠ 0

�̂�(⋅)
(�) − �̂(�) log{− log(1 − 1∕10)}, �̂(�) = 0,

where p�(�(⋅),w�) is the probability of the seasonal max-
ima exceeding a threshold w� at grid cell � when the cli-
mate indices are fixed at the conditions specified by �(⋅) . If 
RRk(�) > 1 , this means that an extreme event is more likely 
for large values of index k; if RRk(�) < 1 , this means that 
an extreme event is more likely for small values of index 
k. If RRk(�) = 1 , then an extreme event is equally likely for 
small and large values of index k, implying that the influ-
ence of index k on extreme precipitation is negligible. Given 
that p�(�(⋅),w�) is the inverse of the return period, we can 
write down a formula for our best estimate of the return 
probability p̂�(�(⋅),w�) in terms of the best estimates of the 
climatological coefficients from (3):

(Coles et al. 2001), where again �̂�(⋅)
(�) is the estimated loca-

tion parameter from (2) using the best estimates from (3) 
evaluated at �(⋅) . The threshold w� in (7) depends on loca-
tion; for this value we use the climatological 10-year return 
value:

where � is a vector of the 1900-2017 average climate index 
values. In other words, w� represents a “typical” 10-year 
event over 1900-2017 at each spatial location �.

While we have included the natural logarithm of CO2 
in (2) to account for long-term secular trends in the dis-
tribution of extreme precipitation, in this paper we focus 
on characterizing the natural variability due to the other 
climate indices considered and specifically do not explore 
changes in return values for the effect of anthropogenic cli-
mate change (as is done in, e.g., Risser and Wehner 2017). 
Given that there are non-negligible trends in extreme 
precipitation over the past several decades (Hartmann 
et al. 2013; Donat et al. 2016; Papalexiou and Montanari 
2019; Kunkel 2003; Easterling et al. 2017) it is important 
to account for long-term trends in our statistical model. 
A thorough analysis of the anthropogenic influence on 
extreme precipitation in this framework is presented in 
Part II of this methodology (Risser et al., “Quantifying 
the influence of anthropogenic forcing on in situ meas-
urements of seasonal and extreme daily precipitation”, in 
prep.).

(6)RRk(�) =
p�(�k+,w�)

p�(�k−,w�)
,

(7)

p̂�(�(⋅),w�) =

⎧⎪⎨⎪⎩

1 − exp

�
−
�
1 − �̂(�)(�̂�(⋅)

(�) − w�)∕�̂(�)
�−1∕�̂(�)�

, �̂(�) ≠ 0,

1 − exp
�
− exp

�
(�̂�(⋅)

(�) − w�)∕�̂(�)
��

, �̂(�) = 0

w� =

{
�̂
�
−

�̂(�)

�̂(�)

[
1 − {− log(1 − 1∕10)}−�̂(�)

]
, �̂(�) ≠ 0

�̂
�
− �̂(�) log{− log(1 − 1∕10)}, �̂(�) = 0,
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The best estimates of the climatological coefficients 
in (3) fully specify our best estimates of the change in 
return values, �̂k(�) , as well as the risk ratios, R̂Rk(�) , for 
k ∈ {ELI,… , vSAOD} (and separately for each season). 
However, we still need to quantify uncertainty in these esti-
mates and conduct a hypothesis test at each grid cell, which 
furthermore involves accounting for the multiplicity in testing. 
For each of these components we utilize methodology from 
Risser et al. (2019a): the block bootstrap is used to quantify 
uncertainty in the estimated change in return values; a reshuf-
fling or permutation approach is used to conduct hypothesis 
testing; and a variant of the Benjamini and Hochberg (1995) 
procedure (described in Risser et al. 2019a) is used to account 
for multiplicity in testing. One slight variation on the hypoth-
esis testing procedure should be noted: in this analysis, we 
actually set out to determine the significance of each individ-
ual climate variability index (unlike Risser et al. 2019a, who 
seek to determine significant overall trends). In other words, 
for k ∈ {ELI,… , vSAOD} , the hypotheses of interest are

for the change in return values and

for the risk ratios. For index k, the null distribution for both 
(8) and (9) is obtained by reshuffling the index values over 
1900 to 2017 (which breaks any relationship between the 
index and extreme precipitation) but maintaining the original 
values of all other indices (maintaining any residual relation-
ship between the other indices and extreme precipitation). In 
this way, we can isolate the influence of index k and gener-
ate the correct null distribution. As in Risser et al. (2019a), 
we determine the statistical pointwise significance of the 
risk ratios for both “low” (i.e., controlling the rate of false 
discoveries at q = 0.33 ) and “high” (i.e., controlling the rate 
of false discoveries at q = 0.1 ) confidence statements. These 
thresholds for significance are chosen as reasonable limits 
for bounding the proportion of type I errors, with q = 0.33 
yielding a less conservative statement and q = 0.1 yielding 
a more conservative statement.

3.2  Spatial analysis of seasonal total precipitation

A parallel analysis is conducted to similarly identify the 
time-varying climatology of seasonal mean precipitation. 
Define Zt(�) to be the average daily precipitation rate (mm 
day−1 ) in year t at station � ∈ S ; then, using a multiple 
regression framework, we can statistically model

(8)H0(�) ∶ �k(�) = 0 vs. H1(�) ∶ �k(�) ≠ 0

(9)H0(�) ∶ RRk(�) = 1 vs. H1(�) ∶ RRk(�) ≠ 1

where �0(�) is an intercept term that describes the average 
precipitation rate when all of the indices are fixed at zero, the 
{�j(�) ∶ j = 1,… , 7} are regression coefficients that describe 
changes in the mean precipitation rate, and �t(�) is an error 
term assumed to be temporally independent and identically 
distributed as Gaussian with mean zero and variance �2(�) , 
i.e., �t(�)

iid
∼N(0, �2(�)) . Applying a similar analysis as Risser 

et al. (2019b) to the seasonal mean precipitation rate, we can 
again first estimate the regression coefficients at each station 
and then apply the same spatial statistical model to resolve 
best estimates of the coefficients over a high-resolution 
0.25◦ grid over CONUS. As with the extremes analysis, we 
conducted a sensitivity analysis wherein the residual error 
standard deviation �(�) was allowed to change log-linearly 
with all the climate drivers and then assessed the quality 
of this statistical model versus the constant error variance 
model as defined in Eq. (10) via the Akaike Information 
Criteria (AIC) and the proportion of variance explained (see 
Sect. 3.3). The results are also shown in Table D.1; over-
all, the constant residual error standard deviation statistical 
model is better in terms of AIC, and also explains essentially 
the same amount of variability. Therefore, we maintain the 
constant error model for the remainder of this analysis.

As with the extremes analysis, while we could use the 
estimated coefficients {�̂j(�) ∶ j = 1,… , 7;� ∈ G} to sum-
marize the various relationships, we instead quantify the 
change in seasonal totals for a large versus small value 
of each index while holding all other indices constant. In 
other words, we again use the results to construct “statisti-
cal” climate scenarios by plugging in the desired climate 
index values. Again let �k− and �k+ represent vectors of 
climate index values where index k ∈ {ELI,… , vSAOD} is 
set to its seasonal 5th and 95th climatological value (i.e., 
over the entire record), respectively, and all other indices 
(including the CO2 ) are fixed at their seasonal climatologi-
cal mean. Our best estimate of the seasonal total for the 
statistical climate scenario defined by �(⋅) at grid cell � 
is m̂�(�(⋅)) = �(⋅)�̂(�) , where �̂(�) =

(
�̂0(�),… , �̂7(�)

)
 , and 

we quantify the change in seasonal totals using a simple 
difference:

Our hypotheses of interest are now

which we can test using a similar reshuffling or permutation 
framework as described in Sect. 3.1 to quantify uncertainty, 

(10)

Z
t
(�) = �0(�) + �1(�)[logCO2]t + �2(�)[ELI]t

+ �3(�)[AO]t + �4(�)[NAO]t + �5(�)[PNA]t

+ �6(�)[AMO]
t
+ �7(�)[vSAOD]t + �

t
(�),

(11)�̂k(�) = m̂�(�k+) − m̂�(�k−).

H0(�) ∶ �k(�) = 0 vs. H1(�) ∶ �k(�) ≠ 0,
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ascribe statistical significance, and account for multiplicity 
in testing.

3.3  Proportion of variance explained

In spite of the fact that we have carefully chosen a candidate 
set of seven climate variability indices to explore in this 
paper, the point remains that the global climate system has 
many more degrees of freedom for year-to-year variability 
seasonal mean and extreme precipitation than explained by 
the indices considered here. As such, it is important to quan-
tify the proportion of variability explained by the statistical 
models specified by (2) and (10). For the seasonal mean 
analysis using multiple regression, it is straightforward to 
summarize this quantity using the usual R2 , defined for each 
station � ∈ S as R2(�) = 1 − SSE(�)∕SST(�) , where

is the total sum of squares (total variability) in the seasonal 
mean precipitation and

is the sum of squared error between the data ( Zt(�) ) and the 
predicted seasonal mean ( ̂Zt(�) ) from the statistical model 
given by (10). For the GEV analysis, we can instead use a 
likelihood-ratio based metric of R2 (Magee 1990), defined 
for each station � ∈ S as

where L̂N(�) is the GEV likelihood for the nonstationary 
model defined in (2) and L̂S(�) is the GEV likelihood for a 
stationary model fit to the same seasonal maxima. We use 
the smoothed coefficients to calculate both R2 values given 
that we have a moderate number of covariates for a rela-
tively small data set (at most T = 118 years) and using the 
independently estimated coefficients would likely result in 
inflated R2 from overfitting the data. For the seasonal mean 
and extreme analyses, we actually calculate R2 values for the 
“full” models (2) and (10) as well as individual driver mod-
els. This allows us to get a sense of the variability explained 
by each individual driver as well as the full statistical model.

4  Results

Rather than discuss the seasonal mean and extreme relation-
ships one by one, we instead focus on how our methodology 
provides new insights into quantifying relationships between 

SST(�) =

T∑
t=1

(
Zt(�) −

1

T

T∑
t=1

Zt(�)

)2

SSE(�) =

T∑
t=1

(
Zt(�) − Ẑt(�)

)2

R2
LR
(�) = 1 − exp

{
−
2

T
log[L̂N(�)∕L̂S(�)]

}
,

climate drivers and precipitation. First, in Sect. 4.1, we sum-
marize and discuss variability explained in the underlying 
precipitation data by the statistical analysis of responses to 
climate variability modes. Then, recall that in Sect. 1 we 
identified two limitations of related papers that explore 
relationships between observed precipitation and climate 
variability indices: (a) conducting single-station analyses, 
and (b) using composite analyses. In Sects. 4.2 and 4.3, 
respectively, we specifically identify how our methodol-
ogy improves upon these two limitations and yields unique 
value-added information, including results that quantify the 
ways in which the relationships between climate drivers and 
precipitation are more complicated than might have been 
expected.

Maps of the relationships between each climate driver and 
seasonal precipitation for all seasons, indices, and metrics 
(mean and extreme), including significance, are shown in 
Figs. 1, 2, and 3 . The seasonal 5th and 95th percentile index 
values used to create the maps are given in Table D.2. Fig-
ure 1 shows the isolated change in the magnitude of 10-year 
return values for daily precipitation (given in mm) for each 
index as quantified by (4); Fig. 2 shows the isolated multipli-
cative change in the probability of the climatological 10-year 
return value (i.e., the risk ratio), specific to each index, as 
quantified by (6); and Fig. 3 shows the isolated change in 
seasonal total precipitation (mm) for each index as quanti-
fied by (11). In Figs. 1 and 3 , green values indicate locations 
where extremes/means are larger for large/positive values of 
each index; brown values indicate locations where extremes/
means are larger for small/negative values of each index. 
In Fig. 2, purple values indicate locations where extremes 
are more likely for large/positive values of each index; red 
values indicate locations where extremes are more likely for 
small/negative values of each index.

4.1  Variability explained by statistical models

The goal of the R2 analysis outlined in Sect. 3.3 is to deter-
mine how much of the year-to-year variability in seasonal 
mean and extreme precipitation from the GHCN record is 
explained by the modes of variability identified in Sect. 2.2, 
both collectively (i.e., for the trend models in Eqs. (2) and 
(10)) and individually (i.e., for trend analyses that only use 
a single driver; these individual relationships are explicitly 
not the focus of this paper, but are included for reference). 
The various R2 values are shown in Table 1 for each season, 
where the reported numbers are averaged over all n = 2504 
CONUS weather stations. Overall, the proportion of vari-
ance explained is higher for the seasonal total analysis rela-
tive to the extremes analysis, with the most predictability 
in DJF and SON. While ELI and PNA generally have the 
largest variance explained individually, it is noteworthy 
that the proportion of variance explained is very low for 
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both the individual drivers and the full statistical analysis 
of responses to climate variability modes. For the seasonal 
total analysis, between 7 and 11% of the year-to-year vari-
ability is explained by our trend model; for the seasonal 
extremes analysis, just 3–5% of the year-to-year variabil-
ity is explained. Of course, the variance explained by the 
modes of variability (individually and collectively) varies 
over CONUS: for example, the statistical model with all 
drivers explains over 20% of the variance in DJF seasonal 
total precipitation in the Ohio and Mississippi River Val-
leys but less than 3% in the Mountain West (see Fig. C.4 in 
the Appendix). Nonetheless, the CONUS averages suggest 
that, overall, a relatively small proportion of year-to-year 
variability is explained by the chosen set of climate indices.

To frame the following discussion, it will be helpful to 
define two terms that partition the year-to-year variability 
in seasonal mean and extreme precipitation. First, define 
driven variability to characterize year-to-year variability due 
to anthropogenic forcings (e.g., greenhouse gases), other 

external forcings (e.g., solar or volcanic), and known large-
scale modes of climate variability (e.g., ENSO or the PNA). 
Second, define background variability to be any remaining 
residual variability not characterized by the aforementioned 
modes (e.g., due to chaos in the atmosphere). The idea here 
is that the total year-to-year variability in seasonal mean and 
extreme precipitation would be the sum of the driven and 
background variability.

The statistical analyses defined by (2) and (10) assume 
that the set of drivers considered as inputs to the statistical 
models (i.e., CO2 , ELI, AO, NAO, PNA, AMO, and vSAOD) 
appropriately characterize the driven variability in precipita-
tion from the GHCN record. In other words, the R2 values 
for the “All drivers” row of Table 1 are our best estimate 
of the proportion of driven variability in the observations. 
The immediate question that arises is: why are these R2 val-
ues (7–11% for means and 3–5% for extremes) so small? 
There are two possible explanations: either we have failed 
to include one or more drivers/modes of climate variability 

Fig. 1  Best estimates of the change in the magnitude of 10-year 
return values for daily precipitation (mm) for high versus low values 
of each climate index across each season. Green values indicate loca-
tions where extremes are larger for large/positive values of the index; 

brown values indicate locations where extremes are larger for small/
negative values of the index. The hatching indicates statistical signifi-
cance of the change. Note: the AO is excluded from the DJF analysis 
due to its strong coupling (and high correlation) with the NAO
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that, if included in the analysis, would significantly increase 
the proportion of variance explained (i.e., the proportion of 
driven variability), or the background variability for seasonal 
precipitation over CONUS is large enough that it may not 
be possible to explain more than 5–10% of the total year-
to-year variability using indices like the ones considered in 
this paper.

An analysis of global climate model runs can be used to 
assess how much of the variability is driven for seasonal 
mean and extreme precipitation. Specifically, we use an 
ensemble of AMIP-style (Atmospheric Model Intercompari-
son Project) climate model simulations from version 5.1 of 
the Community Atmospheric Model global atmosphere/land 
climate model, run in its conventional ≈1◦ longitude/latitude 
configuration (Neale et al. 2012; Stone et al. 2018) origi-
nally carried out as part of the World Climate Research Pro-
gramme’s (WCRP) Climate Variability Programme’s (CLI-
VAR) Climate of the 20th century Plus Project (C20C+). 

We utilize the historical simulations, which are driven by 
observed boundary conditions of atmospheric chemistry 
(greenhouse gases, tropospheric and stratospheric aerosols, 
ozone), solar luminosity, land use/cover, and the ocean sur-
face (temperature and ice coverage). This set of runs has 
the same boundary conditions but stochastically perturbed 
initial conditions. The data and further details on the simu-
lations are available at http://porta l.nersc .gov/c20c; we use 
41 ensemble members that cover the 55-year period from 
01/1959 to 12/2013. The idea is to use these simulations to 
get a sense of the “true” driven variability in seasonal mean 
and extreme precipitation.

For the observational analysis described in this paper, 
we fit real data with a single realization of the temperature-
driven indices and a single time-evolving lower boundary 
condition (the ocean skin temperature). Given this construc-
tion, the background variability is dominated by weather and 
subseasonal synoptic variability in climatic conditions. This 

Fig. 2  Best estimates of the multiplicative change in the probabil-
ity of the climatological 10-year return value (i.e., the risk ratio; no 
units) for high versus low values of each climate index across each 
season. Purple/pink values indicate locations where extremes are 
more likely for large/positive values of the index; red/yellow values 

indicate locations where extremes are more likely for small/negative 
values of the index. The hatching indicates statistical significance of 
the change. Note: the AO is excluded from the DJF analysis due to its 
strong coupling (and high correlation) with the NAO

http://portal.nersc.gov/c20c
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Fig. 3  Best estimates of the change in seasonal total precipitation 
(mm) for high versus low values of each climate index across each 
season. Green values indicate locations where seasonal totals are 
larger for large/positive values of the index; brown values indicate 

locations where seasonal totals are larger for small/negative values 
of the index. The hatching indicates statistical significance of the 
change. Note: the AO is excluded from the DJF analysis due to its 
strong coupling (and high correlation) with the NAO

Table 1  Proportion of 
variance ( R2 ) explained by 
each individual climate driver 
as well as all climate drivers 
simultaneously for each season, 
averaged over CONUS, for both 
the seasonal total (ordinary least 
squares) analysis and Rx1Day 
(GEV) analysis

These R2 values are calculated using the spatially-smoothed climatological coefficients. Note that the R2 
for all drivers together is not the sum of the individual drivers: this is due to the fact that the indices are not 
perfectly uncorrelated. Note: the AO is excluded from the DJF analysis due to its strong coupling (and high 
correlation) with the NAO

DJF MAM JJA SON

Driver Seas tot Rx1Day Seas tot Rx1Day Seas tot Rx1Day Seas tot Rx1Day

CO2 only 0.006 0.007 0.014 0.010 0.009 0.009 0.014 0.011
ELI only 0.035 0.016 0.019 0.009 0.011 0.007 0.015 0.010
AO only – – 0.012 0.010 0.020 0.007 0.006 0.007
NAO only 0.016 0.012 0.009 0.007 0.009 0.006 0.007 0.007
PNA only 0.051 0.024 0.026 0.013 0.014 0.009 0.044 0.018
AMO only 0.006 0.007 0.007 0.006 0.008 0.005 0.010 0.006
vSAOD only 0.012 0.007 0.006 0.006 0.014 0.012 0.007 0.007
All drivers 0.111 0.051 0.073 0.039 0.070 0.028 0.101 0.046
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observational construction maps naturally onto the CAM5.1 
AMIP-style runs, where likewise the within-year variability 
has a single realization of the SST boundary condition, a sin-
gle realization of temperature-driven indices, and by design 
the in-year variability across the ensemble is entirely associ-
ated with variability introduced by O(�) perturbations to the 
initial conditions amplified by inherent atmospheric chaos. 
As such, these simulations provide a test bed for determining 
the magnitude of driven variability in precipitation by com-
paring the variability across all years to the variability across 
realizations for a single year. To quantify the driven/back-
ground variability, for each CAM5.1 grid cell over CONUS 
we calculate two quantities for seasonal total and Rx1Day:

where VB,t is the within-year variance of all ensemble mem-
bers in year t and VT,e is the across-year variance in ensem-
ble member e. As the subscripts suggest, VB,t quantifies the 
background variability, i.e., that which is not forced by SST, 
aerosol, sea ice, CO2 variability (because the these boundary 
conditions are the same in each year) and any other external 
forcing, while VT,e quantifies both driven and background 
variability. Averaging over all years (for VB ) and ensemble 
members (for VT ) allows us to approximate the proportion 
of driven variability in seasonal precipitation as simulated 
by this model, as

(here the notation suggest a model-based estimate of the 
proportion of driven variability), where we set R2

M
= 0 if 

VB∕VT > 1 . As with the R2 values in Table 1, we then aver-
age over all CONUS grid cells; see Table 2. For the variance-
based R2

M
 calculations, the proportion of driven variability 

is roughly 5–9% for seasonal total precipitation and 2–3% 
for seasonal Rx1Day, which is consistent with the observa-
tional results in Table 1. The R2

M
 values are roughly the same 

if we instead calculate the background and total variability 
using the interquartile range (IQR; the IQR is a more robust 
measure of variability when the underlying data are highly 
skewed, as is the case with seasonal precipitation). Note that 

VB =
1

55

55∑
t=1

VB,t, VT =
1

41

41∑
e=1

VT,e,

R2
M
= 1 −

VB

VT

,

these results are consistent with those in Dittus et al. (2018), 
who also use the C20C+ ensemble to explore the proportion 
of variance explained by ocean forcing in temperature and 
precipitation extremes (see Figure 2 of Dittus et al. 2018). 
As might be expected, Dittus et al. (2018) find that the vari-
ance explained for temperature extremes is substantially 
higher than for precipitation extremes.

Given the large proportion of simulated background vari-
ability (> 90% for seasonal total precipitation and > 95% for 
seasonal Rx1Day), we can be confident that our statistical 
model with only seven climate variability indices is doing a 
very good job of quantifying driven variability in observed 
seasonal mean and extreme precipitation. In other words, 
this analysis verifies that the driven variability truly is only 
about 5–10% of the total variability in observed seasonal 
precipitation, and the inclusion of additional climate indices 
would not drastically increase the R2 values in Table 1.

4.2  Benefits of using a spatial analysis

As discussed in Sect. 1, many observational analyses that 
explore relationships between climate variability indices and 
precipitation maintain an underlying reliance on weather sta-
tion data. In most cases these take the form of single-station 
analyses, which ignore important spatial autocorrelations in 
the relationships between precipitation and the climate indi-
ces. As a result, the single-station analyses cannot resolve 
the relationships to a fine grid and, more seriously, have 
larger uncertainties (see, e.g., Risser et al. 2019b). Given 
that the signals we are trying to identify are relatively small 
(as evidenced by the analysis in Sect. 4.1), it is essential to 
take advantage of the spatial nature of these relationships to 
maximize detection.

In this subsection, we demonstrate the reduction in uncer-
tainty and increased detection that is enabled via the spatial 
component of our analysis. For both of these results, we 
compare the GEV and mean regression coefficients as well 
as bootstrap/permutation estimates obtained at the n = 2504 
GHCN station locations from a single-station analysis (i.e., 
when the analyses are conducted using the precipitation 
measurements from a single station only) versus the cor-
responding quantities from the spatial analysis described in 

Table 2  CONUS grid cell 
average of the proportion of 
driven variability in seasonal 
total precipitation and Rx1Day 
as simulated by the large 
ensemble of CAM5.1–1◦ runs

The reported ratio of driven to total variability (i.e., R2

M
 ) is calculated using both the variance and the inter-

quartile range (IQR) since the underlying precipitation values are highly skewed

DJF MAM JJA SON

Metric Seas tot Rx1Day Seas tot Rx1Day Seas tot Rx1Day Seas tot Rx1Day

Var.-based 0.085 0.032 0.054 0.017 0.064 0.018 0.050 0.017
IQR-based 0.055 0.027 0.037 0.020 0.045 0.017 0.038 0.016



3220 M. D. Risser et al.

1 3

this paper which explicitly models the spatial dependence 
underlying the precipitation data.

4.2.1  Reduction in bootstrap uncertainty

One of the important results from Risser et al. (2019b), 
which describes the statistical methods used in this paper, 
is that using a spatial analysis can significantly reduce 
the uncertainty in estimates of return values relative 
to a single-station analysis. We would expect a similar 
reduction in uncertainty for both the GEV and multiple 
mean regression analyses conducted in this paper, spe-
cifically with respect to the climate driver coefficients 
{�j(�) ∶ j = 1,… , 7} and {�j(�) ∶ j = 1,… , 7} . Table  3 
shows the ratio of bootstrap standard errors (obtained via 
the block bootstrap as described in Risser et al. 2019b) 
for the mean and GEV coefficients, comparing the spa-
tial analysis standard errors with the corresponding quan-
tity from a single-station analysis and averaging over the 
n = 2504 GHCN stations in CONUS. Across all seasons 
and drivers, there is a major reduction in uncertainty for 
both the mean and extreme analysis: for example, on 
average the standard errors for the ELI GEV coefficient 
in DJF from the spatial analysis are 60% of the single-
station analysis standard errors, for a reduction of 40%. 
Unsurprisingly, the reduction is larger for the GEV analy-
sis relative to the multiple mean regression analysis. Fur-
thermore, there are interesting differences across seasons: 
the reduction in uncertainty is generally larger in JJA than 
DJF, particularly for the mean regression coefficients. In 
general, applying a spatial analysis results in a reduction 
of uncertainty by about 30–45% for the extremes analysis 
and about 15–30% for the mean analysis. While we do not 
explicitly compare the coefficient estimates themselves, 
the implication is that a spatial analysis can significantly 

reduce uncertainty and hence increase the resulting signal-
to-noise ratio of the analysis.

4.2.2  Increased detection of statistical significance

While the bootstrap standard errors quantify uncertainty 
in the relationships between precipitation and the vari-
ous drivers, the hypothesis testing used to assess statisti-
cal significance also involves the permuted estimates and 
their uncertainties (see Risser et al. 2019a). To assess the 
influence of the spatial analysis on detection of statisti-
cal significance, we can compare the proportion of the 
n = 2504 GHCN stations over CONUS for which we can 
determine a significant relationship (for at least the “low” 
confidence statement) with each climate index. These 
proportions are shown in Fig. 4 for all seasons, showing 
detection for the change in extreme magnitude (top; i.e., 
the change in 10-year return value �k(�) ), the change in 
extreme frequency (middle; i.e., the risk ratio RRk(�) ), and 
the change in seasonal total (bottom; i.e., �k(�) ). Generally 
speaking, the spatial analysis results in greater detection 
of statistical significance across all seasons, drivers, and 
mean/extreme analysis. This is particularly true for the 
extremes analysis, where the proportion of stations with 
a significant relationship is uniformly larger with respect 
to the non-anthropogenic drivers for both the change in 
frequency and change in magnitude of extremes. In some 
cases this increase is substantial: for example, only about 
15% of the weather station locations have a significant 
relationship between PNA and the change in extreme mag-
nitude for SON with the single-station analysis, while the 
PNA relationship is significant for about 70% of stations 
when using the spatial analysis. The difference in detect-
ability is smaller for the change in seasonal total precipita-
tion, although the spatial analysis always detects a larger 

Table 3  Ratio of bootstrap standard errors for the multiple mean 
regression (“Mean reg.”, i.e., {�

j
(�) ∶ j = 1,… , 7} ) and GEV (i.e., 

{�
j
(�) ∶ j = 1,… , 7} ) coefficients for each climate index/driver, aver-

aged over the n = 2504 GHCN stations over CONUS, comparing a 

single-station station analysis versus the spatial analysis proposed in 
this paper (spatial standard errors divided by single-station standard 
errors)

Values less than one indicate that the uncertainty is reduced when using a spatial analysis

DJF MAM JJA SON

Driver Mean reg. GEV Mean reg. GEV Mean reg. GEV Mean reg. GEV

CO2 0.76 0.60 0.80 0.66 0.70 0.77 0.77 0.63
ELI 0.83 0.60 0.84 0.59 0.70 0.57 0.82 0.58
AO – – 0.83 0.58 0.75 0.57 0.85 0.58
NAO 0.81 0.58 0.84 0.57 0.76 0.61 0.84 0.60
AMO 0.82 0.61 0.84 0.61 0.75 0.62 0.84 0.60
PNA 0.84 0.62 0.82 0.58 0.73 0.57 0.84 0.59
vSAOD 0.84 0.67 0.84 0.67 0.75 0.73 0.84 0.66
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signal for the non-anthropogenic drivers than the single-
station analysis.

4.3  Comparison with a composite analysis

As discussed in Sect.  3.1, we use the fitted statistical 
model to construct artificial climate “scenarios” by plug-
ging in a desired set of climate index values. In this sense, 
our approach could be considered an “emulator” of the 
climatology of seasonal precipitation. The primary way 
we use this is to isolate individual drivers, i.e., comparing 
return values, return probabilities, or seasonal totals using 
vectors of the climate index values �k− and �k+ where 
index k ∈ {ELI,… , vSAOD} is set to its seasonal 5th and 
95th value over the entire 1900-2017 period, respectively, 
and all other indices are fixed at their seasonal climatologi-
cal mean. The fact that we are able to isolate the effect of a 
single driver while simultaneously accounting for all other 
drivers is a distinguishing feature of our analysis, and 
thus this type of comparison is at the center of our results 
and represents our best estimate of the true isolated rela-
tionship between each index and seasonal precipitation. 

For clarity, we refer to the various change metrics �k(�) 
(Eq. 4), RRk(�) (Eq. 6), and �k(�) (Eq. 11) from Sect. 3 as 
the isolated change metrics for index k.

However, many related studies from the literature 
instead conduct a so-called “composite analysis,” where 
one considers the effect of a single driver (e.g., ENSO) 
on some aspect of precipitation by taking a year or set of 
years with particularly extreme El Niño conditions and 
comparing with another set of years with particularly 
extreme La Niña conditions. For example, Zhang et al. 
(2010) conduct a composite analysis by selecting years 
with the five highest and lowest index values and calcu-
lating a difference in the average extreme precipitation 
from each set of years. Zhang et al. (2010) acknowledge 
an important limitation of this approach, namely, that the 
signals associated with a particular index in a composite 
analysis could be confounded with another co-occurring 
mode of oceanic or atmospheric variability in the selected 
years. Additionally, the analysis of daily extremes in Patri-
cola et al. (2020) involves a spatial analysis much like the 
one used in this paper, but only includes the ELI index. 
Such an approach is a generalization of the composite 
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analysis used in Zhang et al. (2010) (and others), but still 
cannot separate the effect of ELI from other modes that 
may co-occur with ELI.

On important benefit of the emulator framework 
described in this paper is that we can reproduce the com-
posite analysis directly and explicitly quantify if and when 
a particular relationship identified in a composite analysis 
is in fact confounded with another mode or modes of vari-
ability. Instead of isolating a single driver, we can identify 
the specific years with extreme values of a specific index and 
maintain the value of the other indices that actually occurred 
in those years. Using the same framework we can define 
composite change metrics, e.g., for the change in extreme 
magnitude,

where now the composite vector �C
(⋅)

 is defined as follows: 
for index k ∈ {ELI,… , vSAOD} , 

1. Identify the years t+ and t− where index k experiences 
its extreme states. For an index like ELI, this would cor-
respond to large (El Niño) and small (La Niña) values; 
for an index like AMO, this would correspond to large 
positive phase and large negative phase values.

2. Define �C
k+

=
(
[logCO2]t+ , [ELI]t+ ,… , [vSAOD]t+

)
 and 

�C
k−

=
(
[logCO2]t− , [ELI]t− ,… , [vSAOD]t−

)
.

To average over the specific conditions that occur in a single 
year (and following Zhang et al. 2010), we can take an aver-
age of the return values from a set of 5 years for high/low 
values of index k: the estimated return value that goes in the 
above calculation is

where {t+
i
∶ i = 1,… , 5} are the 5 years such that the average 

value of index k experiences its 95th percentile; similarly for 
ŵ�(�

C
k−
) using the years {t−

i
∶ i = 1,… , 5} where the average 

value of index k experiences its 5th percentile. Furthermore, 
since in this framework the return value can be written as 
in (5), the composite change from (12) can be decomposed 
into components for each forcing:

As such, the composite change metric allows us to quantify 
the composite relationship of index k with extreme precipi-
tation while specifically isolating any drivers that may be 
aliasing onto the composite metric.

(12)�C
k
(�) = w�(�

C
k+
) − w�(�

C
k−
),

ŵ�(�
C
k+
) =

1

5

5∑
i=1

ŵ�

(
[logCO2]t+

i
, [ELI]t+

i
,… , [vSAOD]t+

i

)
,

(13)�̂C
k
(�) = �̂1(�) ⋅

1

5

5∑
i=1

(
[logCO2]t+

i
− [logCO2]t−

i

)
+⋯ + �̂7(�) ⋅

1

5

5∑
i=1

(
[vSAOD]t+

i
− [vSAOD]t−

i

)
.

To illustrate the different conclusions that might be drawn 
from the isolated vs. composite change, we consider the 
estimated relationship between ELI and the magnitude of 
extreme events in DJF. In Fig. 1, we note a curious result 
for the isolated change: there is essentially no signal for ELI 
in DJF over California (a similar lack of signal shows up 
in Fig. 2 for the change in extreme frequency), with only 
a very small portion of southern California experiencing a 
significant increase in the magnitude of extremes under El 
Niño conditions. This would seem to contradict much of the 
literature on ENSO and extreme precipitation in California, 
for example, the analyses in Zhang et al. (2010) (see their 
Figure 1, 2, and 3); the daily extremes analysis in Patricola 
et al. (2020) (see their Figure 6); and the GEV analysis in 
Cannon (2015) (see their Figure 3).

For reference, the estimated isolated and composite rela-
tionships between ELI and the magnitude of extreme events 
in DJF is also shown in Fig. 5, albeit without significance 
hatching. The isolated change in Fig. 5a is a copy of the plot 
from Fig. 1, and shows the lack of signal over California. The 
composite change, also in Fig. 5a, is calculated by averag-
ing over two 5 year periods, the first representing El Niño 
conditions and the second representing La Niña conditions 
(the specific years and index values are in Table D.3). The 
difference plot (isolated change minus composite change) in 
Fig. 5b illuminates major differences in the estimated rela-
tionship between ELI and extreme precipitation depending 
on how the change is quantified. In other words, if we use 
the composite change, the El Niño effect is overestimated in 
much of California and Texas and severely underestimated in 
much of the central US. More seriously, the sign of the effect 
is wrong in much of California and over Indiana, Illinois, and 
Kentucky. Interestingly, the negative anomaly and error in 
sign for Indiana, Illinois, and Kentucky that shows up in the 
composite change is also present in Zhang et al. (2010), Can-
non (2015), and Patricola et al. (2020).

To assess which drivers are contributing to these differ-
ences, we can decompose the composite change into its vari-
ous components as described in (13); see Fig. 5c. Recall that 
the composite change in Fig. 5a is the sum of the components 
in Fig. 5c. While the color limits are different, note that the 
ELI component in Fig. 5c is identical to the isolated change 
for ELI in Fig. 5a. It is clear that, given the specific AMO, 

PNA, and vSAOD conditions in the specific years that ELI 
attains its small and large values (see Table D.3), the AMO, 
PNA, and vSAOD significantly alter the perceived influence 
of ELI on precipitation extremes, particularly in California, 



3223Quantifying the influence of natural climate variability on in situ measurements of seasonal…

1 3

Texas, and much of the central US. The primary index alias-
ing onto the ELI signal for California is actually AMO, while 
the PNA is the primary aliasing factor for the central US.

Focusing in on the California result, to consider this 
from another angle we also calculate the proportion of 
variance explained by the statistical models averaged over 
California only (see Table D.4 in the Appendix). From 
this table, it is clear that AMO and PNA can influence the 
precipitation response in California in DJF (albeit with 
small R2 ). Furthermore, the R2 in DJF for ELI alone is 
significantly smaller than the R2 for the all drivers model, 
indicating that the full set of indices increases the pre-
dictability of seasonal precipitation over California (and 
indeed the same holds for CONUS; see Table 1).

In summary, we reiterate that the relationships between 
climate drivers and seasonal precipitation are often more 
complicated than they may initially appear. The fact that 
we can recreate many of the results from the literature on 
ENSO versus extreme precipitation with our composite 
analysis verifies that the relationships between the modes 
of variability and precipitation do not occur in isolation. 
Of course, an El Niño event does not occur in a vacuum: as 
such, we do not suggest that the composite analyses in the 
literature are “wrong.” Instead, a more nuanced analysis 

reveals that it is important to account for co-varying modes 
when attempting to disentangle the isolated relationships 
between a specific driver and precipitation.

5  Discussion

In this paper, we have developed a spatial analysis for in situ 
measurements of seasonal mean and extreme precipitation 
that quantifies joint relationships with a set of natural and 
anthropogenic climate indices. Critically, we use a single 
framework for characterizing the historical signal (anthro-
pogenic forcing) and noise (natural variability) in seasonal 
mean and extreme precipitation. We furthermore frame our 
approach as an emulator, develop a method for character-
izing the influence of individual drivers, and use a data-
driven approach to quantify uncertainty and assess statis-
tical significance for changes in the distribution of mean 
and extreme precipitation. In spite of significant noise in 
seasonal mean and extreme precipitation, we are able to 
detect statistically significant relationships for means and 
extremes in all seasons even though the proportion of vari-
ance explained by large-scale modes of variability is less 
than might have been anticipated from previous studies. 
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Fig. 5  Best estimates of the isolated change �̂
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of the components in c. In a, green values indicate locations where 
extremes for El Niño conditions; brown values indicate locations 
where extremes are larger for La Niña conditions



3224 M. D. Risser et al.

1 3

We also demonstrate several ways in which our approach 
improves upon single-station and/or composite analyses and 
furthermore yields new results that explicitly reveal the com-
plex, interconnected relationships between climate drivers 
and precipitation.

As mentioned in Sect. 4, we have opted to forgo a detailed 
discussion of the specific relationships revealed in Figs. 1, 2, 
and 3 as this was beyond the scope of the current paper. 
Nonetheless, the relationships identified in the maps con-
tain important insights into the ways the various climate 
drivers impact seasonal precipitation and could form the 
basis for future exploration or climate model evaluation. As 
such, similar to the climatological data product of Risser 
et al. (2019b), we plan to publish the relevant fields used 
to create the maps in Figs. 1, 2, and 3 as a high-resolution 
“probabilistic” data product for each climate driver that 
quantifies its isolated relationship with mean and extreme 
precipitation and indicates where the relationship is statisti-
cally significant.

In Sect. 4.1, we briefly discussed how the total proportion 
of variability explained in seasonal mean and extreme pre-
cipitation changes across CONUS. This is true both overall 
(again see Fig. C.4) and for the influence of individual driv-
ers. For example, volcanic aerosols explain only around 1% 
of variability when averaging over CONUS (across mean/
extreme precipitation and all seasons; see Table 1) but up 
to 10% for seasonal mean precipitation in the Mountain 
West and Pacific Coast (in JJA) and the Southwest (in DJF). 
Maps of the proportion of variance explained for each state 
specific to the influence of volcanic aerosols are shown in 
Fig. C.5; this figure reiterates the fact that volcanic aerosols 
do not result in a uniform outcome in expectation, particu-
larly at the regional scale. Note that the signals we see in the 
Northwest US appear to be consistent with increased rainfall 
and stream flow identified in Iles and Hegerl (2014) and Iles 
and Hegerl (2015).

The results of our analysis suggest that evaluation of 
teleconnections in climate models may benefit from using 
isolated—rather than composite—change metrics. The com-
parison between the isolated and composite change metrics 
in Sect. 4.3 shows that compositing techniques, which are 
prevalent in the literature (Gershunov and Barnett 1998; 
Zhang et al. 2010; Patricola et al. 2020), likely alias sig-
nals from other important modes of variability. AMIP-style 
simulations control for SST variability, but they do not nec-
essarily control for atmospheric background variability like 
the PNA. Fig. 5c shows that negative PNA exterts a strong 
drying on the midwestern US, which aliases onto the ENSO 
composite shown in Fig. 5a. This implies that an AMIP sim-
ulation with a PNA pattern that differs from observations 
would show a different spatial pattern of extreme precipita-
tion during ENSO years than observations. Such a difference 

might not necessarily be associated with a model error, if 
the difference in the PNA pattern is simply due to internal 
atmospheric variability. The situation is even more com-
plicated for CMIP-style simulations, in which the various 
modes of variability co-vary in a different way than observa-
tions. Deser et al. (2017) propose the use of large ensembles 
of simulations to isolate the ENSO signal. We propose that 
the methodology described in this manuscript could be used 
to simultaneously isolate the effects of ENSO—and other 
modes of variability—in climate simulations; this would 
allow a more fair comparison with observations.

The emulator framework developed in this paper is used 
to identify the isolated and composite change metrics for 
each climate index. Both of these change metrics involved 
constructing “statistical” climate scenarios by character-
izing the climatology of mean and extreme precipitation 
for an arbitrary combination of the climate indices that did 
not actually occur in the historical period. In a similar way, 
we could also use our results as a predictive model in (at 
least) two ways. First, for a particular grid cell or region in 
CONUS we could identify the combination of climate driv-
ers that maximizes or minimizes seasonal precipitation. For 
example, looking at Fig. 1, it appears that the magnitude of 
extreme daily precipitation in California in MAM is maxi-
mized under El Niño conditions, the positive phase of the 
AO, the negative phase of the NAO, the positive phase of 
the AMO, and the negative phase of the PNA. Second, con-
ditional on knowledge of the various climate indices in an 
upcoming season, our data product could be used to identify 
areas with high risk of departing significantly from the mean 
or extreme climatology. Such a prediction would assume 
that the relationships identified over 1900–2017 would con-
tinue to hold in the future, which should be a relatively safe 
assumption in the near future.

The linear regression-based approach used in our analy-
sis of course cannot capture nonlinear responses to climate 
variability due to its assumption of symmetry. Of the cli-
mate modes considered, ENSO is one that is well known 
for asymmetric teleconnections (see, e.g., Hoerling et al. 
1997; Gershunov 1998), and this unaccounted for asym-
metry could contribute to the large background variability. 
One possible way to explore this would be to split the ENSO 
Longitude Index into two separate covariates: one for posi-
tive ELI anomalies and another for negative ELI anomalies; 
this would break the requirement that the ELI response is 
symmetric. This of course then raises the issue of how you 
would deal with near-zero ELI anomalies, where the (small) 
response might arguably be symmetric. We plan to explore 
further development of the methodology to account for 
asymmetries and nonlinearities as future work.

Finally, as discussed in Sect. 1, while our methodology 
includes characterization of the anthropogenic influence 
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on seasonal mean and extreme precipitation we have so far 
only discussed the influence of the non-anthropogenic driv-
ers. A forthcoming manuscript will specifically address the 
anthropogenic attribution question. However, the results 
already described in this paper have important implications 
for detection and attribution of a human influence on grid-
scale seasonal precipitation over CONUS. First, we have 
quantified the difficult signal-to-noise problem for detect-
ing an anthropogenic influence at the weather station level: 
from Table 1, the variance explained by CO2 is ≈ 1% of the 
total variance. One of the reasons why the literature on CO2 
influence on precipitation is so internally inconsistent may 
be due to compositing techniques, in this case composit-
ing time periods with high CO2 minus low CO2 . As Table 1 
shows, the multiple drivers that “come along for the ride” 
in such a compositing approach are, at a minimum, compa-
rable to CO2 (and in DJF, up to nearly 10 × larger). These 
will alias onto the signal of interest, that from CO2 alone. 
Given that the noise is very large (> 90%) for both sea-
sonal mean and extreme precipitation, this suggests that we 
might have a difficult time detecting and attributing trends in 
mean and extreme precipitation at the grid scale level over 
CONUS. Nonetheless, as with the natural variability indices 
explored in the current paper, we are able to detect at least 
some human influence on extreme precipitation in spite of 
the significant noise in the underlying data.

Appendix 1: Sensitivity to start time

In order to assess the sensitivity of our results to the 
start time, we conducted two analyses: first, exploring 
GEV coefficient estimates when starting the analysis in 
{1900, 1910,… , 1950} (but without the full hypothesis 
testing procedure); and second, comparing the results when 
starting in 1900 versus 1950 with the full uncertainty quan-
tification and permutation/testing analysis. An important 
point to note is that we use the same selection criteria for 
the GHCN stations regardless of the start time (i.e., a GHCN 
station is included if and only if it has at least 66.7% non-
missing daily values over the length of the record) and, given 

the nature of the GHCN record, the number of eligible sta-
tions increases monotonically with time (see Table 4 for 
the number of stations that meet this criteria per decade). 
In other words, the choice of start year presents a tradeoff 
between more spatial information (more stations) and more 
temporal information (more years of data).

Comparison 1: compare decades without hypothesis 
testing

As a fast initial comparison, we first assess standardized 
GEV coefficient estimates (i.e., estimates divided by their 
standard error) for the statistical model given in (2), where 
the analysis starts in one of {1900, 1910,… , 1950} and runs 
through 2017. In order to make this analysis less compu-
tationally demanding, instead of applying the full spatial 
analysis described in the main text we use the local likeli-
hood functionality in climextRemes, which incorporates 
spatial smoothing but does not interpolate the station results. 
For each start period, using the set of stations that meet our 
selection criteria (see Table 4), we obtain smoothed maxi-
mum likelihood estimates of the GEV coefficients for each 
driver as well as their standard errors. Then, for each station, 
we calculate z-scores for each driver (estimate divided by 
standard error) and aggregate spatially across all CONUS 
stations in the analysis.

The resulting box plots of z-scores are shown in Fig. C.6; 
for simplicity we only show box plots for the natural loga-
rithm of CO2 , ELI, NAO, and PNA. In general, the signal-
to-noise ratio (SNR; summarized by the z-scores) exhibits a 
slight attenuation as the start time moves from 1900 to 1950; 
in other words, the box plots shrink and move towards zero 
with increasing start time. This generally holds for all of the 
drivers in the plot, but is particularly pronounced for, e.g., 
log CO2 in MAM and PNA in DJF. Interestingly, this is not 
always the case: for example, the signal is quite robust to 
start time for ELI in DJF. Furthermore, for seasons/drivers 
where there is essentially no signal (e.g., ELI in JJA), the 
box plots are centered on zero regardless of the start time.

This SNR attenuation suggests that it would be better 
to start the analysis in an earlier time period, most likely 
1900. However, this analysis by itself does not fully charac-
terize the uncertainty since we do not pursue the permuta-
tion/null distribution analysis; on the other hand, note that 
in general the attenuation is monotone. As such, we next 
explore the full spatial analysis with hypothesis testing for 
the two extreme start times considered so far, namely 1900 
and 1950.

Table 4  Number of GHCN 
stations over the contiguous 
United States that have at least 
66.7% non-missing daily values 
over the period from the start 
year to 2017

Start year Number 
of sta-
tions

1900 2504
1910 2979
1920 3616
1930 4263
1940 4826
1950 5202
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Comparison 2: compare 1900 vs. 1950 start 
with spatial analysis

For this comparison, we now apply the full analysis 
described in the main text to the seasonal maxima start-
ing in both 1900 and 1950. Recall that these two analyses 
present a stark trade-off between more spatial information 
(5202 stations for 1950 versus 2504 stations for 1900) and 
more temporal information (68 years for 1950 versus 118 
years for 1900); however, for the 1900 start time we might 
hope that the spatial aspect of the analysis is helpful in 
accounting for the loss of spatial information. In fact, we 
also conducted a third analysis that again starts in 1950 but 
uses a detrended version of the natural driver variables (i.e., 
with low frequency variation removed). The idea here is 
that when considering a shorter time period, there may be 
low frequency variability in the natural driver variables that 
could mask the long-term secular trend described by log CO2 
(which is nearly linear over 1950–2017); for example, note 
that the AMO time series in Fig. C.2 are nearly linear over 
1950–2017. As with the previous subsection, to simplify our 
discussion we focus on the natural logarithm of CO2 , ELI, 
NAO, and PNA.

Figure C.7 shows scatterplots of the risk ratio estimates 
(comparing the probability of exceeding the 10-year clima-
tological return value for high vs. low index values) after 
applying the full spatial analysis for 1900 versus 1950 (panel 
a; the 1950 analysis uses the “raw” indices) and starting in 
1950 but using “raw” versus detrended indices (panel b), as 
well as the 1–1 line. These scatterplots aggregate pairwise 
risk ratio estimates for the 13073 grid cells. First, in panel 
a, note that in general the coefficient estimates are clustered 
around the 1–1 line, particularly for ELI, NAO, and PNA, 
indicating that the estimated risk ratios are robust to the start 
time. Of course there is some variability about the 1–1 line, 
but there do not appear to be any systematic biases for the 
natural indices. The story is slightly different for log CO2 : 
here, the scatterplots appear to be stretched more along the 
y-axis relative to the x-axis, particularly for DJF and SON, 
indicating that there is a larger anthropogenic effect for the 
1950 start time. This is not entirely surprising, since log 
CO2 is nearly linear over 1950–2017; in any case, the effect 
is not too severe. Next, panel b of Fig. C.7 shows the same 
risk ratio estimates for 1950 using the “raw” index values 
versus estimates based on using detrended index values; 
again, the scatterplot shows pairs of estimates for each grid 
cell. Again the estimates are tightly clustered around the 1-1 
line, particularly for the natural indices, with much less vari-
ability around the 1–1 line relative to panel a. The variability 
around the 1–1 line is slightly larger for log CO2 , but again 
there do not appear to be any significant biases.

Figure  C.7 provides confidence that the actual risk 
ratio estimates are robust to the start time. However, these 

scatterplots only assess the signal; it is also important to 
assess the magnitude of the noise and our ability to detect 
statistically significant relationships between the drivers and 
extreme precipitation. To this end, Fig. C.8 shows the pro-
portion of CONUS where we can detect a significant rela-
tionship between the same set drivers (the natural logarithm 
of CO2 , ELI, NAO, and PNA) and extreme precipitation 
for each start time (i.e., the number of grid cells that are 
significant divided by the total number of grid cells). (Note: 
this plot also shows detectability for Rx5Day; see Sect. B.) 
In almost all cases where a relationship is detectable at all, 
there is a larger signal for the analysis that starts in 1900; 
this is uniformly the case for the natural variability indices. 
For example, note that ELI in SON and PNA in DJF, MAM, 
and SON can detect a much larger proportion of CONUS as 
having significant relationships for 1900 relative to either of 
the 1950 analyses.

In summary, from the sensitivity analyses in this section 
we can be confident that the estimated signal is robust to 
the start time (Fig. C.7 shows that risk ratio estimates are 
approximately the same for starting in 1900 vs. 1950, with 
or without detrending the natural indices), and furthermore 
the noise is such that we can better detect signals when start-
ing the analysis in 1900. In other words, the spatial analysis 
preserves the signal in the presence of less spatial data (i.e., 
having only 2504 stations for the 1900 start time versus 5202 
stations for the 1950 start time) while the increased temporal 
information helps us to reduce the noise such that our detec-
tion power is stronger. Hence, we use the 1900 start time for 
our main analysis in the paper.

Appendix 2: Metrics for quantifying 
extremes

A final open question for this analysis is how to best sum-
marize extreme precipitation from a single season. While in 
principle there are a large number of metrics for summariz-
ing extreme precipitation (e.g., the ETCCDI effort; Alex-
ander 2016) in a GEV framework we maintain a focus on 
block (here, seasonal) maxima. Nonetheless, we still need to 
choose a time window to take maxima over, e.g., daily max-
ima (Rx1Day), versus longer cumulative maxima like 5-day 
running maxima (termed Rx5Day). The seasonal Rx1Day 
is potentially a more familiar metric, but seasonal Rx5Day 
involves aggregating over multiple days and therefore may 
help reduce noise in the data.

In order to explore this question more thoroughly, we 
also conducted the full analysis using Rx5Day extracted 
from the same set of stations, again for each of the time 
periods considered in Sect. A. First, in Fig. C.9, we show 
spatial pattern correlations in the grid cell risk ratio esti-
mates based on Rx1Day and Rx5Day for the 1900 start 
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time, as before focusing on the natural logarithm of CO2 , 
ELI, NAO, and PNA in each season. All of the pattern cor-
relations exceed 0.6, with most in excess of 0.8 and several 
in excess of 0.9; in other words, the spatial patterns of the 
estimated impact for each index on extreme precipitation 
is very similar regardless of whether we consider daily 
maxima or five-daily running maxima. Next, we can again 
look at Fig. C.8, which shows the proportion of CONUS 
that exhibits a significant relationship between each driver 
and extreme precipitation for both Rx1Day and Rx5Day. 
The signal is largely the same for Rx1Day and Rx5Day, 
in the sense that for seasons/drivers where we can detect 
a significant signal for Rx1Day we see a similar signal for 
Rx5Day. (In this figure we again see a preference for start-
ing in 1900 relative to 1950 for Rx5Day.) There are some 
differences in the magnitude of the proportion that we can 
determine significant relationships for the 1900 start time, 
e.g., more of the map is significant for Rx5Day when look-
ing at ELI and PNA in DJF. However, using Rx5Day does 
not lead to uniformly larger signals: for example, ELI and 
CO2 in SON show a larger signal for Rx1Day.

Ultimately, there appears to be a lack of strong evi-
dence for choosing either metric (daily maxima vs. five-
daily maxima) for this analysis: spatial patterns of the 
signal are approximately the same for both Rx1Day and 
Rx5Day (based on Fig. C.9) and detectability is compa-
rable for both metrics (based on the analysis summarized 
in Fig. C.7). Therefore, we opted to focus on Rx1Day for 
the analysis in the main text for two reasons: (1) Rx1Day 
is a more familiar metric to a general reader, and (2) five-
daily running maxima are more sensitive to missing values 
in the observational record (i.e., we select the seasonal 
Rx5Day from all 5-day periods with no missing values; 
hence, the seasonal Rx5Day values could be biased due 
to the proportion of missing data allowed by our selection 
criteria).
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