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Abstract
Despite the importance of the Yellow River to China, climate change for the middle reaches of the Yellow River Basin (YRB) 
has been investigated far less than for other regions. This work focuses on future changes in mean and extreme climate of 
the YRB for the near-term (2021–2040), mid-term (2041–2060), and far-term (2081–2100) future, and assesses these with 
respect to the reference period (1986–2005) using the latest REgional MOdel (REMO) simulations, driven by three global 
climate models (GCMs) and assuming historical and future [Representative Concentration Pathway (RCP) 2.6 and 8.5] forc-
ing scenarios, over the CORDEX East Asia domain at 0.22° horizontal resolution. The results show that REMO reproduces 
the historical mean climate state and selected extreme climate indices reasonably well, although some cold and wet biases 
exist. Increases in mean temperature are strongest for the far-term in winter, with an average increase of 5.6 °C under RCP 
8.5. As expected, the future temperatures of the warmest day (TXx) and coldest night (TNn) increase and the number of 
frost days (FD) declines considerably. Changes to mean temperature and FD depend on elevation, which could be explained 
by the snow-albedo feedback. A substantial increase in precipitation (34%) occurs in winter under RCP 8.5 for the far-term. 
Interannual variability in precipitation is projected to increase, indicating a future climate with more extreme events com-
pared to that of today. Future daily precipitation intensity and maximum 5-day precipitation would increase and the number 
of consecutive dry days would decline under RCP 8.5. The results highlight that pronounced warming at high altitudes and 
more intense rainfall could cause increased future flood risk in the YRB, if a high GHG emission pathway is realized.
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1  Introduction

Climate change is one of the most significant challenges 
encountered by the world in recent centuries and address-
ing it is urgent (Cubasch et al. 2013). Climate warming is 
unequivocal and many unprecedented changes have been 
observed since the 1950s (IPCC 2014, 2019a, b). The 
increasing emission of greenhouse gases (GHGs) contin-
ues to induce warming (Wang et al. 2018a). Under global 
warming, temperatures increase more rapidly in high altitude 
regions (Pepin et al. 2015) and spatially variable changes to 
precipitation are projected. In general, the contrast between 
the mean precipitation for wet and dry regions, and for wet 
and dry seasons, will increase as temperature rises (Chou 
et al. 2013; Liu and Allan 2013; Ghosh 2018). By the end 
of this century, arid and semi-arid areas are likely to become 
drier and humid areas will likely experience more rainfall 
(Collins et al. 2013). However, this “dry gets drier, wet gets 
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wetter” paradigm may not hold over all land areas (Hu et al. 
2019). Only 10.8% of global land area fits this paradigm at 
annual timescales and 9.5% of global land area is projected 
to experience the opposite paradigm (Greve et al. 2014). 
This suggests the paradigm is an oversimplification of pre-
cipitation changes that should be anticipated over land.

A growing body of evidence suggests that there are 
increasing trends in the frequency, intensity, and duration 
of climate extreme events, such as droughts and floods under 
climate warming (e.g., Gou et al. 2010; Sun et al. 2014; 
Seneviratne et al. 2016). China has suffered frequent and 
severe floods and droughts in recent decades, such as the 
1998 flood on the Yangtze River basin (Zong and Chen 
2000) and the 2013 drought in eastern China (Sun et al. 
2014), and these have caused substantial economic losses 
and ecosystem destruction (Ahmed et al. 2020; Su et al. 
2018). Improving our understanding of climate change and 
our projections for future change in these sensitive and eco-
logically fragile regions is crucial for many reasons.

Climate projections are vitally important for evaluation of 
the future regional impacts of global warming (Arnell et al. 
2019). Global climate models (GCMs) are often used to 
assess regional climate change, however, their coarse reso-
lution means that many smaller-scale processes are not well-
resolved, for example atmospheric processes in mountainous 
topography. The large spread in simulations of present-day 
climate demonstrates uncertainties that should be associ-
ated with simulated projections (Woldemeskel et al. 2016), 
particularly in the case of precipitation, which is highly vari-
able. Recently, considerable progress has been achieved in 
high resolution climate modeling, for example in dynamical 
downscaling over multiple CORDEX (Coordinated Regional 
Climate Downscaling Experiment) domains (e.g., Jacob 
et al. 2012; Wang et al. 2016; Gao and Chen 2017; Ge et al. 
2019; Giorgi 2019; Niu et al. 2019; Tapiador et al. 2020). 
These high-resolution simulations have the advantages of 
improved representation of orographic features, increased 
spatial resolution, optimized atmospheric forcing, and a 
detailed land-surface scheme. Regional climate models 
(RCMs) provide added value to output from GCMs, lead-
ing to a better understanding of regional and local climate 
change signals (Giorgi 2019). They provide more reliable 
simulations of climate and are therefore indispensable tools 
for interpretation of the impacts of future climate change.

The Yellow River (YR, Fig. 1b) is the second longest 
river in China and is known as the “Mother River of China” 
(Zhang et al. 2018). Originating on the Tibetan Plateau, 
the Yellow River Basin (YRB) extends eastwards through 
arid, semi-arid, and semi-humid regions of northern China, 
including the Loess Plateau, Inner Mongolia, and the Gobi 
Desert, and then through the plains of east China and even-
tually into the Pacific Ocean. The YR supports more than 
114  million people with drinking water and irrigation, 

which accounts for around 9% of the total population of 
China, and supplies water for 12.6 × 1010 km2 of farmland, 
which accounts for approximately 16.2% of China’s grain 
yield (Kong et al. 2016). The YRB has frequently suffered 
from drought and a deficit in water resources (Zhang et al. 
2009), which has impacted on ecological conservation and 
economic development (Zhang et al. 2018). Changes in 
the supply of water resources are directly linked to climate 
change and extreme climate events (Zhang et al. 2009; Zhao 
et al. 2019).

Annual precipitation over the YRB has been decreasing 
since the 1960s at a rate of 0.31 mm year−1 (Zhao et al. 2019; 
Zhang et al. 2014). Reported reductions in streamflow in the 
YR have been attributed to climate change and to human 
activities such as the intensive water extraction for agricul-
tural irrigation that began in 1986 (Zhang et al. 2009). At the 
Huayuankou station (Fig. 1b), around 50% of the decrease in 
streamflow follows from changes in climate temporal pattern, 
and the remainder is the effect of changes in climate (25%), 
vegetation (5%), and irrigation (20%) (Tang et al. 2008). Under 
the influence of rapid warming, pan evaporation has increased 

Fig. 1   a REMO simulation domain and b the location and topogra-
phy of the Yellow River Basin (YRB) in the REMO simulation. The 
black dash lines mark the rough boundaries of three topographic 
regions: upper (altitudes greater than 2000 m), middle (between 1000 
and 2000 m), and lower (less than 1000 m) reaches. SR denotes the 
source region of the YR
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significantly since 1986 (Cong et al. 2010) and terrestrial 
water storage in the YRB has therefore dramatically declined 
over recent years (Jing et al. 2019). Water scarcity, driven by 
growing demand and persistent droughts, has more serious 
implications for water and food security than was recognized 
until recently (Wang et al. 2019). If precipitation continues to 
decrease and evaporation keeps unchanged or increases, then 
the YRB is very likely to face severe water shortages. Differ-
ent changes in precipitation, for example changes to the mean 
and/or to the frequency or duration of extreme precipitation 
events may have implications for flood risk (Donat et al. 2016). 
Previous studies have used RCMs to project future climate 
change in the source region of the YR (Hui et al. 2014; Lu 
et al. 2018). However, despite the importance of the YR to 
water resources, very few studies consider the whole YRB, 
including the upper, middle and lower reaches, where using 
the simplified paradigm to project the future climate could 
be misleading. In particular, there is a lack of information for 
likely future climate extremes in response to enhanced GHG 
emissions.

The climate of the YRB results from many interacting 
factors and the ecosystem is extremely vulnerable to climate 
change (Zhang et al. 2018). Despite the sensitivity, little is 
known about how the climate is likely to evolve over this sensi-
tive region under future climate change, which is the motiva-
tion for this study. The YRB is divided into three topographical 
regions, containing the upper, middle, and lower reaches of 
the YR. The region downstream of Huayuankou is a narrow 
basin and changes to streamflow here have been largely attrib-
uted to human activity (Tang et al. 2008). This study focuses 
on the upper and middle reaches. The objectives of the study 
are: (1) to evaluate the skill of the RCM in reproducing mean 
climate and climate extremes for the YRB during a historical 
period driven by GCMs; and (2) to estimate the changes likely 
for different time periods in the future under Representative 
Concentration Pathway (RCP) scenarios 2.6 (van Vuuren et al. 
2011) and 8.5 (Riahi et al. 2011).

The paper is structured as follows: Sect. 2 describes 
the method, data, and extreme indices used in this work. 
Section 3 presents the results of model evaluation, and the 
changes projected for climate mean and extremes, and the 
dependency of these on elevation, and identify mechanisms 
that may drive the changes. The discussion and conclusions 
are given in Sects. 4 and 5.

2 � Method and data

2.1 � Regional climate model REMO and experiment 
design

The regional climate model, REgional MOdel (REMO), is a 
three-dimensional regional hydrostatic atmospheric model 

that uses physical parameterizations from European Centre 
Hamburg Version 4 (ECHAM-4) (Roeckner et al. 1996) and 
a dynamical framework from the weather forecast model 
of the German Weather Service Europa-Modell (Majewski 
1991). Following the CORDEX experiment design, REMO 
has been successfully used for long-term climate simula-
tions over multiple domains, such as Europe, Africa, Asia, 
America, and the Mediterranean (Jacob et al. 2012; Remedio 
et al. 2019). The REMO model (version 2015) simulates 
most climate types relatively well, with a low bias and a high 
skill score (Remedio et al. 2019; Xu et al. 2018) have shown 
that REMO (REMO2015), driven by ERA-Interim reanaly-
sis data, can reliably simulate climate over the Tibetan Pla-
teau. We selected REMO simulations available from the 
CORDEX experiment for the East Asia domain (Fig. 1a). A 
comprehensive evaluation of REMO simulations driven by 
the ERA-Interim data found that REMO reliably reproduces 
the spatial variability of air temperature and precipitation 
over the YRB, albeit with some biases, such as a cold bias 
in the upper reaches and a wet bias, and weaker warming 
trends in four seasons (0.1–0.3 °C decade−1) than have been 
observed (0.4–0.6 °C decade−1) (Pang et al. 2020). The lat-
est hydrostatic version of REMO (REMO2015), developed 
at the Climate Service Center Germany (GERICS), has 
horizontal resolution of 0.22° (~ 25 km) and uses a hybrid 
sigma-pressure coordinate system with 27 levels. The lower 
levels follow the surface terrain and the uppermost level is 
at 10 hPa (Remedio et al. 2019). REMO is coupled with 
the physically based FLake lake model (REMO-FLAKE) 
so that lakes are considered interactively and feedbacks are 
included (Pietikäinen et al. 2018). To avoid inconsistent grid 
cell dimensions close to the poles, REMO uses a rotated 
grid. Horizontal grid cells are rotated on an Arakawa-C 
spherical grid and the Tiedtke comprehensive mass flux 
convective scheme is used to represent cumulus processes 
(Tiedtke 1989). Topography is taken from the Global 30 
Arc-Second Elevation Data Set (GTOPO30) (https​://doi.
org/10.5066/F7DF6​PQS) and a global land surface data-
set, including leaf area index, fractional vegetation cover, 
and surface albedo, provides the vegetation data required 
by the model (Hagemann et al. 1999; Hagemann 2002). In 
the standard configuration of REMO, glacier and ice sheets 
are represented by a static glacier mask (Kumar et al. 2015).

The atmospheric boundary conditions used for REMO 
come from three widely used GCMs available from the 
Coupled Model Intercomparison Project 5 (CMIP5) experi-
ment: HadGEM2-ES (Collins et al. 2011), MPI-ESM-LR 
(Jungclaus et al. 2013), and NCC-NorESM1-M (Bentsen 
et al. 2013). The REMO model topography of the study area 
is shown in Fig. 1b. Results from the REMO simulations 
driven, separately, by the three GCMs are hereafter referred 
to as Had_R, MPI_R, and NCC_R. Simulations driven by 
each GCM assume the low and high emission scenarios 

https://doi.org/10.5066/F7DF6PQS
https://doi.org/10.5066/F7DF6PQS
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(RCP2.6 and RCP8.5, respectively) from 1 to 1970 to 31 
December 2100, except Had_R which ends on 31 December 
2099. The 30-year period 1976–2005 is used as the histori-
cal period for model evaluation. Projected changes in mean 
and extreme temperature and precipitation for the periods 
2021–2040 (near-term period, NTP), 2041–2060 (mid-term 
period, MTP), and 2081–2100 (far-term period, FTP) are 
assessed relative to the 1986–2005 reference period (RF) 
over the YRB from the REMO simulations. To evaluate the 
performance of the REMO model, the three driving GCMs 
(hereafter Had, MPI, and NCC) for the historical period are 
also used.

2.2 � Observational dataset

The gridded daily air temperature and precipitation obser-
vation dataset CN05.1 with a spatial resolution of 0.25° × 
0.25° was used for model validation in this study (Wu and 
Gao 2013). The dataset covers all of mainland of China 
and spans the period 1961–2017. The CN05.1 dataset was 
generated through interpolation of observations recorded at 
over 2400 meteorological stations in China using thin-plate 
smoothing splines constrained by background climatology 
fields followed by topographical correction. The dataset is 
temporally and spatially continuous and has been widely 
used in model validation studies for GCMs and RCMs (Gao 
et al. 2016; Shi et al. 2018; Wang et al. 2018b, 2020). In 
addition, we use geopotential height at 500 hPa derived from 
the ERA-Interim at a spatial resolution of 0.75° for the RF 
(1986–2005) (Dee et al. 2011).

2.3 � Method

The RCM and GCM simulations were bilinearly interpo-
lated into the CN05.1 grid for comparison with the observa-
tion data. Topographical corrections for air temperature in 
the historical period used an assumed lapse rare of 0.65 °C 
100 m−1. To better reflect uncertainty, we calculated the 
ensemble mean (ENS) (Zhou and Yu 2006) and spread 
(defined by minimum and maximum change) of the three 
REMO simulations to describe the simulated climate pat-
terns and changes. Clearly, this three-member ensemble 
does not show the full spread of potential outcome and 
should therefore be considered as a first attempt to sample 
represent the uncertainty range. We used a Taylor diagram 
(Taylor 2001) to assess differences between the RCM and 
GCM simulated and observed data to evaluate the REMO 
model performance. A Taylor diagram shows the ratio of the 
standard deviations for the model and observation data, and 
the correlation coefficient (CC) and the root-mean-square 
difference (RMSD) between the model and observation data.

Changes in extreme values for some climate fields are of 
greater importance than changes in the mean. In this work, 

we therefore used six indices for climate extremes, defined 
according to the expert team on climate change detection and 
indices (ETCCDI) (Kiktev et al. 2003; Shi et al. 2018), to 
validate model performance in capturing observed extremes, 
and to assess the future changes projected for extreme 
events. The indices comprise three temperature-related 
indices: the warmest day (TXx), the coldest night (TNn), 
and the number of frost days (FD); and three precipitation-
related indices: the daily precipitation intensity (SDII), the 
maximum number of consecutive dry days (CDD), and the 
maximum 5-day precipitation (RX5day). Note that FD is 
not indicative of extreme event in the YRB according to the 
regionally averaged value (Table 1), although it is kept as 
a special condition in the study because of its importance 
for agriculture activities, ecosystems, and human societies. 
Detailed information on the extreme indices is presented in 
Table 2.

3 � Results

3.1 � Evaluation of the regional climate model REMO

3.1.1 � Air temperature

We assess how well the RCM reproduces the observed cli-
mate by analyzing biases in the three REMO simulations 
driven by the different GCMs for the historical period 
1976–2005, relative to observations for the four seasons 
(Fig. 2). Biases for the three GCM simulations are also 
shown. There are differences between the biases for each of 
the three GCMs, relative to the observations. There is a cold 
bias in December–February (DJF) and a large warm bias in 
June–August (JJA) in the YRB in the Had simulations, while 
in the NCC simulations there is a cold bias in DJF and Sep-
tember–November (SON), and the MPI simulation includes 
a warm bias for all four seasons (Fig. 2c). The relatively flat 
topography of the GCMs introduces a warmer bias as the 
cooler air over high mountains is not captured, for example 
in the Qilian Mountains (although those are not located in 
our study area).

There is a clear cold bias of approximately 2 °C in the 
source region of the YR (hereafter referred to as the source 
region) in the Had_R and MPI_R simulations in DJF, and 
a much larger cold bias in the NCC_R simulations for this 
high-altitude area. This cold bias is present for all seasons, 
but is greatest in DJF. It may be inherited from the GCMs 
(Had and NCC), and or be attributable to inadequate repre-
sentation of physical processes (Remedio et al. 2019; Tapia-
dor et al. 2020) such as topographic forcing and snow cover, 
which may be overestimated (Pang et al. 2020). A further 
source of this apparent bias may be related to the fact that 
the meteorological stations are located in valley areas and 
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the observation data may therefore include a warm bias for 
high altitude areas (Wang et al. 2016). With the exception of 
JJA, there are some warm biases over the rest of simulated 
domain. The warm biases in the MPI_R simulations can 
be partly attributed to the warm biases in the MPI simu-
lations. Relative to the other seasons, the temperature dif-
ference in JJA is fairly homogeneous throughout the YRB 
(around ± 1 °C). The downscaled simulations have signifi-
cantly weaker overall biases than the GCM simulations, 
but have a greater cold bias in the upper reaches, which is 
a high altitude area. This shows that topographic forcing 
and local physical processes such as snow-albedo feedback 
plays important roles. The overall air temperature difference 
between the ensemble mean (ENS) and observation data 
ranges from − 0.1 to 1.2 °C.

For a more quantitative and systematic evaluation, we 
used a Taylor diagram to expound the skill of the REMO 

simulations (Fig. 3). All three REMO simulations success-
fully reproduced the spatial distribution of temperature with 
CCs greater than 0.90. With the exception of DJF, the CCs 
are greater than those in the GCM simulations, denoting the 
REMO improves the ability in capturing the spatial pattern 
of temperature. The REMO simulations are more variable 
than observations and the GCM simulations in all seasons, 
as shown by the difference in the standard deviations, and 
consistently reproduce JJA temperature with the greatest 
skill, as shown by the highest CC and smallest RMSD. Com-
pared with the GCM simulations, the REMO simulations 
perform much better except in DJF, as indicated by higher 
CCs and smaller RMSDs. The skill of the ENSs is mixed 
results, with the smaller bias for JJA than the individual 
REMO simulations, but larger biases for some areas in some 
seasons. The ENSs reproduce the spatial variability in tem-
perature throughout the YRB reasonably skillful.

Table 1   Regional mean extremes (unit see Table 2) in the RF (1986–2005) and their changes for each future period relative to the RF under RCP 
2.6 and RCP 8.5

Simulated values are the averages of three RCMs simulations. Values in bold are statistically significant at the 95% confidence level. Values in 
square bracket indicate the spreads of the three REMO simulations. According to the regionally averaged value, FD is not an index to indicate an 
extreme event in the YRB but is still remained as a special condition due to its importance for agriculture, ecosystems, and human health

RF NTP MTP FTP

OBS REMO RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5

TXx (°C) 30.2 30.3 1.2 [0.9–1.5] 1.2 [1.0–1.5] 1.4 [1.1–2.0] 2.3 [2.3–2.4] 1.4 [1.2–1.5] 5.3 [4.8–5.8]
TNn (°C) − 23.2 -24.3 1.0 [0.7–1.5] 1.3 [− 0.1 to 

2.7]
2.3 [1.9–2.8] 2.6 [2.3–2.7] 1.4 [0.7–2.8] 6.8 [6.5–7.2]

FD (days) 188.6 176.4 − 12.1 [− 15.8 
to − 7.8]

− 14.4 [− 16.8 
to − 12.0]

− 14.6 [− 18.9 
to − 10.8]

− 25.6 [− 27.9 
to − 21.2]

− 12.5 [− 15.5 
to − 11.1]

− 52.5 [− 60.0 to 
− 43.9]

SDII (%) 5.4 7.4 − 0.4 [− 1.4 to 
0.4]

1.1 [− 0.4 to 
2.2]

3.2 [1.7–4.3] 2.9 [1.4–5.9] 1.2 [− 0.2 to 
3.4]

11.2 [7.2–17.6]

CDD (%) 58.2 42.1 − 4.4 [− 11.3 to 
− 1.2]

− 4.0 [− 10.9 to 
1.5]

− 2.4 [-4.5 to 
− 0.8]

− 7.4 [− 8.3 to 
− 6.4]

0.0 [− 4.9 to 
4.1]

− 3.1 [− 8.2 to 
− 0.7]

RX5day (%) 51.6 80.7 − 1.0 [− 2.2 to 
1.1]

0.8 [− 2.9 to 
4.5]

2.5 [0.5–5.8] 1.8 [− 4.8 to 
6.0]

0.7 [− 2.7 to 
4.7]

11.8 [3.4–25.3]

Table 2   Definition and calculation of selected six climate extreme temperature and precipitation indices

Indices name Definition and calculation Unit

TXx Maximum value of daily maximum temperature. Let TXxij be the daily maximum temperatures in month i, period j. 
The maximum daily maximum temperature in period j is then TXxj  = max (TXxji)

°C

TNn Minimum value of daily minimum temperature. Let TNnij be the daily minimum temperatures in month i, period j, 
then the minimum daily minimum temperature in period j is TNnj  = min (TNnji)

°C

FD The annual number of frost days when the absolute TN (daily minimum temperature) is less than 0 °C. Let TNi,j be 
daily minimum temperature on day i in year j, the number of days where TNi,j < 0 °C is counted

days

SDII Simple precipitation intensity index. Let PRwj be the daily precipitation amount on wet days (PR ≥ 1 mm) in period j. 
If W represents the number of wet days in j, then SDIIj =

∑W

w=1
PRwj∕W

mm day−1

CDD Maximum number of consecutive dry days (daily precipitation amount < 1 mm). Let PRij be the daily precipitation 
amount on day i in period j, the largest number of consecutive days where PRij < 1 mm is counted

days

RX5day Maximum consecutive 5-day precipitation. Let PRkj be the precipitation amount for the 5-day interval ending on day 
k, in period j. The maximum 5-day values for period j are RX5dayj = max (PRkj)

mm
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3.1.2 � Precipitation

In Fig. 4, the precipitation bias, relative to the observation 
data, is compared for the three GCMs and for REMO forced 
by the three GCMs. The three GCM simulations have a sig-
nificant wet bias in all four seasons with the exception of 
Had during JJA showing a mixture of negative and positive 
biases. This wet bias is greatest in the NCC simulations, and 
is particularly high in JJA and SON. The REMO simulations 
consistently overestimate precipitation for the YRB in DJF 
and March–May (MAM), especially for high elevation areas 
of the source region with complex terrain. The Had_R simu-
lations have a wet bias in the source region but a dry bias for 
the rest of the study area in JJA and SON, while precipitation 
for these seasons is underestimated for most of the YRB in 
the MPI_R simulations, and there is a wet bias through-
out the area for these seasons in the NCC_R simulations. 
The wet bias probably stems partially from overestimated 
precipitation for the YRB in the GCMs used to force the 
REMO simulations but may also be attributed to errors in 
REMO as it has been showed to overestimate moisture influx 
in ERA-Interim driven simulations (Pang et al. 2020). The 
wet bias may also reflect underestimated precipitation in the 
observation data, which were not corrected for rain gauge 
measurements under-catch (Wu and Gao 2013; Wang et al. 
2018b) and therefore likely underestimate the real precipita-
tion amount, particularly for solid precipitation in the cold 
season. The REMO simulations generally have a lower wet 
bias than the GCMs in the YRB and so capture precipitation 
more realistically. With the exception of JJA, precipitation 
is overestimated in the ENSs. Biases are somewhat reduced 
in the ENSs, relative to the individual REMO simulations.

Figure 3b shows that the REMO simulated precipita-
tion for DJF does not agree with observations at the basin 
scale, especially for the Had_R and NCC_R simulations, 
which correspond to low CCs and high spatial standard 
deviations when compared to the observation data. This 
is because these two models produce two large rainfall 
centers in the western YRB that do not appear in the obser-
vation data (Fig. 4). REMO simulates precipitation with 
greater skill for the wet season, particularly in JJA when 
the CC and RMSD between the simulations and observa-
tions are high and low, respectively. The MPI_R simula-
tions reproduce precipitation with the greatest skill, corre-
sponding to a CC ranging from 0.67 to 0.85 and a ratio of 
standard deviations of between 1.3 and 3.6. Overall, except 
in JJA, the REMO simulations show no clear improve-
ments over the GCM runs in reproducing the spatial pat-
tern of precipitation in terms of the ensemble means of 
model simulations.

The anomalous rainfall centers simulated in the west-
ern YRB (Fig. 4e, g) are likely to be related to the climate 
effect of lakes. Previous studies have shown that surface 
temperature is generally higher for a lake than for the sur-
rounding land. A relatively warm lake surface can influence 
precipitation through enhanced low-level convergence and 
updraft over the lake, which supplies energy and moisture 
that can drive the development of convective precipitation 
(Dai et al. 2018). The bias associated with this is smaller 
for the MPI_R simulations than for the other two REMO 
simulations, possibly because the air temperature in the MPI 
simulations are warmer than in the other two GCMs, mak-
ing air and lake temperatures more similar and reducing the 
lake effect on precipitation, relative to the other simulations.

Fig. 2   a Air temperature from observations (OBS), and differences 
between the simulations and OBS over the YRB for the period 1976–
2005: b–d from the GCMs, e–g for the corresponding RCMs, h for 
the ensemble mean of the three RCM simulations. The regional mean 

difference is marked at each upper right corner of the panel. The 
black dots denote differences statistically significant at the 95% confi-
dence level according to the two-tailed Student’s t test
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Fig. 3   Taylor diagram for the spatial variability of annual and sea-
sonal mean a air temperature and b precipitation and c, d their 
extreme indices. The radial distance from the origin is the ratio 
between the simulated and observed standard deviation for tempera-
ture and precipitation. The azimuthal position is the correlation coef-

ficient between the simulations and observations. The distance from 
the REF point indicates the normalized centered RMSE. REF is the 
CN05.1 data set. ENS_GCM and ENS denote the ensemble mean of 
the three GCM and REMO simulations, respectively. The numbers 
denote seasons in a, b and extreme climate indices in c, d 

Fig. 4   As Fig. 2, but for precipitation
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3.1.3 � Climate extreme indices

Figure 5 shows the observed and simulated extreme tem-
perature indices over the YRB for the historical period 
1976–2005. Both TXx and TNn decrease with altitude and 
FD increases with altitude in both the observations and the 
simulations. The highest TXx value is over 30 °C, which 
occurs in the middle reaches of the YRB where altitudes 
are relatively low (Fig. 5a). The simulated values are higher 
than the observations for the middle reaches of the YRB. 
TNn is low in high altitude areas, and the simulated TNn 
values are much lower than the observations for the source 
region (Fig. 5b). Values for FD are high for the source 
region, where they exceed 240 days (Fig. 5c). FD values are 
underestimated in the middle reaches by the three models 
(Fig. 5d), which may be due to the warm bias in the REMO 
simulations. The REMO simulations overestimate FD in the 
source region by up to around 40 days, which follows from 

the cold temperature bias. The ENSs for the simulations 
reproduce the spatial pattern of the extreme temperature 
indices well and reduce some model biases, relative to the 
individual simulations. The high CC values (> 0.78) in the 
Taylor diagram (Fig. 3c) show that spatial patterns for the 
extreme temperature indices are simulated by REMO well. 
The standard deviation for the REMO simulated temperature 
indices is much higher than for the observed and the GCM 
simulated values, especially for TNn, indicating greater 
spatial variability in the REMO simulations. In general, the 
GCM simulations produce lower spatial CCs and higher 
RMSDs for temperature indices except for TNn than the 
REMO simulations, suggesting the downscaled simulations 
show evident advantage over the GCM runs in reproducing 
TXx and FD.

There is a clear latitudinal gradient in the observed 
extreme precipitation indices (Fig. 6), which is consistent 
with the observed precipitation pattern. Values for SDII and 

Fig. 5   Spatial distributions of the extreme temperature indices from 
OBS, Had_R, MPI_R, and NCC_R over the YRB during the period 
1976–2005. The differences in FD between the model simulation and 

OBS are shown in the last column. The black dots denote differences 
statistically significant at the 95% confidence level according to the 
two-tailed Student’s t test
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RX5day decrease from southeast to northwest in the YRB, 
while values for CDD increase gradually. All the REMO 
simulations successfully capture the spatial distribution of 
extreme precipitation indices, with CC values for SDII that 
exceed 0.73 (Fig. 3d). However, SDII is overestimated by 
approximately 1.0–2.0 mm day−1 in all the simulations. The 
standard deviations for the simulated SDII values are greater 
than one, except for Had_R, which suggests that REMO 
overestimates spatial variability for SDII. The drought 
index, CDD, has an observed value of 58 days in the YRB 

on average. The models reproduce the general patterns for 
CDD, with CC values greater than 0.54 between NCC_R and 
the observations, although the Had_R simulations underesti-
mate CDD in the southern YRB. There is a wide inter-model 
spread in REMO simulated RX5day values (Fig. 3d), which 
are overestimated in all three REMO simulations, notably 
in the southeastern YRB (Fig. 6c). Discrepancies between 
simulated and observed extreme precipitation indices are 
in accord with the wet bias in the simulations that was dis-
cussed earlier (Fig. 4). Again, large biases are seen for the 

Fig. 6   As Fig. 5, but for the extreme precipitation indices
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lakes in the western part of the domain as also discussed for 
average precipitation (Fig. 4). For SDII and RX5day, the 
REMO simulations outperform the GCM simulations, as 
indicated by high CCs and small RMSDs for the ENSs and 
individual REMO simulations (except for Had_R in simulat-
ing RX5day).

To summarize, the REMO simulations are generally in 
agreement with the observed mean and extreme, although 
some significant biases exist. Temperature is captured more 
realistically than precipitation in the simulations. The abil-
ity of REMO to reproduce temperature and precipitation 
climatologies varies spatially and temporally over the YRB. 
The ENSs outperform most of the individual model simula-
tions of historical climate, and the analysis of future climate 
presented in the next section therefore mainly focuses on 
projections from the ENSs. The projections from the three 
REMO simulations are also provided in the supplementary 
materials (Figs. S1–S9), meanwhile, the similarities and dif-
ferences among the models are discussed in the text to enrich 
the projection results.

3.2 � Projected future climate changes

3.2.1 � Changes in air temperature

Seasonal temperature differences between three future peri-
ods and the RF are shown in Fig. 7 for the ENS projections, 

with two assumed RCP scenarios. Under RCP 2.6, tempera-
ture increases in the YRB are more significant in high alti-
tude areas in DJF and are spatially homogenous in JJA. Rela-
tive to temperatures in the RF, the increase is greatest for the 
MTP, when it reaches 1.5–2.0 °C (Fig. 7b), despite the peak 
in GHG emissions occurring between 2010 and 2020 in RCP 
2.6, and the concentrations continue to increase implying the 
peak in forcing is later (2030s–2040s). The magnitude of the 
warming decreases thereafter as GHG emissions decrease.

For the NTP, warming under RCP 8.5 is similar to warm-
ing under RCP 2.6 in the YRB, with differences between the 
two ranging from − 0.5 to 0.5 °C (Fig. 7d). Unsurprisingly, 
a significant rise in temperature results from the increasing 
GHG emissions in the FTP under RCP 8.5, particularly in 
the source region. Compared to temperatures in the RF, the 
regional average temperature would significantly increase 
by 5.6 °C in DJF, by 4.9 °C in MAM, by 5.3 °C in JJA, and 
by 5.4 °C in SON by the end of twenty first century under 
high emissions scenario RCP 8.5 (Table 3). In the FTP, mean 
annual temperatures would be 5.3 °C higher than in the RF, 
with a spread of 4.3–6.6 °C.

There are spatial and temporal differences in the magni-
tude of the warming projected by the individual model simu-
lations and Had_R generally simulates a stronger warming 
than MPI_R or NCC_R. The highest spread for the projected 
warming is for SON under RCP 8.5 for the FTP (Table 3). 
All three models simulate remarkably consistent and notable 

Fig. 7   Projected changes in seasonal air temperature for the NTP 
(2021–2040), MTP (2041–2060), and FTP (2081–2100), relative to 
the RF (1986–2005) under RCP 2.6 and differences in temperature 
between RCP 8.5 and RCP 2.6 for the same periods using the average 

of the three REMO simulations. The black dots denote differences 
statistically significant at the 95% confidence level according to the 
two-tailed Student’s t test
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warming under both RCP 2.6 and RCP 8.5, with significant 
increases in the source region under RCP 8.5 (Figs. S1–S3).

Monthly mean temperatures would increase with increas-
ing GHG emissions, but the temperature difference, relative 
to the RF, would be greatest in the winter months under 
RCP 8.5 (Fig. 8a). Under low emissions scenario RCP 2.6, 
temperatures would decrease somewhat (by 0.2 °C in MAM, 
at a confidence level exceeding 95%) by the end of this cen-
tury relative to the MTP, which follows the trajectory of 
the applied radiative forcing in RCP 2.6 (Meinshausen et al. 
2011). Monthly temperature increases under RCP 2.6 are 
less rapid than under RCP 8.5 for all the three future periods.

3.2.2 � Changes in precipitation

Figure 9 shows the projected changes in seasonal mean 
precipitation for the NTP, MTP, and FTP, relative to the 
RF under the RCP 2.6 and RCP 8.5 scenarios. The ENS 
results show increases in DJF and under both RCP scenar-
ios, although the precipitation amount remains small. The 
increases occur mainly in the middle reaches of the YRB. 
Under RCP 2.6, precipitation across the YRB can be 17% 
higher than in the RF by the middle of the century (Table 3), 
while increases under RCP 8.5 are greater and can be 34% 
higher than in the RF by the end of the century. For MAM, 
changes are mostly small and insignificant under RCP 2.6, 
however, there is a fraction of significant increase in the mid-
century. Under RCP 8.5, a gradual increase in precipitation 
is projected throughout the century. A patchy spatial pattern 
is simulated across the YRB for precipitation changes in 

JJA and SON under RCP 8.5, including small increases and 
small decreases. The projected change to regional average 
precipitation in JJA is a decrease under both RCP 2.6 and 
RCP 8.5, but this is not significant at the 95% confidence 
level. Precipitation in SON is projected to decrease slightly 
under RCP 2.6 but to increase under RCP 8.5. Under RCP 
8.5, precipitation is projected to decrease by 2.4% in JJA, 
and to increase by 3.2% in SON by the end of the century 
(Table 3).

The three REMO model simulations are consistent in 
projecting increases in precipitation in DJF (Figs. S4–6). 
Among the three simulations, more DJF precipitation is 
simulated by NCC_R for the NTP under RCP 2.6 and for 
the FTP under RCP 8.5. In the Had_R simulations, precipita-
tion increases in DJF and SON for the NTP are higher under 

Table 3   Regional mean air temperature (°C) and precipitation (mm day−1) in the RF (1986–2005) from OBS and the average of the three simu-
lations and their changes (Tair: °C, Prec: %) for each future period and each season relative to the RF under RCP 2.6 and RCP 8.5 scenarios

Bold values indicate statistically significant at the 95% confidence level. Values in square brackets indicate the spreads of the three REMO simu-
lations

Season Variable RF NTP MTP FTP

OBS REMO RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5

DJF Tair − 7.8 − 7.3 1.5 [1.0–2.4] 1.5 [1.0–1.9] 2.0 [1.4–2.9] 2.8 [2.4–3.6] 1.5 [0.7–2.3] 5.6 [4.7–6.6]
Prec 0.2 0.6 19.1 [9.7–26.9] 25.0[ 15.2–

49.9]
17.0 [12.6–

22.4]
26.3 [19.8–

31.7]
11.4 [− 0.5 to 

22.8]
33.7 [29.3–37.6]

MAM Tair 6.3 6.1 1.3 [0.8–2.1] 1.4 [0.9–2.4] 1.5 [1.0–2.4] 2.4 [1.8–3.1] 1.2 [0.8–1.9] 4.9 [4.0–6.1]
Prec 0.9 1.6 − 4.3 [− 10.2 to 

− 1.2]
3.7 [-3.0–11.6] 5.4 [− 6.2 to 

10.9]
7.6 [0.9–11.5] 1.4 [− 0.1 to 

3.2]
6.2 [− 2.9 to 

13.9]
JJA Tair 17.2 16.4 1.5 [1.1–2.3] 1.6 [1.2–2.1] 1.7 [1.2–2.7] 2.7 [2.3–3.2] 1.6 [1.2–2.3] 5.3 [4.5–6.3]

Prec 2.7 3.0 − 4.2 [− 5.6 to 
− 1.3]

− 1.4 [− 2.8 to  
− 0.8]

− 2.2 [− 5.9 to 
3.2]

− 2.4 [− 7.0 to 
4.2]

− 2.3 [− 8.2 to 
5.1]

− 2.4 [− 10.0 to 
13.1]

SON Tair 5.2 5.3 1.5 [0.8–2.6] 1.7 [1.0–2.7] 1.7 [1.1–2.7] 2.6 [1.8–3.7] 1.4 [0.9–2.3] 5.4 [4.1–7.1]
Prec 1.1 1.4 4.8 [0.8–11.3] 2.9 [− 4.3 to 

16.7]
− 0.2 [− 7.9 to 

11.3]
4.5 [1.3–12.3] − 0.9 [− 4.0 to 

6.1]
3.2 [− 8.4 to 7.3]

Annual Tair 5.2 5.1 1.5 [0.9–2.3] 1.6 [1.2–2.3] 1.7 [1.2–2.7] 2.6  [2.1–3.4] 1.5 [1.0–2.2] 5.3 [4.3–6.6]
Prec 1.2 1.7 − 0.2 [− 1.9 to 

2.0]
3.0 [1.9–5.8] 1.7 [1.2–2.8] 3.8 [1.5–6.4] 0.1 [− 4.7 to 

4.5]
3.8 [− 4.8 to 

14.7]

Fig. 8   Annual air temperature and precipitation cycles over the YRB 
for the RF (blue lines and left axis) and monthly changes (right axis) 
in a temperature and b precipitation for the NTP, MTP, and FTP, rela-
tive to the RF under RCP 2.6 (dash lines) and under RCP 8.5 (solid 
lines). The black dashed line denotes the zero-reference line corre-
sponding to the right axis
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RCP 2.6 than under RCP 8.5, whereas precipitation in the 
MPI_R and NCC_R simulations is higher for the NTP under 
RCP 8.5 than under RCP 2.6, with the exception of JJA. 
Decreases in precipitation are projected in JJA and SON for 
the FTP in the MPI_R simulations under RCP 8.5. There are 
large spreads associated with the three precipitation simula-
tions, particularly in JJA and SON, including spread over the 
sign of the change, i.e., whether precipitation will increase 
or decrease.

Figure 8b shows the changes in monthly mean precipita-
tion for the three future periods under the two emissions 
scenarios. Precipitation is projected to increase strongly 
for winter and spring months under RCP 8.5. In agreement 
with results discussed above, precipitation between March 
and August is projected be lower in the NTP than in the 
RF under RCP 2.6, and to be slightly lower for June and 
July in the MTP and FTP than in the RF under RCP 8.5. 
These suggest that the annual cycle of precipitation will 
likely decrease due to the significant increase in precipita-
tion amount in dry season instead of wet season.

Changes to precipitation variability may provide triggers 
for extreme events such as floods and droughts. Figure 10 
shows the projected changes in the interannual variability 
for precipitation, presented as the changes in standard devia-
tion for seasonal precipitation for the NTP, MTP, and FTP, 
relative to the RF. There are clear increases in the standard 
deviation for precipitation over most of the YRB in DJF and 
some patchy increases in MAM under RCP 2.6. Changes in 
the variability for JJA and SON are mostly decreases, but 
these are not significant at the 95% confidence level. Under 

RCP 8.5, model results show large increases in the stand-
ard deviation for precipitation over most of the YRB, with 
DJF exceeding the 95% confidence level, although there are 
some decreases in SON for the NTP and MTP. This shows 
that interannual precipitation variability, particularly in DJF, 
changes markedly in response to warming, which is likely to 
lead to significant changes in precipitation extremes.

3.2.3 � Changes in extreme climate indices

Changes projected under RCP 2.6 for the three extreme 
temperature and precipitation indices for the three future 
periods, relative to the RF, are shown in Fig. 11. Along with 
the mean temperature increases, TXx and TNn increase con-
sistently, by an average of 1.2 °C and 1.0 °C for the NTP, 
respectively (Table 1). In the MTP, the increase in TNn is 
higher than that in TXx over most of the YRB. Under RCP 
2.6, FD is projected to gradually decrease and peak for the 
MTP (Fig. 11e; Table 1). Changes to the extreme temper-
ature indices are projected to be much larger under RCP 
8.5 than under RCP 2.6. Significant increases in TXx and 
TNn are projected for the mid and late twenty first century, 
and decreases are projected for FD. Increases in TXx under 
RCP 8.5 resemble those of under RCP 2.6, but with a higher 
increase for the FTP under RCP 8.5. The TNn increases are 
projected for the whole region, particularly for the source 
region and eastern YRB in the FTP. Under RCP 8.5, the 
magnitude of the increase in TNn is greater than the increase 
in TXx for each of these future periods, with an average 
increase of 5.3 °C and 6.8 °C for TXx and TNn in the late 

Fig. 9   As Fig. 7, but for precipitation
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twenty first century, relative to the RF. The regionally aver-
aged increases in TXx and TNn for the YRB in the FTP 
under RCP 8.5 are comparable to the average increase pro-
jected over all of China from RegCM4 simulations driven by 
HadGEM2-ES (Shi et al. 2018). More intense decreases in 
FD also in the source region than in other areas. Under RCP 
8.5, the regionally averaged decrease in FD is approximately 
53 days by the end of twenty first century, which is twice the 
decrease of 26 days for the MTP (Table 1).

As for extreme precipitation indices, SDII is projected 
to increase, exceeding 0.5 mm day−1 under RCP 8.5 by the 
end of the century, with the largest increase occurs in the 
middle reaches (Fig. 11h). Under high emissions scenario 
RCP 8.5, SDII is projected to significantly increase by 
3% and 11% for the MTP and FTP in the YRB (Table 1). 
The projected increase in precipitation intensity is gener-
ally in accord with the theory that precipitation increases 
with rising temperature, following the Clausius–Clap-
eyron equation (Trenberth 2011). The decline in CDD 
is projected to weaken and then to become an increase 
for the FTP under RCP 2.6 (Fig. 11i). Under RCP 8.5, 
CDD would continue to significantly decrease, reaching a 
minimum for the MTP, and then remaining lower for the 
FTP, meaning that drought would be less persistent in the 
YRB. Under RCP 2.6, RX5day is projected to decrease 
slightly for most of the region, but to increase for the 
middle reaches (Fig. 11k). Under RCP 8.5, the projection 

exhibits a strong increase for the FTP (by 12%, significant 
at the 95% confidence level) throughout most of the YRB. 
These increases in extreme precipitation, in terms of rain 
intensity and rain events, are likely to increase flood risk.

The discrepancies between the changes projected for 
extreme temperature events exist in the three REMO 
simulations (Figs. S7–9). For example, the amplitude 
and spatial distribution of changes to TNn in the NTP are 
different: there are some decreases in the Had_R simula-
tions under RCP 8.5, while there is a clear increase in 
the NCC_R simulations. The three simulations all display 
significant decreases in FD for the upper reaches. The 
magnitude of changes simulated under RCP 8.5 for the 
FTP differs between the simulations, but the simulated 
trends converge.

With regard to the projected extreme precipitation indi-
ces (Figs. S7–9), under RCP 8.5, Had_R simulates the 
largest increases for SDII and RX5day and MPI_R simu-
lates the strongest decrease for CDD. The spread between 
the three simulations shows that large uncertainties should 
be associated with the extreme precipitation event simula-
tions. However, as integration time and emissions increase, 
the tendencies for the indices simulated by the different 
models become consistent, with positive changes for SDII 
and RX5day and negative changes for CDD for the FTP, 
relative to the RF.

Fig. 10   Projected changes in the standard deviation for seasonal pre-
cipitation for the NTP (2021–2040), MTP (2041–2060), and FTP 
(2081–2100), relative to the RF (1986–2005) under RCP 2.6 and RCP 

8.5 according to the average of the three REMO simulations. The 
black dots denote differences statistically significant at the 95% confi-
dence level according to the two-tailed Student’s t test
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3.2.4 � Elevation dependency of changes in mean climate 
and extreme events

In this section, the relationships between elevation and 
changes in seasonal mean temperature and extreme temper-
ature indices are investigated for the three future periods, 
relative to the RF. The increases in mean temperature have 
a clear elevation dependency in all seasons except in JJA 
(Fig. 12), indicating that the projected increases in mean 
temperature are amplified with elevation. This is particularly 
true in DJF under RCP 8.5, with a linear trend of 0.6 °C 
km−1 for the FTP relative to the RF, followed by MAM. 
In JJA, the increase in mean temperature decreases slightly 
with elevation. In SON, there is no elevation dependency 
for the increase in mean temperature below approximately 
2000 m. When it comes to extreme temperature, the increase 
in TXx decreases rapidly with the elevation at altitudes 
below around 2000 m, and remains slightly decreasing at 
altitudes above 2000 m under RCP 2.6 (Fig. 13). Under RCP 

8.5, the increase of TXx deceases with elevation, at a rate of 
0.3 °C km−1 for the FTP. The elevation dependency of the 
increase in TNn is clear for the NTP, and reaches a mini-
mum for the FTP under RCP 8.5. As elevation increases, 
the decline in FD increases significantly. Under RCP 2.6, 
the elevation dependency of the FD decrease is similar in 
all three future periods. The elevation dependency of the 
decrease in FD is stronger under RCP 8.5 than under RCP 
2.6, and strengthens as integration time increase. The linear 
trend in FD decreases with elevation reaches 7 days km−1 
for the FTP under RCP 8.5.

3.3 � Possible mechanisms influencing future climate 
change

3.3.1 � Changes in surface snow amount

Temperature increases are greater at higher altitudes, which 
is a phenomenon known as elevation-dependent warming 

Fig. 11   Projected changes in TXx, TNn, FD, SDII, CDD, and 
RX5day for the NTP (2021–2040), MTP (2041–2060), and FTP 
(2081–2100) relative to the RF (1986–2005) under RCP 2.6 (upper) 
and under 8.5 (lower) according to the ensemble means of the three 

REMO simulations. The black dots in TXx, TNn, and FD indicate 
differences statistically significant at the 95% confidence level, and 
black dots in SDII, CDD, and RX5day indicate differences statisti-
cally significant at the 90% confidence level
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(Pepin et  al. 2015). As shown in Fig. 14, surface snow 
amounts in areas at high elevation, including the source 
region, reduces as temperatures increase, resulting in a 
decreased surface albedo, and so allowing more solar radia-
tion to heat the surface. This positive albedo feedback leads 
to more pronounced temperature rises and to a decline in 
FD in the source region, especially in DJF and MAM, when 
most of the higher elevation regions of the YRB, includ-
ing glacier and snow-covered areas, receive solid precipita-
tion (Yang et al. 2019). The projected warming in DJF and 
MAM is likely to drive changes to the fractional distribution 
of solid and total precipitation (Leung et al. 2004; Pavel-
sky et al. 2012; Dimri et al. 2018). In a warmer climate, a 
greater proportion of precipitation is speculated to fall as 
rain, rather than snow, and so the projected temperature and 

precipitation increases in the YRB will drive a decrease in 
snow accumulation. The change to the proportion of precipi-
tation that falls as snow under a warming climate warrants 
further study.

3.3.2 � Changes to large scale atmospheric circulation

In the section, we assess simulated large-scale atmospheric 
circulation in the ENS to investigate drivers for the pro-
jected changes. We compare 500 hPa geopotential height 
field, winds, specific humidity and moisture flux conver-
gence at 850 hPa under the two RCP scenarios over the 
much larger CORDEX East Asia domain. Given precipita-
tion varies between the three future periods that we have 

Fig. 12   Scatter plot between seasonal mean temperature change and elevation in the YRB. The gradient of the linear trend (°C 100 m− 1) is 
marked on each panel. All trends are significant at the confidence level of 95% according to a two-tailed Student’s t test (except for a trend of 0)

Fig. 13   As Fig. 12, but for 
temperature-related extreme 
indices, TXx (°C 100 m− 1), 
TNn (°C 100 m− 1), and FD 
(days 100 m− 1). The gradients 
for the linear trends are shown 
in each panel and all trends are 
significant at the 95% confi-
dence level
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looked at, we focus here on large-scale changes for the 
FTP, relative to the RF.

The so-called East Asian Trough (EAT), a feature of the 
500 hPa geopotential height (GPH), occurs to the east of 
the Eurasian continent and modulates the climate over east 
Asia during the cold season. The trough line is most com-
monly located around 140° E during winter, and is aligned 
along a northwest–southeast axis north of approximately 
50° N, and along a northeast–southwest axis south of 50° 
N (Wang et al. 2009). West of the EAT, large-scale sinking 
motion gives rise to strong radiative cooling and contrib-
utes to the development of the Siberia High, which drives 
cold air movement during the boreal winter (Chen et al. 
2005; Song et al. 2016). The ENS is able to reproduce the 
main spatial distribution of GPH shown in ERA-Interim 
data for the RF (Fig. 15), although the ENS representa-
tion includes some underestimation of value and gradient 
in GPH, especially over the Pacific Ocean (around 40 m). 
The changes of GPH at 500 hPa manifest that the atmos-
phere is projected to warm and the GPH to increase over 
the entire domain, and a substantial increase would appear 
over high latitude areas in DJF, especially for the FTP 
under RCP 8.5. Specifically, a strong increase in the GPH 
appears over Northeast Asia, where the EAT exists dur-
ing the RF, meaning a weakening and northeastward shift 
of the EAT. This would make cold waves relatively less 
intense, which is consistent with the result of an earlier 
study that used CMIP5 GCMs (Xu et al. 2016). The simu-
lated weakening of EAT is likely to partially account for 

the projected increases in air temperature and TNn, and 
for the projected decrease in wintertime FD.

Precipitation extremes are widely recognized to increase 
proportionately to mean atmospheric water vapor content 
(O’Gorman and Schneider 2009). Specific humidity is pro-
jected to increase in response to higher temperatures, with 
particularly large increases in northern China and Mongolia 
during DJF and SON under RCP 8.5 (Fig. 16). The YRB 
would experience a continuous growth in specific humidity, 
which is relevant to the wider picture of climate change, 
however greater increases are seen in DJF and in the RCP 
8.5 simulation.

Westerly airflow dominates the mid-to high latitudes and 
the Asian monsoon dominates the circulation system over 
the Indian and Pacific oceans during the warm season. The 
ENS and the individual model simulations project much 
stronger southeasterly winds for the YRB in DJF under RCP 
2.6 and RCP 8.5 than were present in the RF (Fig. S11). The 
anomalous southeasterlies indicate a weaker winter mon-
soon and enhanced water vapor transport into the YRB. The 
convergence of warm and moist airflows with the prevailing 
cold northwesterly airflows is more likely to trigger precipi-
tation and reduce CDD. In MAM, the westerlies would be 
intensified, facilitating increased moisture transport into the 
YRB, which would contribute to an increase in precipitation.

A larger increase in 500 hPa GPH occurs over southwestern 
China and the southern Tibetan Plateau than the Indian Ocean 
in JJA (Fig. 15). The increased meridional gradient at 500 hPa 
strengthens the Indian monsoon circulation in the future, as 

Fig. 14   Projected changes in surface snow amount for the NTP 
(2021–2040), MTP (2041–2060), and FTP (2081–2100), relative to 
the RF (1986–2005) under RCP 2.6 and under RCP 8.5 according to 

the ensemble mean of the three REMO simulations. The black dots 
indicate differences statistically significant at the 95% confidence 
level
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indicated by 850 hPa winds in Fig. 16. However, moisture flux 
from the Bay of Bengal is weakened by coast mountain ranges 
and inland mountains and the increased circulation, analogous 
to the anticyclone, to the southeast of the YRB, is not favorable 
for moisture flux convergence (Fig. 16d), and actually results 
in decreased precipitation in the southern YRB. The three 
models diverge in their representation of the strength of the 
monsoon circulation under both emissions scenarios (Figs. 
S10, S11), leading to large uncertainties for simulated JJA 
precipitation. For example, the Indian monsoon is strongest in 
the Had_R simulations, which simulate the largest increases in 
mean and extreme precipitation. In contrast, the monsoon cir-
culation in the MPI_R simulations is weak and generates only 
minor changes in moisture. This combines with an anomalous 
anticyclonic circulation over the eastern YRB to significantly 
decrease precipitation in the RCP 8.5 simulations. In SON, the 
anomalous northeasterlies encounter with the southerlies dur-
ing the monsoon retreat period, contributing to the increased 
precipitation in the northeastern YRB under RCP 8.5.

4 � Discussion

Use of multi-RCM ensembles is an important way to provide 
more reliable projections of climate. However, only limited 
CORDEX RCM simulations for the East Asia domain are 

currently available. We thus discuss the projection results in 
this study in the light of simulations from other RCMs and 
CMIP5 GCMs ensemble simulations that cover the YRB. 
We focus on mean and extreme precipitation because of the 
high uncertainty associated with projections for precipita-
tion. Simulations form RegCM4, driven by Geophysical 
Fluid Dynamics Laboratory (GFDL) GCM, project a per-
sistent increase in annual precipitation between 2070 and 
2099 under RCP 4.5 and RCP 8.5 (Lu et al. 2019). The 
decrease in CDD projected in our study concurs with results 
from RegCM4 simulations driven by HadGEM2-ES, which 
project that the consecutive dry days will reduce in North 
China under RCP 8.5 (Shi et al. 2018). Multi-RCM ensem-
bles under the A1B scenario suggest the winter CDD will 
decline during the MTP (Niu et al. 2018). Four groups of 
RCM experiments (RegCM4 and WRF, separately driven 
by EC-Earth and IPSL-CM5A) project significant increases 
in RX5day for the MTP under RCP 8.5 (Hui et al. 2018). 
The RCM PRECIS, forced by HadGEM2-ES, projects posi-
tive trends in SDII from the 2050s to the 2080s under RCP 
8.5 (Zhu et al. 2018). Projections simulated using RegCM4 
show a strong increase in RX5day for the middle reaches of 
the YRB in the 2080s (Lu et al. 2019).

Results from an 11-number ensemble of CMIP5 GCMs 
show significant precipitation increases over the YRB for 
the MTP and FTP under RCP 2.6 and RCP 8.5 (Xu and 

Fig. 15   Spatial distributions of seasonal geopotential height at 
500  hPa for the RF (1986–2005) in a ERA-Interim and b ENS, 
and for the FTP (2081–2100), relative to RF, c under RCP 2.6 and 

d under RCP 8.5, respectively. The results for the RF and FTP are 
based on the ensemble means of the three REMO model simulations
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Xu 2012). The multi-model ensemble simulations suggest 
that precipitation in the YRB will become more abundant 
because precipitation increase will exceed 10% in the north-
ern YRB but be less than 10% for the rest of the area, the 
increase in SDII is projected to exceed 10% for the MTP 
(at a high confidence level) under RCP 4.5, CDD is pro-
jected to decrease by less than 10% (at a low confidence 
level) (Li et al. 2016). Under RCP 8.5, total precipitation 
and RX5day are projected to increase significantly, while 
there is no significant change projected for CDD (Zhou et al. 
2014). Projections of future climate from GCMs are gener-
ally more spatially homogeneous, whereas regional differ-
ences are apparent in RCMs. Overall, the changes projected 
for extreme precipitation indices suggest that in the future 
the YRB will experience fewer dry days (at a low confidence 
level) and SDII and RX5day will increase significantly, 
although the absolute increase in mean precipitation varies 
between the projections from RCMs and GCMs.

This study presents the results of one RCM driven, sepa-
rately, by three different GCMs. Although some comparisons 
are made with other RCM simulations, these comparisons 

should be treated with caution as the different simulations 
correspond to different driving GCMs, different emissions 
scenarios and different model configurations. Moreover, 
this study adopts 20-year time slice to investigate the future 
climate changes, following the current studies of climate 
projection and allowing other subsequent studies to compare 
the results. However, this aspect is likely to be subject to 
the impact of internal variability, especially for precipitation 
(Dai and Bloecker 2019). An alternative approach to narrow 
the effect is recommended to use longer time slice (Hawkins 
and Sutton 2016), such as the climatological standard nor-
mals (30 years). Besides, to enhance the reliability of future 
climate change projections, it is necessary to conduct large 
simulation ensembles using different RCMs forced by differ-
ent GCMs, and to consider simulations from the next genera-
tion of GCMs, CMIP6 GCMs (Jiang et al. 2020), because of 
several improvements in terms of spatial resolution, model 
performance, and model physics over CMIP5 models.

The current study area, the YRB, is far smaller than 
the CORDEX East Asian domain. Large-scale horizontal 
circulation changes caused by rising GHG concentrations 

Fig. 16   Spatial distribution of wind (m s− 1) and specific humidity at 
850  hPa for the RF (1986–2005) and changes to these for the FTP 
(2081–2100), relative to the RF, calculated from the ensemble means 
of the three REMO simulations under RCP 2.6 and under RCP 8.5. d 
Shows the projected changes in horizontal moisture flux convergence 

(MFC) at 850 hPa for the FTP, relative to the RF, under RCP 8.5. The 
dashed lines in a–c are contours representing 3000 m surface eleva-
tion. The gray dots indicate where changes in specific humidity b, c 
are significant at the 95% confidence level
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comprise the background for changes to climate in the 
YRB, especially for precipitation changes. Previous cli-
mate projection studies have shown that opposing changes 
to GPH may occur over land and ocean, leading to changes 
in atmospheric circulations and moisture transport over 
the mainland of China, and driving precipitation changes 
(Gao et al. 2011; Niu et al. 2018). In addition, land–atmos-
phere feedbacks, such as soil moisture–evapotranspira-
tion–precipitation, may be an important influencing factor 
(Liu et al. 2014). Local and vertical convection may also 
play a role since the REMO simulations show small-scale 
changes to moisture flux and convergence, driven by the 
fine-scale topographic forcing (Fig. 16d) and both precipita-
tion and evaporation are projected to intensify (Huntington 
2006; O’Gorman and Schneider 2009). Radiation forcing, 
caused by the spatially non-uniform increases in GHGs, is 
the primary driver for temperature increases in the source 
region, however local surface feedback like the snow albedo 
effect, are likely to amplify the warming at high elevations. 
Temperature increases during the cold season may also be 
partially driven by enhanced downward longwave radiation 
caused by increased surface water vapor, as suggested by 
Rangwala et al. (2013). The sensitivity of longwave radia-
tion to changes in surface water vapor increases with eleva-
tion (Ruckstuhl et al. 2007) and so increased moisture levels 
are likely to have a greater impact on downward longwave 
radiation at higher elevations, leading to greater increases 
in surface temperature in the high elevation source region.

The effect of lakes on climate is noted here. Large lakes 
play a significant role in regional climate because they can 
regulate the distribution of precipitation and initiate, and 
sometimes markedly increase, snow cover through lake-
effect snow (Dai et al. 2020). Figures 4 and 14 show some 
anomalies in precipitation and snow cover amount around 
the Qinghai Lake and Ngoring and Gyaring lakes in the 
source region, which are likely to be attributable to effects 
driven by the lakes. More investigation is needed to better 
understand the climatic significance of lakes. Convection-
permitting models with a horizontal grid spacing of less 
than 4 km can explicitly resolve convection and have been 
shown to offer improved representations of temperature and 
precipitation (Prein et al. 2015). These are therefore very 
promising tools for high-resolution modeling studies, such 
as investigations into the role of lakes in regional climate, 
and can be used to reduce uncertainties for future climate 
projections over the study area.

5 � Conclusions

In this study, we have evaluated REMO model simulations 
driven by the three GCMs (HadGEM2-ES, MPI-ESM-
LR, and NCC-NorESM1-M) through comparison with 

observations for the historical period, and have assessed 
future projected changes in both mean and extreme condi-
tions for the upper and middle reaches of the YRB under 
RCP 2.6 and RCP 8.5. REMO can well simulate the spatial 
distributions for the mean values and extremes of tempera-
ture and precipitation. Simulations of the mean and extreme 
temperature are more reliable than simulations of the mean 
and extreme precipitation, although there remain biases such 
as some underestimated temperature and overestimated pre-
cipitation. The downscaled simulations show clear advan-
tages over the GCM simulations in reproducing mean (tem-
perature and precipitation) and extreme conditions (TXx, 
FD, SDII, and RX5day), by either reduced biases or more 
realistic representation of spatial variations.

Mean temperature is projected to increase, especially 
for the YR source region and in DJF. Future temperature is 
likely to increase initially up to a peak, after which it will 
decrease slightly under RCP 2.6. Under RCP 8.5, warming 
is projected to accelerate in the future, resulting in increases 
of 5.6 °C in DJF, 5.4 °C in SON, 5.3 °C in JJA, and 4.9 °C in 
MAM in the FTP, relative to the RF (1986–2005). Monthly 
mean temperature is projected to increase as emissions 
increase and the strongest simulated increase is in DJF under 
RCP 8.5.

Mean precipitation is projected to increase in DJF and 
could reach 34% by the end of twenty first century under 
RCP 8.5, although the absolute amount of winter precipita-
tion remains relatively low. Precipitation in MAM is pro-
jected to increases under the both RCP scenarios, while 
projections for precipitation changes in JJA and SON are 
spatially variable. Under RCP 8.5, a slightly decrease for 
precipitation is projected in JJA, while there is an increase 
in SON. The annual cycle will likely decrease, because TNn 
is projected to increase more than TXx and precipitation is 
projected to increase in dry season but not in wet season. 
REMO projects a strong increase in interannual variability 
for mean precipitation over most of the YRB in response to 
warming and the two emissions scenarios have a noticeable 
impact on precipitation during winter and spring months.

Temperature extremes, indicated by indices such as TXx 
and TNn, are projected to increase and FD is projected to 
decline. Changes to TNn are projected to be more drastic 
than changes to TXx under RCP 8.5. The model predicts 
a generally enhanced SDII, most notably in the middle 
reaches. CDD is predicted to steadily decrease, except for 
the FTP under RCP 2.6. RX5day is projected to generally 
increase slightly under RCP 2.6, but will increase in the mid-
dle reaches, by 12% on average, by the end of twenty first 
century under RCP 8.5.

GHG concentrations with low spatial variability are pri-
marily responsible for widespread future warming, and the 
albedo effect caused by the depletion of snow cover is likely 
to amplify warming at high elevations, such as in the source 
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region. The relationship between elevation and the extent 
of the warming is clearer for FD, and for mean temperature 
in DJF and MAM.

Under RCP 8.5, considerable rises in GPH for high-lat-
itude areas in DJF suggest that a weakening and poleward 
shift of EAT contributes to the increase in TNn and to the 
decrease in FD. The possible drivers for future changes to 
precipitation are specific humidity and atmospheric circula-
tion, with the former having a stronger effect. Climate warm-
ing increases the volume of moisture that can be stored in the 
atmosphere over the YRB, particularly in DJF under RCP 
8.5. Under the high emissions scenario, anomalous winds 
and increased minor circulations significantly influence on 
both mean and extreme precipitation.

Temperature increases in the source region of the YR 
will aggravate cryosphere degradation and change the asso-
ciated runoff. Cryospheric features such as glaciers and 
frozen ground are likely to shrink persistently under both 
future emissions scenarios (Yang et al. 2019). The simu-
lated increases in precipitation events and precipitation 
intensity in the YRB suggest that the area may experience 
a greater flood risk in the future. The storage function of 
the solid water reservoir in the source region will reduce as 
the snow volume decreases, and the interannual variability 
of precipitation is expected to increase, particularly under 
RCP 8.5, thereby exacerbating the flood risk for the mid-and 
lower reaches of the YRB. The projections of future climate 
presented in this study will be helpful to policy-making for 
climate mitigation and adaptation.

Acknowledgements  This research was supported by the Strategic Pri-
ority Research Program of the Chinese Academy of Sciences (CAS) 
(XDA19070204), the National Key Research and Development Pro-
gram of China (2019YFC0507401), the Innovation Research Group 
of NSFC (41721091), the Strategic Priority Research Program of 
the CAS (XDA20100102), the National Natural Science Founda-
tion of China (41771068), the Youth Innovation Promotion Associa-
tion CAS (2018460), and the Program of China Scholarship Council 
(201804910129, 201908625013). We acknowledge the CORDEX and 
GERICS for providing the REMO downscaling data (https​://esg-dn1.
nsc.liu.se/searc​h/corde​x/). The computations were enabled by resources 
provided by the Swedish National Infrastructure for Computing (SNIC) 
at [SNIC CENTRE] partially funded by the Swedish Research Council 
through Grant Agreement no. 2019-32-6.

Funding  Open Access funding provided by University of Gothenburg. 

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Ahmed A, Nawaz R, Woulds C, Drake F (2020) Influence of hydro-
climatic factors on future coastal land susceptibility to erosion in 
Bangladesh: a geospatial modelling approach. J Geovis Spat Anal 
4(1):6. https​://doi.org/10.1007/s4165​1-020-00050​-x

Arnell NW, Lowe JA, Challinor AJ, Osborn TJ (2019) Global and 
regional impacts of climate change at different levels of global 
temperature increase. Clim Change 155(3):377–391. https​://doi.
org/10.1007/s1058​4-019-02464​-z

Bentsen M, Bethke I, Debernard J, Iversen T, Kirkevåg A, Seland Ø, 
Drange H, Roelandt C, Seierstad I, Hoose C (2013) The Nor-
wegian earth system model, NorESM1-M—Part 1: description 
and basic evaluation of the physical climate. Geosci Model Dev 
6(3):687–720. https​://doi.org/10.5194/gmd-6-687-2013

Chen W, Yang S, Huang R-H (2005) Relationship between station-
ary planetary wave activity and the East Asian winter mon-
soon. J Geophys Res Atmos 110(D14):D14110. https​://doi.
org/10.1029/2004j​d0056​69

Chou C, Chiang JC, Lan C-W, Chung C-H, Liao Y-C, Lee C-J (2013) 
Increase in the range between wet and dry season precipitation. 
Nat Geosci 6(4):263–267. https​://doi.org/10.1038/NGEO1​744

Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, 
Hinton T, Hughes J, Jones C, Joshi M, Liddicoat S (2011) Devel-
opment and evaluation of an Earth–System model–HadGEM2. 
Geosci Model Dev 4(4):1051–1075. https​://doi.org/10.5194/
gmdd-4-997-2011

Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedling-
stein P, Gao X, Gutowski WJ, Johns T, Krinner G (2013) Long-
term climate change: projections, commitments and irreversibility. 
In: Climate Change 2013—The Physical Science Basis: Contribu-
tion of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge Univer-
sity Press, pp 1029–1136

Cong Z, Zhao J, Yang D, Ni G (2010) Understanding the hydrological 
trends of river basins in China. J Hydrol 388(3):350–356. https​://
doi.org/10.1016/j.jhydr​ol.2010.05.013

Cubasch U, Wuebbles D, Chen D, Facchini M, Frame D, Mahowald 
N, Winther J (2013) Introduction. In: Stocker TF, Qin D, Plattner 
GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex 
V, Midgley PM (eds) Climate change 2013: the physical science 
basis. Contribution of Working Group I to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cam-
bridge University Press, Cambridge, p 1535

Dai A, Bloecker CE (2019) Impacts of internal variability on tem-
perature and precipitation trends in large ensemble simulations 
by two climate models. Clim Dyn 52(1):289–306. https​://doi.
org/10.1007/s0038​2-018-4132-4

Dai Y, Wang L, Yao T, Li X, Zhu L, Zhang X (2018) Observed and 
simulated lake effect precipitation over the Tibetan Plateau: an ini-
tial study at Nam Co Lake. J Geophys Res Atmos 123(13):6746–
6759. https​://doi.org/10.1029/2018j​d0283​30

Dai Y, Chen D, Yao T, Wang L (2020) Large lakes over the Tibetan 
Plateau may boost snow downwind: implications for snow disas-
ter. Sci Bull. https​://doi.org/10.1016/j.scib.2020.06.012

Dee DP, Uppala SM, Simmons A, Berrisford P, Poli P, Kobayashi 
S, Andrae U, Balmaseda M, Balsamo G, Bauer DP (2011) The 
ERA-Interim reanalysis: configuration and performance of the 
data assimilation system. Q J R Meteorol Soc 137(656):553–597

https://esg-dn1.nsc.liu.se/search/cordex/
https://esg-dn1.nsc.liu.se/search/cordex/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41651-020-00050-x
https://doi.org/10.1007/s10584-019-02464-z
https://doi.org/10.1007/s10584-019-02464-z
https://doi.org/10.5194/gmd-6-687-2013
https://doi.org/10.1029/2004jd005669
https://doi.org/10.1029/2004jd005669
https://doi.org/10.1038/NGEO1744
https://doi.org/10.5194/gmdd-4-997-2011
https://doi.org/10.5194/gmdd-4-997-2011
https://doi.org/10.1016/j.jhydrol.2010.05.013
https://doi.org/10.1016/j.jhydrol.2010.05.013
https://doi.org/10.1007/s00382-018-4132-4
https://doi.org/10.1007/s00382-018-4132-4
https://doi.org/10.1029/2018jd028330
https://doi.org/10.1016/j.scib.2020.06.012


2769Historical and future climates over the upper and middle reaches of the Yellow River Basin…

1 3

Dimri A, Kumar D, Choudhary A, Maharana P (2018) Future changes 
over the Himalayas: mean temperature. Glob Planet Change 
162:235–251. https​://doi.org/10.1016/j.glopl​acha.2018.01.014

Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) 
More extreme precipitation in the world’s dry and wet regions. 
Nat Clim Change 6(5):508–513. https​://doi.org/10.1038/nclim​
ate29​41

Gao Y, Chen D (2017) Modeling of regional climate over the Tibetan 
Plateau. Oxford research encyclopedia of climate science. Oxford 
University Press, Oxford

Gao X, Shi Y, Giorgi F (2011) A high resolution simulation of climate 
change over China. Sci China Earth Sci 54(3):462–472. https​://
doi.org/10.1007/s1143​0-010-4035-7

Gao X, Shi Y, Giorgi F (2016) Comparison of convective parameteriza-
tions in RegCM4 experiments over China with CLM as the land 
surface model. Atmos Ocean Sci Lett 9(4):246–254. https​://doi.
org/10.1080/16742​834.2016.11729​38

Ge J, Pitman AJ, Guo W, Wang S, Fu C (2019) Do uncertainties in the 
reconstruction of land cover affect the simulation of air tempera-
ture and rainfall in the CORDEX Region of East Asia? J Geo-
phys Res Atmos 124(7):3647–3670. https​://doi.org/10.1029/2018j​
d0299​45

Ghosh KG (2018) Analysis of rainfall trends and its spatial patterns 
during the last century over the Gangetic West Bengal, Eastern 
India. J Geovis Spat Anal 2(2):15. https​://doi.org/10.1007/s4165​
1-018-0022-x

Giorgi F (2019) Thirty years of regional climate modeling: where 
are we and where are we going next? J Geophys Res Atmos 
124(11):5696–5723. https​://doi.org/10.1029/2018J​D0300​94

Gou X, Deng Y, Chen F, Yang M, Fang K, Gao L, Yang T, Zhang 
F (2010) Tree ring based streamflow reconstruction for the 
Upper Yellow River over the past 1234 years. Chin Sci Bull 
55(36):4179–4186. https​://doi.org/10.1007/s1143​4-010-4215-z

Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne 
SI (2014) Global assessment of trends in wetting and drying over 
land. Nat Geosci 7(10):716–721. https​://doi.org/10.1038/ngeo2​
247

Hagemann S (2002) An improved land surface parameter dataset for 
global and regional climate models. Max-Planck-Institut für Mete-
orol. http://hdl.handl​e.net/11858​/00-001M-0000-002B-539B-6

Hagemann S, Botzet M, Dümenil L, Machenhauer B (1999) Derivation 
of global GCM boundary conditions from 1 km land use satellite 
data. MPI Report No. 289

Hawkins E, Sutton R (2016) Connecting climate model projections of 
global temperature change with the real world. Bull Am Meteorol 
Soc 97(6):963–980. https​://doi.org/10.1175/bams-d-14-00154​.1

Hu Z, Chen X, Chen D, Li J, Wang S, Zhou Q, Yin G, Guo M (2019) 
“Dry gets drier, wet gets wetter”: a case study over the arid regions 
of central Asia. Int J Climatol 39(2):1072–1091. https​://doi.
org/10.1002/joc.5863

Hui P, Tang J, Wang S, Wu J, Kang Y (2014) Future climate projection 
under IPCC A1B scenario in the source region of Yellow River 
with complex topography using RegCM3. J Geophys Res Atmos 
119(19):11205–211222. https​://doi.org/10.1002/2014j​d0219​92

Hui P, Tang J, Wang S, Niu X, Zong P, Dong X (2018) Climate change 
projections over China using regional climate models forced by 
two CMIP5 global models. Part II: projections of future climate. 
Int J Climatol 38(S1):e78–e94. https​://doi.org/10.1002/joc.5409

Huntington TG (2006) Evidence for intensification of the global water 
cycle: review and synthesis. J Hydrol 319(1–4):83–95. https​://doi.
org/10.1016/j.jhydr​ol.2005.07.003

IPCC (2014) Climate Change 2013—the physical science basis: Work-
ing Group I Contribution to the Fifth Assessment Report of the 
Intergovernmental Panel on climate change. Cambridge Uni-
versity Press, Cambridge. https​://doi.org/10.1017/CBO97​81107​
41532​4

IPCC (2019a) Summary for policymakers. In: IPCC special report on 
the ocean and cryosphere in a changing climate. https​://www.ipcc.
ch/srocc​/chapt​er/summa​ry-for-polic​ymake​rs

IPCC (2019b) Climate change and land: an IPCC special report on 
climate change, desertification, land degradation, sustainable land 
management, food security, and greenhouse gas fluxes in terres-
trial ecosystems. https​://www.ipcc.ch/srccl​/

Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, 
Rechid D, Remedio AR, Saeed F, Sieck K (2012) Assessing the 
transferability of the regional climate model REMO to different 
coordinated regional climate downscaling experiment (CORDEX) 
regions. Atmosphere 3(1):181–199. https​://doi.org/10.3390/atmos​
30101​81

Jiang D, Hu D, Tian Z, Lang X (2020) Differences between CMIP6 
and CMIP5 models in simulating climate over China and the East 
Asian Monsoon. Adv Atmos Sci 37(10):1102–1118. https​://doi.
org/10.1007/s0037​6-020-2034-y

Jing W, Yao L, Zhao X, Zhang P, Liu Y, Xia X, Song J, Yang J, Li Y, 
Zhou C (2019) Understanding terrestrial water storage declin-
ing trends in the Yellow River Basin. J Geophys Res Atmos 
124:12963–12984. https​://doi.org/10.1029/2019J​D0314​32

Jungclaus J, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, 
Mikolajewicz U, Notz D, Von Storch J (2013) Characteristics 
of the ocean simulations in the Max Planck Institute Ocean 
Model (MPIOM) the ocean component of the MPI-Earth sys-
tem model. J Adv Model Earth Syst 5(2):422–446. https​://doi.
org/10.1002/jame.20023​

Kiktev D, Sexton DMH, Alexander L, Folland CK (2003) Com-
parison of modeled and observed trends in indices of daily 
climate extremes. J Clim 16(22):3560–3571. https​://doi.
org/10.1175/1520-0442(2003)016<3560:comao​t>2.0.co;2

Kong D, Miao C, Wu J, Duan Q (2016) Impact assessment of climate 
change and human activities on net runoff in the Yellow River 
Basin from 1951 to 2012. Ecol Eng 91:566–573. https​://doi.
org/10.1016/j.ecole​ng.2016.02.023

Kumar P, Kotlarski S, Moseley C, Sieck K, Frey H, Stoffel M, Jacob 
D (2015) Response of Karakoram–Himalayan glaciers to cli-
mate variability and climatic change: a regional climate model 
assessment. Geophys Res Lett 42(6):1818–1825. https​://doi.
org/10.1002/2015g​l0633​92

Leung LR, Qian Y, Bian X, Washington WM, Han J, Roads JO 
(2004) Mid-century ensemble regional climate change scenarios 
for the western United States. Clim Change 62(1):75–113. https​
://doi.org/10.1023/b:clim.00000​13692​.50640​.55

Li W, Jiang Z, Xu J, Li L (2016) Extreme precipitation indices over 
China in CMIP5 models. Part II: probabilistic projection. J Clim 
29(24):8989–9004. https​://doi.org/10.1175/jcli-d-16-0377.1

Liu C, Allan RP (2013) Observed and simulated precipitation 
responses in wet and dry regions 1850–2100. Environ Res Lett 
8(3):034002. https​://doi.org/10.1088/1748-9326/8/3/03400​2

Liu D, Wang G, Mei R, Yu Z, Yu M (2014) Impact of initial 
soil moisture anomalies on climate mean and extremes over 
Asia. J Geophys Res Atmos 119(2):529–545. https​://doi.
org/10.1002/2013J​D0208​90

Lu C, Huang G, Wang X (2019) Projected changes in tempera-
ture, precipitation, and their extremes over China through the 
RegCM. Clim Dyn 53(9):5859–5880. https​://doi.org/10.1007/
s0038​2-019-04899​-7

Majewski D (1991) The Europa-Modell of the Deutscher Wetter-
dienst. ECMWF Proc Numer Methods Atmos Models Read 
2:147–191

Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, 
Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi 
K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP 
greenhouse gas concentrations and their extensions from 1765 

https://doi.org/10.1016/j.gloplacha.2018.01.014
https://doi.org/10.1038/nclimate2941
https://doi.org/10.1038/nclimate2941
https://doi.org/10.1007/s11430-010-4035-7
https://doi.org/10.1007/s11430-010-4035-7
https://doi.org/10.1080/16742834.2016.1172938
https://doi.org/10.1080/16742834.2016.1172938
https://doi.org/10.1029/2018jd029945
https://doi.org/10.1029/2018jd029945
https://doi.org/10.1007/s41651-018-0022-x
https://doi.org/10.1007/s41651-018-0022-x
https://doi.org/10.1029/2018JD030094
https://doi.org/10.1007/s11434-010-4215-z
https://doi.org/10.1038/ngeo2247
https://doi.org/10.1038/ngeo2247
http://hdl.handle.net/11858/00-001M-
https://doi.org/10.1175/bams-d-14-00154.1
https://doi.org/10.1002/joc.5863
https://doi.org/10.1002/joc.5863
https://doi.org/10.1002/2014jd021992
https://doi.org/10.1002/joc.5409
https://doi.org/10.1016/j.jhydrol.2005.07.003
https://doi.org/10.1016/j.jhydrol.2005.07.003
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
https://www.ipcc.ch/srocc/chapter/summary-for-policymakers
https://www.ipcc.ch/srocc/chapter/summary-for-policymakers
https://www.ipcc.ch/srccl/
https://doi.org/10.3390/atmos3010181
https://doi.org/10.3390/atmos3010181
https://doi.org/10.1007/s00376-020-2034-y
https://doi.org/10.1007/s00376-020-2034-y
https://doi.org/10.1029/2019JD031432
https://doi.org/10.1002/jame.20023
https://doi.org/10.1002/jame.20023
https://doi.org/10.1175/1520-0442(2003)016<3560:comaot>2.0.co;2
https://doi.org/10.1175/1520-0442(2003)016<3560:comaot>2.0.co;2
https://doi.org/10.1016/j.ecoleng.2016.02.023
https://doi.org/10.1016/j.ecoleng.2016.02.023
https://doi.org/10.1002/2015gl063392
https://doi.org/10.1002/2015gl063392
https://doi.org/10.1023/b:clim.0000013692.50640.55
https://doi.org/10.1023/b:clim.0000013692.50640.55
https://doi.org/10.1175/jcli-d-16-0377.1
https://doi.org/10.1088/1748-9326/8/3/034002
https://doi.org/10.1002/2013JD020890
https://doi.org/10.1002/2013JD020890
https://doi.org/10.1007/s00382-019-04899-7
https://doi.org/10.1007/s00382-019-04899-7


2770	 X. Wang et al.

1 3

to 2300. Clim Change 109(1):213. https​://doi.org/10.1007/s1058​
4-011-0156-z

Niu X, Wang S, Tang J, Lee DK, Gutowski W, Dairaku K, McGregor 
J, Katzfey J, Gao X, Wu J (2018) Ensemble evaluation and pro-
jection of climate extremes in China using RMIP models. Int J 
Climatol 38(4):2039–2055. https​://doi.org/10.1002/joc.5315

Niu X, Tang J, Wang S, Fu C, Chen D (2019) On the sensitivity of 
seasonal and diurnal precipitation to cumulus parameterization 
over CORDEX-EA-II. Clim Dyn 54:1–21. https​://doi.org/10.1007/
s0038​2-019-05010​-w

O’Gorman PA, Schneider T (2009) The physical basis for increases 
in precipitation extremes in simulations of 21st-century climate 
change. Proc Natl Acad Sci 106(35):14773–14777. https​://doi.
org/10.1073/pnas.09076​10106​

Pang G, Wang X, Chen D, Yang M, Liu L (2020) Evaluation of a cli-
mate simulation over the Yellow River Basin based on a regional 
climate model (REMO) within the CORDEX. Atmos Res (Under 
review)

Pavelsky TM, Sobolowski S, Kapnick SB, Barnes JB (2012) Changes 
in orographic precipitation patterns caused by a shift from 
snow to rain. Geophys Res Lett 39(18):L18706. https​://doi.
org/10.1029/2012g​l0527​41

Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, 
Greenwood HF, Hashmi G, Liu MZ, Miller XD, Ning JR, Palazzi 
LAOhmura, Rangwala EI, Schöner W, Severskiy I, Shahgedanova 
M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-
dependent warming in mountain regions of the world. Nat Clim 
Change 5(5):424–430. https​://doi.org/10.1038/nclim​ate25​63

Pietikäinen JP, Markkanen T, Sieck K, Jacob D, Korhonen J, Räisänen 
P, Gao Y, Ahola J, Korhonen H, Laaksonen A, Kaurola J (2018) 
The regional climate model REMO (v2015) coupled with the 
1-D freshwater lake model FLake (v1): Fenno-Scandinavian cli-
mate and lakes. Geosci Model Dev 11(4):1321–1342. https​://doi.
org/10.5194/gmd-11-1321-2018

Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Kel-
ler M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli 
J, van Lipzig NPM, Leung R (2015) A review on regional 
convection-permitting climate modeling: demonstrations, pros-
pects, and challenges. Rev Geophys 53(2):323–361. https​://doi.
org/10.1002/2014r​g0004​75

Rangwala I, Sinsky E, Miller JR (2013) Amplified warming projections 
for high altitude regions of the northern hemisphere mid-latitudes 
from CMIP5 models. Environ Res Lett 8(2):024040. https​://doi.
org/10.1088/1748-9326/8/2/02404​0

Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid 
D, Hoffmann P, Nam C, Kotova L, Jacob D (2019) Evaluation 
of new CORDEX simulations using an updated Köppen–Trew-
artha climate classification. Atmosphere 10(11):726. https​://doi.
org/10.3390/atmos​10110​726

Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, 
Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of compara-
tively high greenhouse gas emissions. Clim Change 109(1–2):33. 
https​://doi.org/10.1007/s1058​4-011-0149-y

Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Düme-
nil L, Esch M, Giorgetta MA, Schlese U, Schulzweida U (1996) 
The atmospheric general circulation model ECHAM-4: Model 
description and simulation of present-day climate

Ruckstuhl C, Philipona R, Morland J, Ohmura A (2007) Observed 
relationship between surface specific humidity, integrated 
water vapor, and longwave downward radiation at different 
altitudes. J Geophys Res Atmos 112(D3):D03302. https​://doi.
org/10.1029/2006J​D0078​50

Seneviratne SI, Donat MG, Pitman AJ, Knutti R, Wilby RL (2016) 
Allowable CO2 emissions based on regional and impact-
related climate targets. Nature 529(7587):477–483. https​://doi.
org/10.1038/natur​e1654​2

Shi Y, Wang G, Gao X (2018) Role of resolution in regional climate 
change projections over China. Clim Dyn 51(5–6):2375–2396. 
https​://doi.org/10.1007/s0038​2-017-4018-x

Song L, Wang L, Chen W, Zhang Y (2016) Intraseasonal variation of 
the strength of the East Asian trough and its climatic impacts in 
boreal winter. J Clim 29(7):2557–2577. https​://doi.org/10.1175/
jcli-d-14-00834​.1

Su B, Huang J, Fischer T, Wang Y, Kundzewicz ZW, Zhai J, Sun H, 
Wang A, Zeng X, Wang G, Tao H, Gemmer M, Li X, Jiang T 
(2018) Drought losses in China might double between the 1.5 °C 
and 2.0 °C warming. Proc Natl Acad Sci USA 115(42):10600–
10605. https​://doi.org/10.1073/pnas.18021​29115​

Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, Yin H, Ren G 
(2014) Rapid increase in the risk of extreme summer heat in 
Eastern China. Nat Clim Change 4(12):1082–1085. https​://doi.
org/10.1038/nclim​ate24​10

Tang Q, Oki T, Kanae S, Hu H (2008) Hydrological cycles change 
in the Yellow River Basin during the last half of the twentieth 
century. J Clim 21(8):1790–1806. https​://doi.org/10.1175/2007j​
cli18​54.1

Tapiador FJ, Navarro A, Moreno R, Sánchez JL, García-Ortega E 
(2020) Regional climate models: 30 years of dynamical down-
scaling. Atmos Res 235:104785. https​://doi.org/10.1016/j.atmos​
res.2019.10478​5

Taylor KE (2001) Summarizing multiple aspects of model performance 
in a single diagram. J Geophys Res Atmos 106(D7):7183–7192. 
https​://doi.org/10.1029/2000J​D9007​19

Tiedtke M (1989) A comprehensive mass flux scheme for cumu-
lus parameterization in large-scale models. Mon Weather 
Rev 117(8):1779–1800. https​://doi.org/10.1175/1520-
0493(1989)117<1779:ACMFS​F>2.0.CO;2

van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deet-
man S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, 
Oostenrijk R, van Ruijven B (2011) RCP 2.6: exploring the possi-
bility to keep global mean temperature increase below 2 °C. Clim 
Change 109(1):95. https​://doi.org/10.1007/s1058​4-011-0152-3

Wang L, Chen W, Zhou W, Huang R (2009) Interannual variations of 
East Asian trough axis at 500 hPa and its association with the East 
Asian winter monsoon pathway. J Clim 22(3):600–614. https​://
doi.org/10.1175/2008j​cli22​95.1

Wang X, Pang G, Yang M, Wan G (2016) Effects of modified soil 
water-heat physics on RegCM4 simulations of climate over the 
Tibetan Plateau. J Geophys Res Atmos 121(12):6692–6712. https​
://doi.org/10.1002/2015J​D0244​07

Wang F, Ge Q, Chen D, Luterbacher J, Tokarska KB, Hao Z (2018a) 
Global and regional climate responses to national-committed 
emission reductions under the Paris agreement. Geogr Ann A 
100(3):240–253. https​://doi.org/10.1080/04353​676.2018.14885​38

Wang X, Pang G, Yang M (2018b) Precipitation over the Tibetan 
Plateau during recent decades: a review based on observations 
and simulations. Int J Climatol 38(3):1116–1131. https​://doi.
org/10.1002/joc.5246

Wang Y, Zhao W, Wang S, Feng X, Liu Y (2019) Yellow River water 
rebalanced by human regulation. Sci Rep 9(1):9707. https​://doi.
org/10.1038/s4159​8-019-46063​-5

Wang X, Chen D, Pang G, Ou T, Yang M, Wang M (2020) A cli-
matology of surface–air temperature difference over the Tibetan 
Plateau: results from multi-source reanalyses. Int J Climatol 
40(14):6080–6094. https​://doi.org/10.1002/joc.6568

Woldemeskel FM, Sharma A, Sivakumar B, Mehrotra R (2016) Quan-
tification of precipitation and temperature uncertainties simulated 
by CMIP3 and CMIP5 models. J Geophys Res Atmos 121(1):3–
17. https​://doi.org/10.1002/2015j​d0237​19

Wu J, Gao X (2013) A gridded daily observation dataset over China and 
comparison with the other dataset. Chin J Geophys 56(04):1102–
1111. https​://doi.org/10.6038/cjg20​13040​6

https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.1002/joc.5315
https://doi.org/10.1007/s00382-019-05010-w
https://doi.org/10.1007/s00382-019-05010-w
https://doi.org/10.1073/pnas.0907610106
https://doi.org/10.1073/pnas.0907610106
https://doi.org/10.1029/2012gl052741
https://doi.org/10.1029/2012gl052741
https://doi.org/10.1038/nclimate2563
https://doi.org/10.5194/gmd-11-1321-2018
https://doi.org/10.5194/gmd-11-1321-2018
https://doi.org/10.1002/2014rg000475
https://doi.org/10.1002/2014rg000475
https://doi.org/10.1088/1748-9326/8/2/024040
https://doi.org/10.1088/1748-9326/8/2/024040
https://doi.org/10.3390/atmos10110726
https://doi.org/10.3390/atmos10110726
https://doi.org/10.1007/s10584-011-0149-y
https://doi.org/10.1029/2006JD007850
https://doi.org/10.1029/2006JD007850
https://doi.org/10.1038/nature16542
https://doi.org/10.1038/nature16542
https://doi.org/10.1007/s00382-017-4018-x
https://doi.org/10.1175/jcli-d-14-00834.1
https://doi.org/10.1175/jcli-d-14-00834.1
https://doi.org/10.1073/pnas.1802129115
https://doi.org/10.1038/nclimate2410
https://doi.org/10.1038/nclimate2410
https://doi.org/10.1175/2007jcli1854.1
https://doi.org/10.1175/2007jcli1854.1
https://doi.org/10.1016/j.atmosres.2019.104785
https://doi.org/10.1016/j.atmosres.2019.104785
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
https://doi.org/10.1007/s10584-011-0152-3
https://doi.org/10.1175/2008jcli2295.1
https://doi.org/10.1175/2008jcli2295.1
https://doi.org/10.1002/2015JD024407
https://doi.org/10.1002/2015JD024407
https://doi.org/10.1080/04353676.2018.1488538
https://doi.org/10.1002/joc.5246
https://doi.org/10.1002/joc.5246
https://doi.org/10.1038/s41598-019-46063-5
https://doi.org/10.1038/s41598-019-46063-5
https://doi.org/10.1002/joc.6568
https://doi.org/10.1002/2015jd023719
https://doi.org/10.6038/cjg20130406


2771Historical and future climates over the upper and middle reaches of the Yellow River Basin…

1 3

Xu C, Xu Y (2012) The projection of temperature and precipitation 
over China under RCP scenarios using a CMIP5 multi-model 
ensemble. Atmos Ocean Sci Lett 5(6):527–533. https​://doi.
org/10.1080/16742​834.2012.11447​042

Xu M, Xu H, Ma J (2016) Responses of the East Asian winter monsoon 
to global warming in CMIP5 models. Int J Climatol 36(5):2139–
2155. https​://doi.org/10.1002/joc.4480

Xu J, Koldunov N, Remedio ARC, Sein DV, Zhi X, Jiang X, Xu M, 
Zhu X, Fraedrich K, Jacob D (2018) On the role of horizontal 
resolution over the Tibetan Plateau in the REMO regional climate 
model. Clim Dyn 51(11–12):4525–4542. https​://doi.org/10.1007/
s0038​2-018-4085-7

Yang M, Wang X, Pang G, Wan G, Liu Z (2019) The Tibetan Plateau 
cryosphere: Observations and model simulations for current sta-
tus and recent changes. Earth-Sci Rev 190:353–369. https​://doi.
org/10.1016/j.earsc​irev.2018.12.018

Zhang Q, Xu C-Y, Yang T (2009) Variability of water resource in the 
Yellow River basin of past 50 years, China. Water Resour Man-
age 23(6):1157–1170. https​://doi.org/10.1007/s1126​9-008-9320-2

Zhang Q, Peng J, Singh VP, Li J, Chen YD (2014) Spatio-temporal 
variations of precipitation in arid and semiarid regions of China: 
The Yellow River basin as a case study. Global Planet Change 
114:38–49. https​://doi.org/10.1016/j.glopl​acha.2014.01.005

Zhang Q, Zhang Z, Shi P, Singh VP, Gu X (2018) Evaluation of eco-
logical instream flow considering hydrological alterations in the 
Yellow River basin, China. Global Planet Change 160:61–74. 
https​://doi.org/10.1016/j.glopl​acha.2017.11.012

Zhao Y, Xu X, Huang W, Wang Y, Xu Y, Chen H, Kang Z (2019) 
Trends in observed mean and extreme precipitation within the 
Yellow River Basin, China. Theor Appl Climatol 136(3–4):1387–
1396. https​://doi.org/10.1007/s0070​4-018-2568-4

Zhou T, Yu R (2006) Twentieth-Century Surface Air Temperature over 
China and the Globe Simulated by Coupled Climate Models. J 
Clim 19(22):5843–5858. https​://doi.org/10.1175/jcli3​952.1

Zhou B, Wen QH, Xu Y, Song L, Zhang X (2014) Projected changes 
in temperature and precipitation extremes in China by the CMIP5 
multimodel ensembles. J Clim 27(17):6591–6611. https​://doi.
org/10.1175/jcli-d-13-00761​.1

Zhu J, Huang G, Wang X, Cheng G, Wu Y (2018) High-resolution pro-
jections of mean and extreme precipitations over China through 
PRECIS under RCPs. Clim Dyn 50(11):4037–4060. https​://doi.
org/10.1007/s0038​2-017-3860-1

Zong Y, Chen X (2000) The 1998 Flood on the Yangtze, China. Nat 
Hazards 22(2):165–184. https​://doi.org/10.1023/A:10081​19805​
106

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/16742834.2012.11447042
https://doi.org/10.1080/16742834.2012.11447042
https://doi.org/10.1002/joc.4480
https://doi.org/10.1007/s00382-018-4085-7
https://doi.org/10.1007/s00382-018-4085-7
https://doi.org/10.1016/j.earscirev.2018.12.018
https://doi.org/10.1016/j.earscirev.2018.12.018
https://doi.org/10.1007/s11269-008-9320-2
https://doi.org/10.1016/j.gloplacha.2014.01.005
https://doi.org/10.1016/j.gloplacha.2017.11.012
https://doi.org/10.1007/s00704-018-2568-4
https://doi.org/10.1175/jcli3952.1
https://doi.org/10.1175/jcli-d-13-00761.1
https://doi.org/10.1175/jcli-d-13-00761.1
https://doi.org/10.1007/s00382-017-3860-1
https://doi.org/10.1007/s00382-017-3860-1
https://doi.org/10.1023/A:1008119805106
https://doi.org/10.1023/A:1008119805106

	Historical and future climates over the upper and middle reaches of the Yellow River Basin simulated by a regional climate model in CORDEX
	Abstract
	1 Introduction
	2 Method and data
	2.1 Regional climate model REMO and experiment design
	2.2 Observational dataset
	2.3 Method

	3 Results
	3.1 Evaluation of the regional climate model REMO
	3.1.1 Air temperature
	3.1.2 Precipitation
	3.1.3 Climate extreme indices

	3.2 Projected future climate changes
	3.2.1 Changes in air temperature
	3.2.2 Changes in precipitation
	3.2.3 Changes in extreme climate indices
	3.2.4 Elevation dependency of changes in mean climate and extreme events

	3.3 Possible mechanisms influencing future climate change
	3.3.1 Changes in surface snow amount
	3.3.2 Changes to large scale atmospheric circulation


	4 Discussion
	5 Conclusions
	Acknowledgements 
	References




