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Abstract
Net primary productivity (NPP) is an important indicator of plant dynamics and the net carbon exchange between the ter-
restrial ecosystem and atmosphere. Both the long-term shifts in climate mean (climate change) and short-term variations 
around the climate mean (climate variability) have impacts on NPP but studies examining both aspects of climate variations 
are rare especially in the data-scarce regions such as the Tibetan Plateau (TP). Here, we used a dynamic vegetation model 
to investigate the impacts of the changes and variabilities in temperature, precipitation, cloud cover and CO2 on NPP on the 
TP. The simulated NPP was evaluated using field and Moderate-Resolution Imaging Spectroradiometer NPP and was found 
to be reasonable. At monthly time scale, NPP significantly correlated concurrently and at 1-month lag with temperature, 
precipitation and cloud cover (coefficient of determination, R2, in 0.52–0.77). Annual NPP variability was high (low) where 
mean annual NPP was low (high). The effects of annual precipitation, cloud cover and temperature variability on annual 
NPP variability were spatially heterogeneous, and temperature variability appeared to be the dominant factor (R2 of 0.74). 
Whereas, NPP changes were very similar to CO2 increases across the TP (spatial correlation of 0.60), indicating that long-
term changes in NPP were dominated by CO2 increases. For both variability and long-term changes in NPP, temperature was 
the major factor of influence (highest spatial correlation of 0.67). These findings could assist in making informed mitigation 
policies on the impacts of climate change and variability on ecosystem and local nomadic communities.
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1  Introduction

Climate is defined as long-term averages and variations in 
weather conditions over a period of usually several dec-
ades in a region. Climate variations are normally described 
in two aspects. One aspect describes the short-term (e.g., 

inter-annual) variability around the mean state and is com-
monly termed variability. Some of the variability occurs 
randomly (e.g., extreme events such as heat wave, deluge 
and drought) and some occurs periodically and relatively 
regularly (e.g., El Niño and Southern Oscillation or ENSO, 
Pacific Decadal Oscillation or PDO). Another aspect relates 
to a shift in the long-term (e.g., decadal) mean, often termed 
climate change and is represented by a long-term trend, e.g., 
global warming caused by humans. In this study, we define 
variation as the combination of long-term change and short-
term variability.

Both climate variability and change affect terrestrial 
ecosystems (Piao et al. 2012; Cuo et al. 2016; De Boeck 
et al. 2019; Shukla et al. 2019). Extreme temperature and 
precipitation events can lead to legacy effects in plants 
years after the original occurrence, indicating the profound 
influence of climate extremes on terrestrial ecosystems (De 
Boeck et al. 2019). Browning trends or trends of decreas-
ing photosynthetic activity are projected in regions with 
increasing drought and heat waves (Shukla et al. 2019). 
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Climate change can lead to plant community range con-
traction or expansion, biodiversity reduction, and even 
extinction for those species that are unable to adjust to 
warming in the alpine region because of reduction in freez-
ing tolerance and restriction in the species-specific phe-
notypic plasticity (De Boeck et al. 2019). Globally, there 
is a high confidence that greening trends have increased 
by 22–32% in the last 2–3 decades in China, India, parts 
of Europe, central North America, southeast Brazil and 
southeast Australia due to land use practices, forest con-
servation and expansive CO2 fertilization, extended grow-
ing season, global warming, nitrogen deposition, and 
increase of diffuse radiation (Shukla et al. 2019). Among 
them, China and India stand out with the greatest green-
ing trends mostly due to expanded cropland for both and 
expanded forest for China (Chen et al. 2019).

Photosynthesis couples the biosphere, atmosphere, hydro-
sphere and pedosphere together through the exchange of 
energy, water and geochemicals. Photosynthesis depends 
on the environmental conditions including air tempera-
ture, water, solar radiation and nutrients such as carbon and 
nitrogen. Primary productivity measures the photosynthe-
sis rate at which a living organism converts light energy or 
shortwave solar radiation to chemical energy of an organic 
matter. Gross primary productivity (GPP) is the total light 
energy assimilated by plants. Net primary productivity 
(NPP) is GPP minus plant autotrophic respiration of energy 
used for plant tissue metabolism and is the energy stored in 
the plant tissue. NPP represents a key integrative process in 
ecosystem and is an important indicator of plant dynamics 
and the net carbon exchange between the terrestrial ecosys-
tem and atmosphere. NPP is also linearly correlated with 
the carrying capacity of an ecosystem. Thus, understand-
ing NPP’s response to climate variability and change will 
certainly improve our understanding of ecosystem response 
to the changes that are occurring in the global environ-
ment and will also benefit the local livestock and forestry 
management.

Alpine ecosystems are the communities that exist in the 
zone above treeline where average growing season tempera-
ture is around 6.7 °C or lower (Korner and Paulsen 2004). 
Alpine ecosystem biomass is low compared to shrubland, 
woodland and forest; however, it is often located in the head-
waters of rivers that sustains life and it resists land surface 
erosion such as on the Tibetan Plateau (TP) and hence is 
important for hydrology and water resources. In the alpine 
region, harsh environment and remoteness often restrict in-
situ observations and therefore limited research exists there. 
Dominant biome of the alpine ecosystems is grassland such 
as meadow or steppe. As grasslands cover about 30–47% 
of all terrestrial area (Shukla et al. 2019), they play a criti-
cal role in global biogeochemical cycles. To better account 
for the alpine grassland response to climate variability and 

change, an integrated approach involving modeling, field 
observations and remote sensing is necessary.

Relatively abundant studies have focused on the impacts 
of temperature and precipitation changes on greening and 
browning using satellite measured normalized difference 
vegetation index (NDVI) or enhanced vegetation index 
(EVI) (Sarmah et  al.  2018; Du et  al.  2019; Feng et  al. 
2019b; Liu et al. 2019; Qian et al. 2019; Sun et al. 2019; 
Wang et al. 2019; Li et al. 2020a; Parida et al. 2020; Yuan 
et al. 2020). Studies using other indicators of vegetation 
are relatively limited and some of them are mentioned 
here, e.g., LAI (Piao et al. 2015; Chen et al. 2019), foliar 
projective coverage (FPC, Cuo et al. 2016), tree ring (Shi 
et al. 2019), ecosystem indices (Fu et al. 2019), simulated 
NPP (Zhuang et al. 2010; Piao et al. 2012; Bao et al. 2019; 
Feng et al. 2019b), modeled carbon and water use efficiency 
(El Masri et al. 2019), and observed or surveyed phenologi-
cal states and NPP (Niu et al. 2019; Li et al. 2020b). Few 
have studied the effects of cloud cover and CO2 changes 
(Piao et al. 2012; Cuo et al. 2016) on vegetation. Cloud cover 
directly affects solar radiation, and it also relates to precipi-
tation, all of which influence photosynthesis.

Observed aboveground grassland NPP at ungrazed sites 
in the Tianshan mountains in central Asia increased with 
warming and wetting during 1985–2016 (Li et al. 2020b). 
By using measured above- and below-ground biomass at 
alpine grassland sites on the TP during 2013–2015, Niu et al. 
(2019) found that about 76% of below-ground NPP con-
centrated in the top 10-cm soil layer and that above-ground 
(below-ground and total) NPP was mainly affected by tem-
perature (precipitation). Using the Carnegie-Ames-Stanford 
Approach (CASA) model, Feng et al. (2019b) simulated 
NPP across China for 1982–2015 and found that spatially 
averaged annual and seasonal NPP increased due to tem-
perature and solar radiation increase and that there was a 
shift in the trend around 1998 when global warming hiatus 
started. By using the ORCHIDEE model, Piao et al. (2012) 
showed that NPP also increased over 1961–2009 on the TP 
due primarily to changes in precipitation but secondarily to 
changes in temperature and CO2 concentrations. Using the 
process-based Terrestrial Ecosystem Model with permafrost 
scheme, Zhuang et al. (2010) revealed that NPP exhibited 
larger Pearson correlation coefficients with precipitation 
than those of temperature, soil moisture and soil tempera-
ture on the TP during 1901–2002. The responses of various 
plant functional types (PFTs) to climate variations are rarely 
investigated on the TP except, e.g., Cuo et al. (2016) and 
Zhong et al. (2019). Cuo et al. (2016) showed that in the 
northern TP FPC of temperate needleleaf evergreen trees 
in the east and alpine meadow/steppe in the northeast and 
southwest mostly increased, while FPC of barren/sparse 
grassland in the northwest and perennial temperate summer 
green scrub/grassland in the east mostly decreased.



1839Decadal change and inter‑annual variability of net primary productivity on the Tibetan Plateau﻿	

1 3

Worldwide, several studies examined the influence of 
climate variability on vegetation variability represented 
by NDVI, EVI and above-ground biomass (Le Houerou 
et al. 1988; Lotsch et al. 2003; Vicente-Serrano et al. 2013; 
Thornton et al. 2014; Seddon et al. 2016; Sloat et al. 2018; 
Bao et al. 2019; Chen et al. 2019; Feng et al. 2019a; Stan-
imirova et al. 2019), and revealed the dominance of precipi-
tation variability in the arid and semi-arid ecosystems. For 
example, using the CASA model, Bao et al. (2019) showed 
that annual NPP was about 265 g C/m2 on the Mongolian 
Plateau and that summer drought played a significant role in 
determining annual NPP variability. De Boeck et al. (2019) 
noted that coincident summer time drought and heat waves 
exerted strong pressure on plant cover and community com-
position for a long time, indicating the profound effects of 
extreme climate variability in cold biomes. However, similar 
studies on the TP are very limited. Only Feng et al. (2019a) 
found that precipitation could account for the NDVI vari-
ability in the permafrost zone of the TP in some periods 
during 1982–2012.

Being the first of its kind on the TP, this study aims to 
deconvolve the impacts of annual variability and long-term 
change in major climate elements on annual NPP by using 
a dynamic vegetation model with carefully designed sce-
narios (Table 1). This study will fill the knowledge gap in 
our understanding of both climate change and variability 
impacts on NPP.

2 � Methods

2.1 � Study area

The TP (73–105° E, 26–40° N) is located in the southwest 
of China. It has an area of 2.5 × 106 km2 with elevation 
ranging in 2000–8800 m, averaging about 4400 m above 
sea level. The TP is the headwaters of major rivers in Asia 
including the Dang River, Hei River, Yellow River, Yangtze 
River, Mekong River, Salween River, Brahmaputra River, 
Ganges River, Indus River, and Tarim River (Fig. 1a). Alto-
gether, these rivers support about 1.65 billion people (Cuo 
and Zhang 2017). The TP is influenced primarily by Asia 
summer monsoons in May–September where 70% of annual 
precipitation falls and by westerlies in the dry winter season 
of October–April. Mean annual air temperature was about 
1.2 °C and annual precipitation was about 410 mm dur-
ing 1970–2015, both decreasing from the southeast to the 
northwest. According to a survey conducted by the Chinese 
Academy of Sciences in 1981–2001 (CAS 2001), land use/
cover of the TP (Fig. 1b) includes perennial alpine meadow 
(26.9%), perennial alpine steppe (34.8%), Barren/sparse 
grassland (15.8%), perennial temperate scrub grassland 
(14.3%), and subtropical needleleaf evergreen trees (4.2%), 
together occupying about 96% of the TP. From the south-
east to the northwest, the ecosystem degrades from forest 
to desert.

Table 1   Designed scenarios for studying the NPP variability and trends affected by climate factors and the uncertainty caused by ± 10% changes 
in vegetation and soil parameter values

T temperature, P precipitation, CC cloud cover, Va variability, Tr trend, M mean, H historical, D detrended, V vegetation, S soil

Scenarios Acronyms Climate impact analysis Parameter uncertainty analysis

T P CC CO2 V and S parameter 
values calibrated

V and S parameter 
values + 10%

V and S param-
eter values − 
10%

Reference Va Va D D D D – – –
T variability Va D M M M – – –
P variability Va M D M M – – –
CC variability Va M M D M – – –
Reference Tr Tr Tr Tr Tr Tr – – –
T trend Tr Tr M M M – – –
P trend Tr M Tr M M – – –
CC trend Tr M M Tr M – – –
CO2 trend Tr M M M Tr (H) – – –
Historical Va + Tr H H H H – – –
T trend and variability Va + Tr H M M M – – –
P trend and variability Va + Tr M H M M – – –
CC trend and variability Va + Tr M M H M – – –
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2.2 � Model

The Lund–Potsdam–Jena Dynamic Global Vegetation Model 
(LPJ, Sitch et al. 2003; Gerten et al. 2004) was used in this 
study to investigate NPP change and variability caused 
by climate factors. LPJ accounts for vegetation dynamics 
including establishment, succession and mortality by simu-
lating the process of competition for light, water and nutri-
ents fluxes among PFTs. Establishment is determined by 
bioclimatic conditions such as lower and upper temperature 
for CO2 absorption and photosynthesis and coldest monthly 
temperature that PFTs can withstand. LPJ simulates pho-
tosynthesis, transpiration, soil organic matter and litter 
dynamics at daily time step. Vegetation production, tissue 

turnover and population dynamics are simulated at monthly 
and annual time steps. LPJ has been applied to investigate 
ecosystem conditions around the world (Sitch et al. 2003, 
2005, 2008; Gerten et al. 2004; Steinkamp and Hickler 
2015). In this study, LPJ was configured at 0.25° by 0.25° 
spatial resolution and was driven by monthly gridded air 
temperature, precipitation and cloud cover at the same reso-
lution and global annual CO2 data. The model was warmed 
up by running iteratively for 1000 years during 1957–1986 
assuming that a 1000-year spinup could result in a vege-
tation dynamic equilibrium in the region, which is also a 
common practice in the LPJ modeling community (Sitch 
et al. 2003; Cuo et al. 2016, 2020).

LPJ was calibrated in our previous studies and the cali-
brated parameters are shown in Table 2. The calibration 
was done by examining the impact of each parameter one 
at a time and then chose the top parameters with the larg-
est impact (Cuo et al. 2011). During calibration, LPJ simu-
lated PFTs for the northern and entire TP were compared to 
surveyed land cover types of CAS (2001) and Zheng et al. 
(2008) in Cuo et al. (2016, 2020), respectively. Cuo et al. 
(2016) found that LPJ simulated alpine grassland matched 
well to CAS (2001) and Zheng et al. (2008) in the northern 
TP. Over the entire TP, the similarity in the dominant PFTs 
between LPJ and CAS (2001) was 70% (Cuo et al. 2020). 
Cuo et al. (2016, 2020) also evaluated LPJ simulated soil 
moisture and soil temperature using observations on the TP. 
Root mean square error (RMSE) for soil moisture ranged 
from 0.02 to 0.14 m3/m3 at nine observation sites that spread 
on the TP. RMSE for soil temperature in top 40 cm ranged 
from 0.36 to 4.51 °C over the northern TP. This study further 
evaluates LPJ simulated NPP.

2.3 � Data

Annual CO2 and monthly gridded precipitation (P), 2-m 
air temperature (T) and cloud cover (CC) in 1957–2015 
were used as model forcing. Air temperature and precipita-
tion were gridded based on station measurements on the 
TP and the surrounding areas using procedures describe by 
Cuo et al. (2013). Cloud cover data were from the Climate 
Research Unit of the University of East Anglia (Mitchell and 
Jones 2005) at 0.5° × 0.5° spatial resolution and were regrid-
ded to 0.25° × 0.25° resolution assuming uniform distribu-
tion within each 0.5° × 0.5° grid cell. Annual CO2 was from 
NOAA’s Mauna Loa Observatory. Soil textures were from 
the Harmonized World Soil Data Base v1.2 produced by the 
Food and Agricultural Organization of the United Nations 
and were regridded to 0.25° × 0.25° resolution. Three main 
soil types on the TP are loamy sand (4%), sandy loam (51%), 
and loam (42%). Elevation data were from the Shuttle Radar 
Topography Mission (SRTM) and were interpolated to the 
0.25° × 0.25° grids using cubic convolution. Land cover 
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data for 1981–2001 were survey based and were compiled 
by the Chinese Academy of Sciences (CAS 2001). The Mod-
erate-Resolution Imaging Spectroradiometer (MODIS) NPP 
product MOD173AH and field derived NPP were used to 
evaluate the LPJ simulated annual NPP. MOD173AH was 
regridded to the 0.25° × 0.25° grids for a fair comparison. 
Field based grassland NPP was obtained from measured 
fresh grass weight at 11 sites on the TP during May–August 
of 2003–2013 (Zhou et al. 2016; see Fig. 1a; Table 3 for 
the sites). The fresh grass weight was measured once every 
month during the period and the maximum weight during 
all months was converted to dry grass weight by using a 
ratio of 0.4–0.6 determined from field experiments. The dry 
grass weight was further converted to NPP. In order to com-
pare with field derived NPP, the simulated maximum NPP 
in May–August was chosen for 2003–2013. As the majority 
of vegetation type on the TP is grassland, the comparison of 
simulated and observed grass NPP is deemed representative 
for the TP.

2.4 � Analysis

The study period was 1970–2015. The LPJ model has been 
calibrated and evaluated in terms of PFTs and soil mois-
ture and temperature for the TP in previous studies (Cuo 
et al. 2016, 2020). In this study, the LPJ simulated monthly 
NPP was aggregated into annual and growing season NPP 
for 1970–2015 and was evaluated using MOD173AH and 
the field data.

To deconvolve the impacts of climate change and vari-
ability on annual NPP, 13 scenarios that fell into three cat-
egories were designed: variability only (Va), trend only (Tr), 
and trend and variability combined (Va + Tr) (Table 1). The 
goal for constructing these scenarios in Table 1 was to rep-
resent various aspects of climate variations: (1) short-term 

variability (Va), (2) long-term changes (Tr), and (3) com-
bined variability with changes (Va + Tr). Within each of the 
three categories, there was a reference scenario in which 
consistency in variability, trends, as well as variability plus 
trends in all four climate factors including air temperature, 
precipitation, cloud cover and CO2, were retained. Thus, 
through comparing each climate factor scenario with the 
corresponding reference scenario, we would be able to iden-
tify to what degree the climate factor contributes to the ref-
erenced state. Clearly, the rationale behind this is that the 
closer a climate factor resolves the referenced state, the more 
important the climate factor becomes.

For example, in order to analyze the impacts of variability 
alone, the reference scenario (Reference Va in Table 1) was 
driven by detrended temperature, precipitation and cloud 
cover at monthly step and detrended CO2 at annual step but 
with their inter-annual variability retained (although CO2 
shows little inter-annual variability); the T Variability sce-
nario was driven by mean precipitation, cloud cover and CO2 
but detrended temperature with its inter-annual variability 
retained; and similarly for the P Variability and CC Vari-
ability scenarios (Table 1). Here, the means of temperature/
precipitation/CC/CO2 were calculated for each month and 
for the year (CO2 only) over 1970–2015. This way the sea-
sonal cycle was preserved but the inter-annual variability 
and long-term changes were removed. Thus, when we used 
the means of all four climate factors except the one factor 
whose inter-annual variability or long-term changes were 
preserved, we could attribute the variations in NPP to the 
inter-annual variability or long-term changes of that one fac-
tor. As a demonstration, Fig. 2 shows the means, variability 
only, trend only and historical time series of annual tem-
perature, precipitation and cloud cover during 1957–2015 
averaged over the TP.

Specifically, taking the T Variability scenario as an exam-
ple, the trend in each month’s temperature at each grid cell 
was removed but the inter-annual variability of temperature 
in each month was preserved, while the mean monthly val-
ues of precipitation and cloud cover and mean annual CO2 
were used at the same time. Thus, the comparison in NPP 
between the Reference Va and T Variability scenarios could 
reveal the effects of temperature variability only because 
these two scenarios were driven by the same temperature. 
Since CO2 shows a significant annual trend but little annual 
variability (Fig. 3j), only its trend impacts on NPP were 
examined in this study.

To examine the impacts of climate trend, five scenarios, 
i.e., Reference Tr, T trend, P trend, CC trend and CO2 trend, 
were designed (Table 1). Reference Tr was the scenario 
where all forcings’ variability was removed but their long-
term trends retained. This was done by first obtaining the 
long-term means in each month for temperature, precipi-
tation and cloud cover and then adding the trends in each 

Table 3   Selected sites from Zhou et al. (2016) for evaluating the LPJ 
simulated NPP

No Site names Vegetation 
type

Longitude Latitude Elevation (m)

1 Banma Grass 100.750 32.933 3530
2 Jiuzhi Grass 101.483 33.433 3630
3 Henan Grass 101.600 34.733 3500
4 Dari Grass 99.650 33.750 3968
5 Gande Grass 99.884 33.963 4000
6 Maqin Grass 100.250 34.467 3720
7 Qingshuihe Grass 97.133 33.800 4415
8 Maduo Grass 98.217 34.917 4272
9 Zaduo Grass 95.300 32.900 4066
10 Tuotuohe Grass 92.433 34.217 4535
11 Zeku Grass 101.467 35.033 3662
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month (regardless of significance) back to the monthly mean 
time series of the corresponding climate element. This pro-
cess effectively removes annual variability but preserves 
trend. As an example, in order to examine temperature trend 
impacts alone (T trend in Table 1), the scenario was driven 
by the monthly mean time series of all climate elements but 
with the monthly trends added for temperature only. Then 
comparing the simulated NPP from the Reference Tr and 
T trend scenarios could reveal the impacts of temperature 
trend. This was done similarly for precipitation, cloud cover 
and CO2 although in the case of CO2 annual time series 
were used.

Next, four scenarios, i.e., historical, T trend and vari-
ability, P trend and variability, and CC trend and variabil-
ity (Table 1, no CO2 scenario due to its little variability) 
were designed to investigate the impacts of historical cli-
mate variations that include both interannual variability 
and long-term changes. The historical or reference sce-
nario was driven by historical temperature, precipitation, 
cloud cover and CO2 that include both long-term trends 
and short-term variability. As an example, to investigate 
temperature variation (T trend and variability) impacts, 
historical temperature together with the monthly mean 
time series of precipitation and cloud cover and mean 
annual CO2 were used to drive the model. By contrasting 

Fig. 2   The mean, variability 
only, trend only and historical 
time series of annual tempera-
ture, precipitation and cloud 
cover during 1957–2015 aver-
aged over the TP
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the simulated annual NPP from the historical and T trend 
and variability scenarios, the impacts of temperature vari-
ation on annual NPP could be revealed. This was done 
similarly for precipitation and cloud cover.

For temperature, precipitation and cloud cover, the 
variation at monthly time step was used to enable seasonal 

vegetation growth. For CO2, the input time step in the model 
is annual and its mean and trends were all at annual step. 
The Mann-Kendall analysis and Sen’s slope (Sen 1968) were 
employed to test and obtain the annual and monthly trends of 
the simulated NPP, temperature, precipitation, cloud cover 
and CO2 for each cell on the TP in 1970–2015. Conventional 
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statistical matrixes including mean, correlation coefficient 
(R), coefficient of determination (R2), coefficient of variation 
(CV), standard deviation (Std) and root mean square error 
(RMSE), were also examined. For fair comparisons, the 
standardized anomalies of NPP of all scenarios were used.

The analysis of model uncertainty including forcing, 
parameter and model structure uncertainties could enhance 
the reliability of the study. Cuo et al. (2020) evaluated model 
forcings’ uncertainty by comparing them to station obser-
vations and NOAA CMORPH (Climate Prediction Center 
Morphing Technique) precipitation and multimodel GLDAS 
(Global Land Data Assimilation System) products, and 
showed that the forcings exhibited fairly good quality given 
the currently available station distributions on the TP. LPJ 
parameter uncertainty was examined in this study by chang-
ing the values of the sensitive vegetation and soil param-
eters by ± 10% relative to the calibrated values for all the 
scenarios. The changed vegetation parameters were gmin, 
GDDs, GDD5min, Int and Ws-m (see Table 2). The other 
vegetation parameters in Table 2 were not changed to avoid 
alteration in the climate zones and disruptions in vegetation 
spatial patterns. The changed soil parameters included per-
colation, water holding capacity, heat diffusivity, soil bub-
bling pressure, exponential decrease rate of soil moisture 
at freezing temperature, soil bulk density, soil density, and 
quartz content. The simulations with ± 10% changes in veg-
etation and soil parameter values were compared with the 
simulations with the calibrated vegetation and soil param-
eters. The parameter change induced uncertainty in annual 
NPP variability and change was also examined. However, 
LPJ model structure uncertainty has not been examined to 
date and this could be conducted in the future by utilizing 
multiple dynamic vegetation models.

3 � Results

3.1 � Climate on the TP

Spatially averaged temperature, precipitation and cloud 
cover are about 1.2°C, 410 mm, and 53%, respectively, over 
1970–2015. Spatially averaged air temperature over the 
TP increases at 0.044 °C/year (p < 0.05), while precipita-
tion increases at 0.50 mm/year (p < 0.1) and cloud cover 
decreases insignificantly at 0.02%/year during 1970–2015. 
Spatial patterns of long-term annual means, trends and var-
iability of air temperature, precipitation, cloud cover and 
CO2 on the TP over 1970–2015 are shown in Fig. 3. Annual 
mean air temperature ranges from − 4 to 18 °C, low in the 
center and high in the southeast (Fig. 3a). Air temperature 
increases significantly at most cells on the TP, with a few 
cells even showing increase rates in excess of 0.10 °C/year 
(Fig. 3b). Annual temperature has high standard deviation 

in the central TP (Fig. 3c). Annual precipitation varies from 
less than 100 mm in the west to 1200 mm in the southeast 
(Fig. 3d). Worthy of mentioning here is the isolated 600-
mm area along the Himalayas probably the artifact of the 
extrapolation using limited nearby stations. This can be fixed 
only when more stations become available. Annual precipi-
tation displays increase trends over the most part of the TP, 
with significantly increasing trends occurring mainly in the 
center and the northeast (Fig. 3e). Significantly decreasing 
trends in annual precipitation are found only in isolated spots 
in the east and southeast. The standard deviation of annual 
precipitation decreases from the southeast to the northwest, 
following the spatial pattern of mean annual precipitation 
(Fig. 3f).

Annual mean cloud cover ranges from 40 to 77%, high 
in the east and west and low in the north and southwest 
where desertification occurs (Fig. 3g, Cuo et al. 2020). 
Cloud cover shows decrease trends over the most part of 
the TP, with significantly decreasing trends located in the 
central to southeast and a few significantly increasing trends 
in the south and west (Fig. 3h). Annual cloud cover has high 
standard deviation in the northeast and southeast (Fig. 3i). 
Annual mean CO2 is 359 ppm during the period and annual 
CO2 increases steadily and significantly at 1.63 ppm/year 
(Fig. 3j). Annual CO2 exhibits little interannual variability 
and this is the reason that the effects of CO2 variability on 
annual NPP is not examined.

3.2 � Evaluation of simulated NPP

LPJ simulated NPP displays high values on the order of 800 
g/cm2/year in the southeast where tropical and subtropi-
cal forests exist and low values of 0–100 g/cm2/year in the 
northwest, similar to what MODIS NPP shows (Fig. 4a, b). 
However, LPJ simulated NPP is higher over the central TAR 
(Tibetan Autonomous Region) but much lower along the 
eastern periphery of QH (Qinghai Province) compared to 
MODIS NPP, the reason of which may be due to higher 
precipitation over the central TAR and lower precipitation 
in the eastern QH in the forcing as indicated in Fig. 3d. LPJ 
simulated NPP also exhibits an isolated area of high value 
along the Himalayas that is not supported by MODIS NPP 
due to overestimated precipitation (Fig. 3d). The region-
ally averaged NPP during 2000–2014, 120 g/cm2/year in 
the model vs. 126 g/cm2/year in MODIS product, is com-
parable. Spatial pattern correlation between Fig. 4a and b 
is 0.58 (p < 0.05). Scatter plot between field derived and 
LPJ simulated NPP reveals a generally linear correspond-
ence with a statistically significant coefficient of determi-
nation of 0.41 (Fig. 4c), but there is clear underestimation 
in LPJ simulated NPP which is perhaps due to the coarse 
resolution of the LPJ model compared to the point measure-
ments. Our previous studies on the TP showed a satisfactory 
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performance of LPJ in simulating PFTs for the region and 
soil temperature and moisture at multiple sites across the 
TP (Cuo et al. 2016, 2020). Thus, despite some deficiencies 
that are likely related to the forcings due to limited observa-
tions, LPJ simulations are generally reasonable on the TP. 
The model simulations are subsequently used for climate 
variation analyses.

3.3 � Correlation of NPP with forcings at monthly 
time step

Concurrent and lagged correlations between LPJ simulated 
NPP from the historical scenario and observation-based 
climate factors are calculated. Here, monthly temperature/
precipitation/cloud cover were paired with 0-, 1-, 2-, 3-, and 
4-month lagged NPP and the correlations were obtained for 

the entire TP over 1970–2015. In general, only the concur-
rent and 1-month lagged correlations exhibit significantly 
large R2 (Fig. 5), ranging from 0.52 to 0.77 for the former 
(largest for temperature) and 0.72–0.74 for the latter (larg-
est for cloud cover). As the lagged time progresses from 
one month to four months, the R2 values become gradually 
smaller and smaller, e.g., 0.35 (0.54) for 2-month lag for 
temperature and precipitation (cloud cover).

3.4 � Annual NPP variability

Regionally averaged time series of the standardized anoma-
lies of annual NPP simulated by the four variability sce-
narios (Table  1, with the calibrated values and ± 10% 
changed values in vegetation and soil parameters) are 
shown in Fig. 6a–c. NPPs using the calibrated values and 
± 10% changed values completely overlay on top of each 
other, indicating low uncertainty in the simulated NPP due 
to uncertainties in vegetation and soil parameters for all sce-
narios. The standard deviations of the normalized regionally 
averaged annual NPP for Reference Va, T/P/CC variabil-
ity are the same, i.e., 1.14 g/cm2/year. RMSE of simulated 
annual NPP between the Reference Va scenario and the T/P/
CC variability scenarios, reflecting the closeness between 
them, are 0.53, 0.99 and 1.56 g/cm2/year, respectively. T 
variability simulated NPP most closely follows the reference 
NPP throughout the period, with P variability coming in 
second and CC variability showing the least match.

Spatial distributions of coefficients of variation (CV) of 
annual NPP from the four variability scenarios with the cali-
brated values and ± 10% changed values in vegetation and 
soil parameters over the TP are shown in Fig. 7. For Refer-
ence Va, high CV is found in the west, central-eastern and 
northern TP, and low CV in the northwest, north, southeast 
and east (Fig. 7a–c), indicating that (1) low (high) NPP tends 
to have high (low) variability (see Fig. 4) and (2) modeled 
NPP shows low uncertainty with changes in vegetation and 
soil parameters. Over the areas with little vegetation growth, 
e.g., the northwestern TP where the Chaidamu Desert, Qil-
ian Mountain range and East Kunlun Mountain range are 
located, NPP displays zero variability.

To examine the impacts of temperature, precipitation and 
cloud cover variability on annual NPP variability spatially, 
the spatial distributions of CV from the T/P/CC variability 
scenarios are shown in Fig. 7d–l. Compared with Refer-
ence Va, it is apparent that T variability produces the clos-
est match which is also consistent with what is revealed in 
Fig. 6a–c. P variability and CC variability exhibit very small 
CV of NPP across the region and with little spatial variation. 
However, P (CC) variability produces an area of high CV in 
the northern sparsely vegetated region (along the west edge 
of the TP) similar to what is shown in Fig. 7a–c, indicat-
ing strong influence of P (CC) variability there. R2 of the 
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spatial patterns of annual NPP between Reference Va and 
T/P/CC variability are 0.74, 0.0 and 0.04, respectively. This 
analysis indicates that the temporal and spatial annual NPP 
variability is dictated primarily by temperature variability.

3.5 � Annual NPP long‑term change

Averaged over the TP, the standardized anomalies of annual 
NPP simulated by the trend scenario Reference Tr increases 
significantly at 0.086 g/cm2/year2 (p < 0.01, black lines in 
Fig. 6d–g). Comparisons between Reference Tr and the T/P/
CC/CO2 trend scenarios clearly show a match in annual NPP 
between the CO2 trend scenario and Reference Tr, indicat-
ing that the influence from CO2 increases dominates the 
annual NPP trend across the region. Annual NPP from the 
T/CC trend scenarios also follow the reference annual NPP 

although for T/CC trend there are small but clear variations 
due to seasonal fluctuations superposed on the increasing 
trends. For the P trend scenario, annual NPP exhibits even 
larger variations due to seasonal fluctuations obscuring long-
term trend seen from other scenarios.

For the spatial patterns of long-term change, annual NPP 
simulated from Reference Tr with the calibrated values and 
± 10% changed values is identical and all exhibits predomi-
nantly increase trends across the TP (76% positive trends vs. 
8% negative trends) (Fig. 8a–c). The T/P/CC trend scenarios 
all display mixed trends spatially, and among them, the T 
trend scenario shows the most negative trends (47%) that 
spread across the region. The P and CC trend scenarios cor-
respond respectively to 23% and 25% negative trends that 
are mostly distributed in the south. On the other hand, CO2 
increases result in predominantly positive trends totaling 

Fig. 5   Scatter plots between the 
anomalies of gridded monthly 
air temperature (precipitation, 
cloud cover) and LPJ simulated 
concurrent NPP (a, c, e) and 
1-month lagged NPP (b, d, f) 
from the historical scenario dur-
ing 1970–2015
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83% of the entire region and the spatial patterns between 
the CO2 trend scenario and Reference Tr are quite similar. 
The correlation coefficient (R) between spatial pattern of ref-
erence Tr and T/P/CC/CO2 were 0.50, 0.53, 0.26 and 0.60, 
respectively. Clearly, CO2 is the most important factor in 
long-term annual NPP change in the region, followed by 
precipitation and temperature.

3.6 � Annual NPP variation

Spatially averaged standardized anomalies of annual NPP 
from the Historical and T/P/CC trend and variability scenar-
ios (i.e., historical forcings with both variability and long-
term change retained) are shown in Fig. 6h–j. In general, 
annual NPP from the T/P/CC trend and variability scenarios 
largely follows that from the Historical scenario. However, 

differences are noted in correlation and RMSE in annual 
NPP between the Historical and T/P/CC trend and variability 
scenarios in that correlation coefficient ranges from 0.67, 
0.57 to 0.25, and RMSE from 0.93, 1.06 to 1.40 for tempera-
ture, precipitation and cloud cover, respectively. Hence, in 
terms of the combined trend and variability of the region-
ally averaged annual NPP, temperature influence is stronger 
than precipitation while cloud cover exerts the least impact 
among these three climate elements.

The spatial patterns of annual mean NPP, annual NPP 
trend and annual NPP CV during 1970–2015 from the His-
torical scenario are shown in Fig. 9. Annual mean NPP is 
in the range of 0–1000 g/cm2/year and decreases from the 
southeast to the northwest on the TP (Fig. 9a). The long-term 
trends of annual NPP vary spatially, with statistically signifi-
cant decrease trends located over the arid west and northwest 

Fig. 6   Regionally averaged 
standardized anomalies of 
annual NPP simulated from 
the reference Va, T variability, 
P variability and CC variabil-
ity (a–c); from reference Tr, 
T trend, P trend, CC trend 
and CO2 trend (d–g); and 
from the historical, T trend 
and variability, P trend and 
variability, CC trend and vari-
ability (h–j). Simulated NPP 
using the calibrated values and 
± 10% changes in vegetation 
and soil parameter values are 
shown for all scenarios. Thick 
black lines represent NPP from 
reference simulations and are 
the same in each column. Gray 
lines represent NPP from the 
designed scenarios and are dif-
ferent between the panels. The 
first (second, third and forth) 
raw shows the impacts of tem-
perature (precipitation, cloud 
cover and CO2, respectively). 
Designed scenarios are listed in 
Table 1
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and mixed trends over the eastern TP (Fig. 9b). Annual NPP 
CV is large in the west where vegetation is sparse and low 
in the east where vegetation is relatively dense (Fig. 9c). 
Among the dominant PFTs on the TP (Table 4), subtropical 
needleleaf evergreen trees (barren/sparse grassland) shows 
the highest (lowest) mean annual NPP while perennial alpine 
steppe (subtropical needleleaf evergreen trees) displays the 
greatest (least) CV of 0.46 (0.24). All dominant PFTs exhibit 
increase trends in annual NPP, with barren/sparse grassland 
and subtropical needleleaf evergreen trees having significant 
trends (p < 0.05).

We next use correlation coefficients (Rs) of annual NPP 
between the Historical and T/P/CC trend and variability 
scenarios to examine the influence of temperature, precipi-
tation and cloud cover on the trend and variability of NPP 
across the TP together with vegetation and soil parameters 
uncertainty (Fig. 10). Same as previous analysis, Fig. 10 
reveals low parameter uncertainty in the model. CO2 is 
not examined here due to little annual variability (Fig. 3j). 
The results reveal that the entire region (99% area) is 

dominated by positive R in excess of 0.6 for temperature 
scenario and the reference (Fig. 10a–c), indicating the 
dominant role of temperature. Precipitation (Fig. 10d–f) 
and cloud cover (Fig. 10g–i) present mixed and spatially 
varying R patterns, with 77% (67%) of the region showing 
positive R and statistically significant positive R located 
mainly in the south and central TP (central and western 
TP) for precipitation (cloud cover).

4 � Discussions

The following equation is often used for studying attribu-
tion (Nayak et al. 2013; Feng et al. 2019a, b). This equa-
tion implies that the examined system is linear. Here we 
applied this equation to examine long term change and 
variations of NPP using LPJ simulations and gridded tem-
perature, precipitation and cloud cover and observed CO2, 

Fig. 7   Coefficients of variation 
(CV) of annual NPP using the 
calibrated values and ± 10% 
changes in vegetation and soil 
parameter values from reference 
Va (a–c), T variability (d–f), P 
variability (g–i), and CC vari-
ability (j–l). The first column 
is from calibrated vegetation 
and soil parameters, the second 
(third) column is from − 10% 
(+ 10%) perturbation in vegeta-
tion and soil parameter values. 
Scenario definitions are listed 
in Table 1
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and compared with our modeling results in which system 
nonlinearity is preserved.

where Xi is the ith climate factor, n total number of cli-
mate factors, R residual, �NPP

�X
i

 the sensitivity term, and �Xi

�t
 the 

trend of individual climate factor.
Figure 11 shows long-term change in NPP with variabil-

ity removed derived from Eq. (1). The sensitivity of NPP 
changes to temperature, precipitation and cloud cover, and 
the trends of temperature, precipitation and cloud cover in 
Eq. (1) are obtained from the least-square fitting lines. NPP 

(1)
dNPP

dt
=

n
∑

i=1

(

�NPP

�X
i

�X
i

�t

)

+ R

long-term trends (Fig. 11a) from Tr reference simulation are 
calculated from Sen’s slope. Temperature change induced 
NPP change (Fig. 11b) is the product of NPP from the Ref-
erence Tr scenario (Table 1) and gridded temperature trend. 
The same procedure applies for precipitation, cloud cover 
and CO2 induced NPP change shown in Fig. 11c–e. Fig-
ure 11, similar to Fig. 8, shows the dominant role played by 
CO2 change in long term NPP change as revealed over the 
majority of the TP by (1) consistent positive NPP change 
between historical and CO2 induced NPP change (Figs. 8a, 
m, 11a, e) and (2) more than 80% CO2 induced NPP change 
contribution to historical NPP change (Fig. 11i). Tempera-
ture also plays a secondary role. There are clearly differ-
ences for precipitation and cloud cover induced NPP change 

Fig. 8   Simulated annual NPP 
trends from reference Tr (a), 
T trend (d), P trend (g), CC 
trend (j), and CO2 trend (m). 
The first raw is from reference 
simulation, the second (third, 
forth and fifth) raw is from T 
trend (P trend, CC trend and 
CO2 trend, respectively). The 
uncertainty caused by − 10% 
(+ 10%) perturbations in vegeta-
tion and soil parameter values 
for each scenario are shown 
in the second (third) columns. 
Stapled cells denote statistically 
significant trends at p < 0.05. 
Scenario definitions are listed 
in Table 1
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between Figs. 8 and 11, perhaps due to the linearity assump-
tion implicit in Eq. (1).

Figure  12 shows historical NPP variations based on 
Eq. (1) and Sen’s slope. Temperature induced NPP varia-
tion is the product of the sensitivity of NPP from Historical 
scenario (see Table 1) to temperature and the linear trend 
of temperature. The same procedure is applied to precipita-
tion and cloud cover. Clearly, temperature induced variation 
in NPP displays rather similar spatial patterns to historical 

NPP variation calculated from Sen’s slope (Fig. 12a, b), 
and accounts for more than 40% of historical NPP varia-
tion across the TP, larger than precipitation and cloud cover 
contributions in general (Fig. 12e–g). Hence, this analysis 
corroborates our finding shown in Fig. 10a in that tempera-
ture is the major factor for NPP variation over the TP. The 
spatial patterns of contributions from precipitation and cloud 
cover (Fig. 12f, g) are not consistent with those of correla-
tion coefficients shown in Fig. 10d, g, likely related to the 
shortcoming of linearity assumption in Eq. (1). We noticed 
that the residual term in Eq. (1) can sometimes be several 
times greater than actual NPP variation.

This study revealed the effects of inter-annual variability 
and long-term change in temperature, precipitation, cloud 
cover and CO2 (long-term change only) on annual NPP vari-
ability and trend on the TP. Temperature variability exerts 
dominant influence on annual NPP variability both tempo-
rally and spatially, while precipitation and cloud cover dis-
play much smaller impacts in general and their influences are 
limited to certain areas. In the past six decades, the TP has 
experienced increase trends in extreme temperatures (Ding 
et al. 2018). Also, in the past 50 years, precipitation changes 
showed heterogeneous spatial patterns, with more frequent 
extreme precipitation occurring in the northeast but fewer 
precipitation days in the northwest of the northern TP (Cuo 
et al. 2013). As global warming continuous, it is likely that 
heat waves, drought and deluge will occur more frequently 
around the world (IPCC 2013). The extremes in tempera-
ture and precipitation variability are likely to occur more 
frequently on the TP as well. Given the strong influence of 
temperature variability on NPP variability across the region 
in general, and specifically in the Pamir Plateau, central and 
northern TP, and strong influence of precipitation variability 
in northern TP, frequent occurrences of extreme tempera-
ture and precipitation could pose a great danger to the local 
ecosystems. As was shown in the Mongolian plateau, more 
drought occurrences during 1982–2011 had detrimental 
effects on annual NPP (Bao et al. 2019).

Some studies that examined the regional NDVI/EVI/
ANPP (above-ground NPP) trends on the TP showed the 
dominance of precipitation change effects on NPP up to 
2009 (e.g., Zhuang et al. 2010; Piao et al. 2012); however, 
this is not the case during 1970–2015 as shown in this 
study. It is possible that the discrepancies in the findings 
may be due to the different trends for different time peri-
ods and also the different approaches used. On average, the 
TP experienced a precipitation trend of 0.61 mm/year and a 
warming trend of 0.041 °C/year during 1970–2009, whereas 
the precipitation trend was 0.50 mm/year and the warming 
trend was 0.044 °C/year during 1970–2015. Furthermore, 
Piao et al. (2012) calculated the climate and CO2 change 
impacts on NPP by comparing individual simulations forced 
by detrended climate elements (as targeted scenarios) and 
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Fig. 9   Annual mean NPP (a), NPP trend (b), and coefficient of varia-
tion (c) simulated by historical temperature, precipitation, cloud cover 
and CO2  during 1970–2015. Staples in b represent statistically sig-
nificant trends at p < 0.05
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historical climate (as reference scenario). Here we used vari-
ability removed climate forcing to drive the LPJ model and 
found that CO2 is the dominant factor in long-term annual 
NPP change. Temperature and cloud cover display second-
ary effects on the regionally averaged NPP long-term change 
which is in line with the study from Feng et al. (2019b) 
for the entire China. Precipitation due to its great seasonal 
variability and less significant trends exerts small effects on 
the long-term NPP change. The modeling approach applied 
in this study effectively removed the contamination of the 
effects of annual variability in the forcing.

The differences in NPP response to temperature/precipita-
tion between the TP and other regions are likely due to the 
differences in environmental conditions of the ecosystems 
which in turn lead to differences in energy/water limitation 

factors. Some researchers use Budyko’s dryness index to 
assess whether the environment is water or energy limited, 
e.g., Donohue et al. (2009). The Budyko’s theory states 
that when mean precipitation is greater than mean potential 
evapotranspiration during a given period, the environment 
is energy limited; otherwise, it is water limited. Zhang et al. 
(2009) showed that in the eastern and southern TP mean 
annual potential evapotranspiration is generally greater than 
mean annual precipitation during 1971–2004 at meteorologi-
cal stations located mostly in valleys where human inhabit, 
implying water limitation in these areas. However, in the 
vast western TP and other un-inhabited areas there are essen-
tially no meteorological stations available for assessing the 
Budyko’s theory. Our study using the interpolated forcing 
data and the LPJ model suggested that temperature is more 

Table 4   Mean, standard 
deviation (Std), coefficient of 
variation (CV), and trends of 
annual NPP for dominant plant 
functional types on the TP 
during 1970–2015

Bold number denotes statistical significance at p < 0.05

Vegetation types Area 
proportion 
(%)

Mean
(g/cm2/year)

Std
(g/cm2/year)

CV Trends
(g/cm2/year)

Barren/sparse grassland 15.8 14.0 5.4 0.38 0.07
Perennial alpine meadow 26.9 133.7 50.2 0.38 0.24
Perennial alpine steppe 34.8 63.9 29.1 0.46 0.19
Perennial temperate scrub grassland 14.3 193.5 62.3 0.32 0.50
Subtropical needleleaf evergreen trees 4.2 418.8 109.9 0.26 1.65

Fig. 10   Correlation coefficients 
of simulated NPP anomalies 
between the historical and T 
trend and variability (a, b, c), 
P trend and variability (d, e, f), 
and CC trend and variability (g, 
h, i). The uncertainties caused 
by − 10% (+ 10%) perturbations 
in vegetation and soil parameter 
values for each scenario are 
shown in in the second (third) 
column. Gray area represents no 
R values due to zero NPP where 
desert or high elevation exists 
throughout the study period
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important than precipitation when averaged over the entire 
TP for NPP annual variability and variability and trend (e.g., 
Figs. 6, 7, 10, 12). In contrast, the tropical region and Aus-
tralia are blessed with abundant solar radiation year around, 
and these regions are likely water limited (Nayak et al. 2015; 
Donohue et al. 2009). However, with increasing CO2, the 
water or energy limiting factors might not be the sole natural 
reasons for vegetation change, as demonstrated by Donohue 
et al. (2009) in Australia.

The advantage of using the modeling approach is that any 
exaggerated influences that are resulted from higher inter-
annual variability in precipitation and cloud cover could be 
removed. This is because on the TP historical precipitation 
and cloud cover displayed higher inter-annual variability 

(standard deviation of 21.6 mm for precipitation and 1.40% 
for cloud cover) but much smaller trends (0.50 mm/year for 
precipitation and 0.02%/year for cloud cover) than tempera-
ture (standard deviation of 0.64 °C and a trend of 0.044 °C/
year). The higher inter-annual variability could result in 
greater impacts on NPP with the consequence of inflated 
responses for long-term trend impacts even though the long-
term trends are small. By using scenarios of including varia-
bility only, trend only, and combined trend and variability for 
individual climate elements, we can isolate and identify the 
impacts of the inter-annual variability and long-term trend of 
individual climate elements on annual NPP. This approach 
can also be used in the other impact investigations through 
separating variability and long-term trend and their effects.

Fig. 11   Long-term change in 
NPP simulated from Tr refer-
ence scenario (a), and changes 
in temperature (b), precipita-
tion (c), cloud cover (d) and 
CO2 (e) induced NPP changes, 
and contributions from changes 
in temperature (f), precipitation 
(g), cloud cover (h) and CO2 
(i) to historical NPP change 
computed using Eq. (1). Here, 
contribution is computed as the 
ratio of climate element induced 
NPP changes to Tr trend sce-
nario simulated NPP changes
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This study identified that CO2 and temperature are the 
most important factors for long-term change and inter-
annual variability of annual NPP on the TP, respectively. 
With continued warming and increasing CO2, the positive 
correlation between the regionally averaged annual tem-
perature/CO2 and NPP may hold an optimistic future for 
ecosystem development on the TP in general. However, 
across the region, temperature trend impacts on NPP vary 
spatially and negative impacts are found in the sparsely veg-
etated western region due to intensified evapotranspiration 
and enhanced drought related to significant temperature 
increases (Figs. 7d, 8d). Thus, the benefit of the dominant 
effect of temperature change also depends on the baseline 
conditions that the region has. Then a logical question to ask 
is: how much of the detrimental effects of the enhanced pre-
cipitation and temperature variability (i.e., extreme events) 
on NPP will be canceled out or strengthened by the effects 
of the long-term temperature and CO2 changes? This needs 
to be addressed in future studies.

NPP is the product of integrative processes involving tem-
perature, precipitation, cloud cover and CO2, and it is dif-
ficult to isolate impacts from each climate factor in the field 
measurements or remotely sensed products. A modeling 
study has the advantage of directly revealing the dominant 
influencing factors or causality between impacts and climate 
factors by using carefully designed scenarios. However, this 
study only uses the LPJ model and the analysis results will 
need to be verified using other models as well. Nevertheless, 
unlike other studies that focused on either climate change 
impacts or climate variability impacts, this study consid-
ered both aspects of climate variations and examined the 
effects of shifts in long-term mean conditions and short-term 
variability around the mean conditions. This kind of design 
should be useful for producing synergetic knowledge in the 
relationship between climate and NPP and for revealing the 
underlying mechanisms, which could provide better assis-
tance for local Tibetan nomads and many local communities 
in designing short-term and long-term mitigation strategies 
and policies. On the TP, most of these communities are 

Fig. 12   Historical trend and 
variability of NPP (a), trend and 
variability in temperature (b), 
precipitation (c), cloud cover 
(d) induced NPP trend and 
variability. Contributions from 
temperature (e), precipitation 
(f) and cloud cover (g) to NPP 
trend and variability computed 
using Eq. (1). Here, contribu-
tion is computed as the ratio of 
climate element induced NPP 
trend and variability to histori-
cal NPP trend and variability
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entirely dependent on rain-fed cropland and grassland and 
the natural grassland is also managed only by using fences. 
Clearly, both short-term variability and long-term change 
in climate have direct impacts on the livelihood of the local 
communities and a better understanding of the impacts and 
informed mitigation approaches are important.

5 � Conclusions

MODIS and field observed NPP was reasonably well simu-
lated by the LPJ model as both LPJ and MODIS had similar 
regionally averaged mean annual NPP (modeled 120 vs. 
observed 126 g/cm2/year), significant spatial correlation 
of 0.58 (p < 0.05) in mean annual NPP between LPJ and 
MODIS. Significant R2 of 0.41 in growing season maximum 
NPP between LPJ and field observations was also obtained. 
Regionally averaged inter-annual variability of NPP repre-
sented by standard deviation was 1.14 g/cm2/year, and long-
term trend of annual NPP was 0.086 g/cm2/year2.

At monthly time scale, NPP was significantly correlated 
concurrently (R2 in 0.52–0.77) and at 1-month lag (R2 in 
0.72–0.74) with temperature, precipitation and cloud cover. 
At annual time scale, relative to mean, annual NPP vari-
ability was high (low) in the areas where mean annual NPP 
was low (high). The influences of the variability of tem-
perature, precipitation and cloud cover on annual NPP vari-
ability were spatially heterogeneous, and temperature vari-
ability dominated NPP inter-annual variability over the TP 
as reflected by high R2 of 0.74 between annual mean NPP 
and temperature. On the other hand, long-term NPP changes 
were strongly correlated with CO2 increase, with a spatial 
correlation of 0.60. For the impacts of the trend & variability 
in climate elements, temperature, with the highest spatial 
correlation coefficient of 0.67, was still the major factor, 
followed by precipitation and cloud cover on the TP. Overall, 
parameter uncertainty had very limited effects on the LPJ 
model simulated NPP on the TP. These findings will benefit 
local communities and stakeholders by assisting in designing 
short-term and long-term polices and strategies for mitigat-
ing the potential detrimental impacts of climate variations.

Acknowledgements  This study is partially supported by Second 
Tibetan Plateau Scientific Expedition and Research Program (Grant no. 
2019QZKK0203), the Strategic Priority Research Program of Chinese 
Academy of Sciences (Grant no. XDA20060202 and XDA20050102), 
and National Natural Science Foundation (Grant no. 91747201).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Bao G, Chen J, Chopping M, Bao Y, Bayarsaikhan S, Dorjsuren A, 
Tuya A, Jirigala B, Qin Z (2019) Dynamics of net primary produc-
tivity on the Mongolian Plateau: joint regulations of phenology 
and drought. Int J Appl Earth Obs Geoinf 81:85–97

Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi RK, Fuchs R, 
Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z, 
Nemani RR, Myneni RB (2019) China and India lead in greening 
of the world through land-use management. Nat Sustain 2:122–
129. https​://doi.org/10.1038/s4189​3-019-0220-7

Chinese Academy of Sciences (CAS) (2001) 1:1,000,000 China Veg-
etation Map, China Science Publishing & Media Ltd

Cuo L, Zhang Y (2017) Spatial patterns of wet season precipitation 
vertical gradients on the Tibetan Plateau and the surroundings. 
Sci Rep 7:5057. doi:https​://doi.org/10.1038/s4159​8-017-05345​-6

Cuo L, Giambelluca TW, Ziegler AD (2011) Lumped parameter sen-
sitivity analysis of a distributed hydrological model within tropi-
cal and temperate catchments. Hydrol Process 25:2405–2421. 
doi:https​://doi.org/10.1002/hyp.8017

Cuo L, Zhang Y, Wang Q, Zhang L, Zhou B, Hao Z, Su F (2013) Cli-
mate change on the Northern Tibetan Plateau during 1957–2009: 
spatial patterns and possible mechanisms. J Clim 26:85–109. https​
://doi.org/10.1175/JCLI-D-11-00738​.1

Cuo L, Zhang Y, Piao S, Gao Y (2016) Simulated annual changes 
in plant functional types and their responses to climate change 
on the northern Tibetan Plateau. Biogeosciences 13:3533–3548. 
doi:https​://doi.org/10.5194/bg-13-3533-2016

Cuo L, Zhang Y, Wu Y, Hou M (2020) Desertification over the Tibetan 
Plateau during 1971–2015 from a climate perspective. Land 
Degrad Dev. https​://doi.org/10.1002/ldr.3575

De Boeck HJ, Hiltbrunner E, Jentsch A, Vandvik V (2019) Editorial: 
responses to climate change in the cold biomes. Front Plant Sci 
10:347. https​://doi.org/10.3389/fpls.2019.00347​

Ding J, Cuo L, Zhang Y, Zhu F (2018) Monthly and annual temperature 
extremes and their changes on the Tibetan Plateau and its sur-
roundings during 1963–2015. Sci Rep 81:11860. doi:https​://doi.
org/10.1038/s4159​8-018-30320​-0

Donohue RJ, McVicar TR, Roderick ML (2009) Climate-related trends 
in Australian vegetation cover as inferred from satellite observa-
tions, 1981–2006. Glob Change Biol 15:1025–1039. doi:https​://
doi.org/10.1111/j.1365-2486.2008.01746​.x

Du Z, Zhao J, Pan H, Wu Z, Zhang H (2019) Responses of vegeta-
tion activity to the daytime and nighttime warming in North-
west China. Environ Monit Assess 191:721. doi:https​://doi.
org/10.1007/s1066​1-019-7855-8

El Masri B, Schwalm C, Huntzinger D et al (2019) Carbon and water 
use efficiencies: a comparative analysis of ten terrestrial ecosys-
tem models under changing climate. Sci Rep 9:14680. https​://doi.
org/10.1038/s4159​8-019-50808​-7

Feng Y, Liang S, Kuang X, Wang G, Wang X-S, Wu P, Wan L, Wu 
Q (2019a) Effect of climate and thaw depth on alpine vegetation 
variations at different permafrost degrading stages in the Tibetan 
Plateau, China. Arctic Antarctic Alpine Res 51(1):155–172. https​
://doi.org/10.1080/15230​430.2019.16057​98

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41893-019-0220-7
https://doi.org/10.1038/s41598-017-05345-6
https://doi.org/10.1002/hyp.8017
https://doi.org/10.1175/JCLI-D-11-00738.1
https://doi.org/10.1175/JCLI-D-11-00738.1
https://doi.org/10.5194/bg-13-3533-2016
https://doi.org/10.1002/ldr.3575
https://doi.org/10.3389/fpls.2019.00347
https://doi.org/10.1038/s41598-018-30320-0
https://doi.org/10.1038/s41598-018-30320-0
https://doi.org/10.1111/j.1365-2486.2008.01746.x
https://doi.org/10.1111/j.1365-2486.2008.01746.x
https://doi.org/10.1007/s10661-019-7855-8
https://doi.org/10.1007/s10661-019-7855-8
https://doi.org/10.1038/s41598-019-50808-7
https://doi.org/10.1038/s41598-019-50808-7
https://doi.org/10.1080/15230430.2019.1605798
https://doi.org/10.1080/15230430.2019.1605798


1856	 L. Cuo et al.

1 3

Feng YH, Zhu J, Zhao X, Tang Z, Zhu J, Fang J (2019b) Changes 
in the trends of vegetation net primary productivity in China 
between 1982 and 2015. Environ Res Lett 14(12):124009. https​
://doi.org/10.1088/1748-9326/ab4cd​8

Fu G, Zhang HR, Sun W (2019) Response of plant production 
to growing/non-growing season asymmetric warming in an 
alpine meadow of the Northern Tibetan Plateau. Sci Total 
Environ 650:2666–2673. doi:https​://doi.org/10.1016/j.scito​
tenv.2018.09.384

Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Ter-
restrial vegetation and water balance—hydrological evaluation of 
a dynamic global vegetation model. J Hydrol 286:249–270

IPCC (Intergovernmental Panel on Climate Change) (2013) Climate 
change 2013: the physical science basis Contribution of Working 
Group I to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. Cambridge University Press,&nbsp;
Cambridge.&nbsp;&nbsp;https​://www.ipcc.ch/site/asset​s/uploa​
ds/2018/02/WG1AR​5_all_final​.pdf

Korner C, Paulsen J (2004) A world-wide study of high altitude tree-
line temperatures. J Biogeogr 31:713–732. https​://doi.org/10.111
1/j.1365-2699.2003.01043​.x

Le Houerou HN, Bingham RL, Skerbek W (1988) Relationship 
between the variability of primary production and the variabil-
ity of annual precipitation in world arid lands. J Arid Environ 
15:1–18

Li J, Wu C, Wang X, Peng J, Dong D, Lin G (2020a) Satellite observed 
indicators of the maximum plant growth potential and their 
responses to drought over Tibetan Plateau (1982–2015). Ecol Ind 
108:105732. https​://doi.org/10.1016/j.ecoli​nd.2019.10573​2

Li K, Liu X, Hu Y, Mohammat A, Geng F, Han W (2020b) Long-
term increasing productivity of high-elevation grassland caused 
by elevated precipitation and temperature. Rangel Ecol Manag 
73:156–161. https​://doi.org/10.1016/j.rama.2019.08.010

Liu L, Wang Y, Wang Z, Li D, Zhang Y, Qin D, Li S (2019) Elevation-
dependent decline in vegetation greening rate driven by increasing 
dryness based on three satellite NDVI datasets on the Tibetan 
Plateau. Ecol Ind 107:105569. doi:https​://doi.org/10.1016/j.ecoli​
nd.2019.10556​9

Lotsch A, Friedl MA, Anderson BT, Tucker CJ (2003) Coupled vege-
tation-precipitation variability observed from satellite and climate 
records: vegetation-precipitation dynamics. Geophys Res Lett 
30(14):1774. https​://doi.org/10.1029/2003G​L0175​06

Luo T, Zhang L, Zhu H, Daly C, Li M, Luo J (2009) Correlations 
between net primary productivity and foliar carbon isotope ratio 
across a Tibetan ecosystem transect. Ecography 32:526–538.https​
://doi.org/10.1111/j.1600-0587.2008.05735​.x

Mitchell TD, Jones PD (2005) An improved method of construct-
ing a database of monthly climate observations and associated 
high-resolution grids. Int J Climatol 25:693–712. doi:https​://doi.
org/10.1002/joc.1181

Nayak RK, Patel Nr, Dadhwal VK (2013) Inter-annual variability and 
climate control of terrestrial net primary productivity over India. 
Int J Climatol 33:132–142. Doi:https​://doi.org/10.1002/joc34​14

Nayak RK, Patel NR, Dadhwal VK (2015) Spatio-temproal variability 
of net ecosystem productivity over India and its relationship to 
climatic variables. Environ Earth Sci 74:1743–1753. doi:https​://
doi.org/10.1007/s1266​5-015-4182-4

Niu B, Zeng C, Zhang X, He Y, Shi P, Tian Y, Feng Y, Li M (2019) 
High below-ground productivity allocation of alpine grasslands 
on the Northern Tibet. Plants 8:535. https​://doi.org/10.3390/plant​
s8120​535

Olson RJ, Scurlock JMO, Prince SD, Zheng DL, Johnson KR (2013) 
NPP Multi-Biome: Global Primary Production Data Initia-
tive Products, R2. Data set. Available on-line [http://daac.ornl.
gov] from the Oak Ridge National Laboratory Distributed 

Active Archive Center, Oak Ridge, Tennessee, USA. https​://doi.
org/10.3334/ORNLD​AAC/617

Parida BR, Pandey C, Patel NR (2020) Greening and browning trends 
of vegetation in india and their responses to climatic and non-
climatic drivers. Climate 8:92. https​://doi.org/10.1016/j.scito​
tenv.2017.02.156

Piao S, Tan K, Nan H, Ciais P, Fang J, Wang T, Vuichard N, Zhu B 
(2012) Impacts of climate and CO2 changes on the vegetation 
growth and carbon balance of Qinghai-Tibetan grasslands over 
the past five decades. Glob Planet Change 98:73–80. https​://doi.
org/10.1016/j.glopl​acha.2012.08.009

Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y et al (2015) Detection 
and attribution of vegetation greening trend in China over the 
last 30 years. Glob Change Biol 21:1601–1609. doi:https​://doi.
org/10.1111/gcb.12795​

Qian C, Shao L, Hou X, Zhang B, Chen W, Xi X (2019) Detection 
and attribution of vegetation greening trend across distinct local 
landscapes under China’s Grain to Green Program: a case study in 
Shaanxi Province. Catena 183:104182. https​://doi.org/10.1016/j.
caten​a.2019.10418​2

Sarmah S, Jia G, Zhang A (2018) Satellite view of seasonal greenness 
trends and controls in South Asia. Environ Res Lett 13:034026. 
https​://doi.org/10.1088/1748-9326/aaa86​6

Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016) 
Sensitivity of global terrestrial ecosystems to climate variability. 
Nature 531(7593):229–232. https​://doi.org/10.1038/natur​e1698​6

Sen PK (1968) Estimates of the regression coefficient based on Kend-
all’s tau. J Am Stat Assoc 63:1379–1389

Shi C, Shen M, Wu X, Chen X, Li X, Fan T, Li Z et al (2019) Growth 
response of alpine treeline forests to a warmer and drier climate on 
the southeastern Tibetan Plateau. Agric For Meteorol 264:73–79. 
doi:https​://doi.org/10.1016/j.agrfo​rmet.2018.10.002

Shukla PR, Skea J, Slade R, van Diemen R, Haughey E, Malley J, 
Pathak M, Portugal Pereira J, Technical S (2019) In: Climate 
Change and Land: an IPCC special report on climate change, 
desertification, land degradation, sustainable land management, 
food security, and greenhouse gas fluxes in terrestrial ecosys-
tems. https​://www.ipcc.ch/srccl​/

Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, 
Venevsky S (2003) Evaluation of ecosystem dynamics, plant 
geography and terrestrial carbon cycling in the LPJ dynamic 
global vegetation model. Glob Change Biol 9:161–185. https​://
doi.org/10.1046/j.1365-2486.2003.00569​.x

Sitch S, Brovkin V, Von Bloh W, Van Vuuren D, Eickhout B (2005) 
Impacts of future land cover changes on atmospheric CO2 and 
climate. Glob Biogeochem Cycle 19:GB2013. https​://doi.
org/10.1029/2004G​B0023​11

Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts 
R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Wood-
ward F (2008) Evaluation of the terrestrial carbon cycle, future 
plant geography and climate-carbon cycle feedbacks using five 
dynamic global vegetation models (DGVMs). Glob Change Biol 
14:2015–2039

Sloat LL, Gerber JS, Samberg LH, Smith WK, Herrero M, Ferreira 
LG, Godde CM, West PC (2018) Increasing importance of pre-
cipitation variability on global livestock grazing lands. Nat Clim 
Change 8:214. https​://doi.org/10.1038/s4155​8-018-0081-5

Stanimirova R, Arévalo P, Kaufmann RK, Maus V, Lesiv M, Hav-
lík P, Friedl MA (2019) Sensitivity of global pasturelands 
to climate variation. Earths Future 7:1353–1366. https​://doi.
org/10.1029/2019E​F0013​16

Steinkamp J, Hickler T (2015) Is drought-induced forest dieback glob-
ally increasing? J Ecol 103:31–43

Sun W, Wang Y, Fu Y, Xue B, Wang G, Yu J, Zuo D, Xu Z (2019) Spa-
tial heterogeneity of changes in vegetation growth and their driv-
ing forces based on satellite observations of the Yarlung Zangbo 

https://doi.org/10.1088/1748-9326/ab4cd8
https://doi.org/10.1088/1748-9326/ab4cd8
https://doi.org/10.1016/j.scitotenv.2018.09.384
https://doi.org/10.1016/j.scitotenv.2018.09.384
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf
https://doi.org/10.1111/j.1365-2699.2003.01043.x
https://doi.org/10.1111/j.1365-2699.2003.01043.x
https://doi.org/10.1016/j.ecolind.2019.105732
https://doi.org/10.1016/j.rama.2019.08.010
https://doi.org/10.1016/j.ecolind.2019.105569
https://doi.org/10.1016/j.ecolind.2019.105569
https://doi.org/10.1029/2003GL017506
https://doi.org/10.1111/j.1600-0587.2008.05735.x
https://doi.org/10.1111/j.1600-0587.2008.05735.x
https://doi.org/10.1002/joc.1181
https://doi.org/10.1002/joc.1181
https://doi.org/10.1002/joc3414
https://doi.org/10.1007/s12665-015-4182-4
https://doi.org/10.1007/s12665-015-4182-4
https://doi.org/10.3390/plants8120535
https://doi.org/10.3390/plants8120535
http://daac.ornl.gov
http://daac.ornl.gov
https://doi.org/10.3334/ORNLDAAC/617
https://doi.org/10.3334/ORNLDAAC/617
https://doi.org/10.1016/j.scitotenv.2017.02.156
https://doi.org/10.1016/j.scitotenv.2017.02.156
https://doi.org/10.1016/j.gloplacha.2012.08.009
https://doi.org/10.1016/j.gloplacha.2012.08.009
https://doi.org/10.1111/gcb.12795
https://doi.org/10.1111/gcb.12795
https://doi.org/10.1016/j.catena.2019.104182
https://doi.org/10.1016/j.catena.2019.104182
https://doi.org/10.1088/1748-9326/aaa866
https://doi.org/10.1038/nature16986
https://doi.org/10.1016/j.agrformet.2018.10.002
https://www.ipcc.ch/srccl/
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1029/2004GB002311
https://doi.org/10.1029/2004GB002311
https://doi.org/10.1038/s41558-018-0081-5
https://doi.org/10.1029/2019EF001316
https://doi.org/10.1029/2019EF001316


1857Decadal change and inter‑annual variability of net primary productivity on the Tibetan Plateau﻿	

1 3

River Basin in the Tibetan Plateau. J Hydrol 574:324–332. https​
://doi.org/10.1016/j.jhydr​ol.2019.04.043

Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Cli-
mate variability and vulnerability to climate change: a review. 
Glob Change Biol 20:3313–3328. doi:https​://doi.org/10.1111/
gcb.12581​

Vicente-Serrano SM, Gouveia C, Camarero JJ, Begueria S, Trigo 
R, Lopez-Moreno JI et  al (2013) Response of vegetation to 
drought time-scales across global land biomes. Proceedings of 
the National Academy of Sciences. 110(1), 52–57. https​://doi.
org/10.1073/pnas.12070​68110​

Wang X, Wang T, Liu D, Zhang T, Xu J, Cui G et al (2019) Multisatel-
lite analyses of spatiotemporal variability in photosynthetic activ-
ity over the Tibetan Plateau. J Geophys Res Biogeosci 124:3778–
3797. https​://doi.org/10.1029/2019J​G0052​49

Yuan M, Wang L, Lin A, Liu Z, Li Q, Qu S (2020) Vegetation green up 
under the influence of daily minimum temperature and urbaniza-
tion in the Yellow River Basin, China. Ecol Ind 108:105760. https​
://doi.org/10.1016/j.ecoli​nd.2019.10576​0

Zhang X, Ren Y, Yin Z-Y, Lin Z, Zheng D (2009) Spatial and tem-
poral variation patterns of reference evapotranspiration across 
the Qinghai-Tibetan Plateau during 1971–2004. J Geophys Res 
114:D15105. https​://doi.org/10.1029/2009J​D0117​53

Zheng D, Yang QY, Wu SH (2008) Eco-geographical Region System 
of China. The Commercial Press, Beijing (In Chinese)

Zhong L, Ma Y, Xue Y, Piao S (2019) Climate change trends and 
impacts on vegetation greening over the Tibetan Plateau. J Geo-
phys Res Atmos 124:7540–7552. https​://doi.org/10.1029/2019J​
D0304​81 

Zhou B, Zhu S, Li H (2016) Temporal and spatial characteris-
tics of vegetation net primary productivity and its responses 
to climate change in Three -river Headwaters Region. J 
Arid Meteorol 34(6):958–965. https​://doi.org/10.11755​/j.i
ssn.1006-7639(2016)-06-0958

Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T (2010) Carbon dynam-
ics of terrestrial ecosystems on the Tibetan Plateau During the 
20th century: an analysis with a process-based biogeochemical 
model. Glob Ecol Biogeogr 19:649–662. https​://doi.org/10.111
1/j.1466-8238.2010.00559​.x

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jhydrol.2019.04.043
https://doi.org/10.1016/j.jhydrol.2019.04.043
https://doi.org/10.1111/gcb.12581
https://doi.org/10.1111/gcb.12581
https://doi.org/10.1073/pnas.1207068110
https://doi.org/10.1073/pnas.1207068110
https://doi.org/10.1029/2019JG005249
https://doi.org/10.1016/j.ecolind.2019.105760
https://doi.org/10.1016/j.ecolind.2019.105760
https://doi.org/10.1029/2009JD011753
https://doi.org/10.1029/2019JD030481
https://doi.org/10.1029/2019JD030481
https://doi.org/10.11755/j.issn.1006-7639(2016)-06-0958
https://doi.org/10.11755/j.issn.1006-7639(2016)-06-0958
https://doi.org/10.1111/j.1466-8238.2010.00559.x
https://doi.org/10.1111/j.1466-8238.2010.00559.x

	Decadal change and inter-annual variability of net primary productivity on the Tibetan Plateau
	Abstract
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 Model
	2.3 Data
	2.4 Analysis

	3 Results
	3.1 Climate on the TP
	3.2 Evaluation of simulated NPP
	3.3 Correlation of NPP with forcings at monthly time step
	3.4 Annual NPP variability
	3.5 Annual NPP long-term change
	3.6 Annual NPP variation

	4 Discussions
	5 Conclusions
	Acknowledgements 
	References




