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Abstract
For the first time, we analyze 2.2 km UK Met Office Unified Model convection-permitting model (CPM) projections for a 
pan-European domain. These new simulations represent a major increase in domain size, allowing us to examine the benefits 
of CPMs across a range of European climates. We find a change to the seasonality of extreme precipitation with warming. 
In particular, there is a relatively muted response for summer, which contrasts with much larger increases in autumn and 
winter. This flattens the hourly extreme precipitation seasonal cycle across Northern Europe which has a summer peak in 
the present climate. Over the Western Mediterranean, where autumn is the main extreme precipitation season, there is a 
regional increase in hourly extreme precipitation frequency, but local changes for lower precipitation thresholds are often 
insignificant. For mean precipitation, decreases are projected across Europe in summer, smaller decreases in autumn, and 
increases in winter; comparable changes are seen in the driving general circulation model (GCM) simulations. The winter 
mean increase is accompanied by a large decrease of winter mean snowfall. Comparing the driving GCM projections with 
the CPM ones, the CPMs show a robust enhanced intensification of precipitation extremes at the convection-permitting 
scale compared to coarser resolution climate model projections across various European regions for summer and autumn.

1 Introduction

The UK Met Office (UKMO) has recently completed 2.2 
km continental-scale convection-permitting climate model 
(CPM) simulations across Europe (Berthou et al. 2018) as 
one of the successors to the 1.5-km CPM simulations for 
the Southern (SUK) or Northern UK (NUK) (Chan et al. 
2018; Kendon et al. 2014). The simulation domain sizes of 
these older UK simulations were small, at the sub-synoptic 
scale—around 500 × 500 km

2 . The newer European-scale 
simulations are of slightly lower resolution compared to the 
original 1.5 km UK simulations, but are much more expen-
sive computationally due to their much larger simulation 
domain.

Previous UK studies have shown that projections of 
changes to summer extreme precipitation from CPM simu-
lations can differ substantially from those from coarser-res-
olution RCM simulations, but winter projections are similar 
(Chan et al. 2014b, 2018; Kendon et al. 2014). A similar 
regional-scale study also found increases in future summer 
precipitation extremes for Switzerland from CPM simula-
tions (Ban et al. 2015). These summer increases have been 
linked to fundamental differences in how the lower-resolu-
tion parametrised-convection models and CPMs represent 
convective processes (Kendon et al. 2012). The CPM simu-
lations improve the representation of the diurnal cycle (Ken-
don et al. 2012); lower-resolution parametrized-convection 
models show a dominant mid-day peak coincident with the 
maximum in solar shortwave heating, and do not organize 
convection which is important for allowing it to persist later 
in the day. CPMs have been shown to improve the prob-
ability distribution of hourly precipitation for some (i.e. 
UK and Switzerland) but not all (i.e. Germany) European 
regions (Berthou et al. 2018). The 1.5 km CPM simulations 
have fewer unrealistic “grid-point storms” that distort the 
representation of extreme precipitation events in the inter-
mediate 12 km simulation (Chan et al. 2014b). The convec-
tion parametrisation scheme is designed to represent small 
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sub-grid convection and the scheme assumptions breakdown 
for strong extreme-precipitation-producing grid-point-sized 
convective storms. Such storms at the grid-scale occur for 
models with grey-zone (5–20 km) resolutions but not for 
lower-resolution global climate and NWP models (Molinari 
and Dudek 1992).

The expansion of the simulation domain in this study 
is motivated by both operational and research experience. 
Operational numerical weather prediction (NWP) has shown 
that small domain size simulations often lead to inferior 
simulations due to a large spin-up region with negative pre-
cipitation biases extending considerably into the simulation 
domain (Lock et al., personal communication). We note that 
the use of an intermediate nest simulation improves the spin-
up of small-scale atmospheric features, and alleviates the 
precipitation biases for smaller domain simulations (Fosser 
et al. 2019). Beyond Europe, large-domain CPM simula-
tion has also been conducted for North America (Prein et al. 
2017b) although this is a pseudo-global warming simulation 
(Schär et al. 1996); it is driven by reanalysis with a climate 
change signal superposed.

The reliability of CPM projections, along with those from 
all regional models, is conditional on the quality of the large-
scale conditions from the driving model. For instance, much 
of the UK summer 1.5-km model projections are heavily 
conditioned by the “large” ( ≈ 50% ) reduction of summer 
mean precipitation from the driving general circulation 
model (GCM) (Chan et al. 2014b, 2018). The underlying 
assumption of one-way-nested downscaling is that the down-
scaling model does not diverge from the driving data at the 
synoptic scale; the added value from downscaling is found 
in finer spatial and temporal scales (Laprise et al. 2008). 
The 2.2 km CPM when driven by ERA-Interim reanaly-
sis data (Dee et al. 2011) is able to replicate some (well-)
observed European weather events (Berthou et al. 2018), 
demonstrating the control imposed by the driving data. One 
of the important new aspects of the new 2.2 km simula-
tions are that they are driven by new and higher resolution 

25-km “N512” HadGEM3 GCM simulations, which have an 
improved representation of the Northern Hemisphere storm 
track (Schiemann et al. 2017), which is in contrast with 
the 60-km “N216” GCM simulations that we used to drive 
the previous 1.5-km simulations (Mizielinski et al. 2014). 
Hence, we expect differences in projections between the 
older and newer CPM simulations simply due to the driving 
GCM changes. Part of our objective here is to disentangle 
the differences in CPM projections due to differences in the 
CPM itself from those due to the driving GCM, and to iden-
tify whether there is a robust signal of CPM added-value.

Here we build on Berthou et al. (2018) by examining the 
2.2 km CPM climate change simulations for the first time. 
Readers who are interested in the Europe-wide 2.2-km ERA-
Interim-driven (Dee et al. 2011) hindcast are encouraged to 
examine the companion publication (Berthou et al. 2018). 
The paper examines various improvements and limitations 
in the Europe-wide hindcast simulations conducted by the 
UKMO and ETH Z̈urich; for example, improvements in 
diurnal cycle and Mediterranean extreme events and reduced 
biases in hourly precipitation intensities.

We provide a summary of the model simulations and our 
statistical methodologies in Sects. 2 and 3. The results are 
organized into three main parts: we first examine the mean 
precipitation biases (Sect. 4.1) and projections (Sect. 4.2) 
across Europe, then the changes in the frequency of occur-
rence of heavy precipitation events (Sect. 4.3), then the sea-
sonal timing of such heavy precipitation events (Sect. 4.5), 
and lastly differences between the new results and the previ-
ous 1.5 km UK simulations (Sect. 4.6). We then draw some 
conclusions in Sect. 5.

2  Data

The model simulations are listed in Table 1. Results here 
focus on a series of 2.2 km European (Berthou et al. 2018) 
CPM simulations that are driven by the ERA-Interim 

Table 1  List of UKMO 2.2 km CPM and 25 km “N512” HadGEM3 GCM climate simulations that are analyzed here

Their UM versions, simulation domains, horizontal size of grid boxes (H-Res) are also given. The last column either gives the lateral boundary 
conditions (LBC) for the CPM simulations or the driving SSTs for GCM simulations. Note the hindcast simulation use the Gregorian calendar, 
but the present- and future-climate simulations use a 360-day calender. Monthly and seasonal means of the 360-day calender are equivalent to 
their Gregorian calender counterpart (Shepherd et al. 2018)
aRCP8.5 greenhouse gas for 2099–2108, SST 1999–2008 with monthly projected changes between 1990–2010 and 2090–2110 superposed 
(Mizielinski et al. 2014)

Simulation UM ver. Domain H-Res (km) LBC (RCM)/SST (GCM)

2.2 km hindcast (1999–2008) 10.1 Europe 2.2 80 km ERA-Interim (Dee et al. 2011)
2.2 km present (1999–2008) 10.1 Europe 2.2 25 km HadGEM3 present (Mizielinski et al. 2014)
2.2 km future (2099–2108)a 10.1 Europe 2.2 25 km HadGEM3 future (Mizielinski et al. 2014)
25 km present (1999–2008) 10.3 Global 25 Daily OSTIA SST (Donlon et al. 2012)
25 km future (2099–2108)a 10.3 Global 25 Daily OSTIA SST + changea
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reanalysis (“hindcast”; Dee et  al. 2011) and 25-km 
HadGEM3 climate change simulations (Mizielinski et al. 
2014). The 2.2-km CPM simulation domain is shown in 
Fig. 1 within the larger standard Euro-CORDEX regional 
climate model domain (Jacob et al. 2014).

Full details of the 2.2 km simulations can be found in 
Berthou et al. (2018), but below we provide a few key sum-
mary points:

• The 2.2 km Europe simulations are driven by ERA-
Interim and 25 km “N512” HadGEM3 present- and 
future-climate GCM simulations. The ERA-Interim-
driven simulation has been previously examined (Berthou 
et al. 2018). Hence the focus here will be mostly on the 
GCM-driven simulations. No intermediate nest is used; 
the 25 km “N512” HadGEM3 and 79 km ERA-Interim 
data directly drives the 2.2 km CPM model with downs-
caling ratios of ≈ 1 ∶ 11 and 1:36, respectively.

• Recent UKMO CPM work suggests that nested simu-
lation configurations with reduced downscaling ratios 
improve the ERA-Interim hindcast simulation by improv-
ing the spin up of small scale features (Fosser et al. 

2019). That recommendation comes in hindsight, and is 
untested for different resolution jumps and for a conti-
nental-scale CPM simulation where the buffer between 
the lateral boundaries and area of interest (i.e. European 
continent) is much larger.

• The 2.2 km CPM is part of the Met Office Unified Model 
(UM) with model physics and configuration based on the 
Met Office operational UKV model (Roberts and Lean 
2008) from UM version 10.1. Key features include the 
use of a new semi-Lagrangian dynamical core (“END-
Game”—Even Newer Dynamics for General Atmos-
pheric Modeling of the Environment; Wood et al. 2014), 
and new planetary boundary layer and cloud microphys-
ics parameterizations (Boutle et al. 2014a, b). The opera-
tional CPM also has additional near-surface stochastic 
potential temperature perturbations to increase convec-
tion behavior over sea. These physics changes are likely 
to have direct impacts on the simulated precipitation, and 
changes to the boundary layer and cloud microphysics 
parameterizations would directly change the formation 
and evolution of model clouds. For instance, cloud-to-
rain drop autoconversion rates were too high for older 

Fig. 1  The 2.2 km CPM simula-
tion domain within the larger 
Euro-CORDEX 12 km regional 
climate model simulation 
domain (Jacob et al. 2014). Our 
regions of interest—Germany, 
Southern France, Eastern Spain, 
and Southern UK—are labelled 
within
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model generations (including UM7.6-8) (Boutle et al. 
2014a), which are hence too fast in generating rain. A 
scientific summary of the UM10.1 model physics can be 
found in Berthou et al. (2018).

• The 10-year 25 km GCM simulations include both pre-
sent- (1999–2008) and future-climate (end-of-c.21) sim-
ulations. The 25 km GCM simulations use the RCP8.5 
“business-as-usual” greenhouse gas scenario (RCP—
Representative Concentration Pathway; Meinshausen 
et al. 2011). Future SSTs are observed 1999–2008 SST 
plus 20-year mean “delta changes” that are derived from 
coupled GCM simulations for 1990–2010 and 2090–
2110; see Mizielinski et al. (2014) for details.

• Only common model years are examined, and we exclude 
the first model year to minimize the impacts from model 
“spin-up”. The 2.2 km hindcast simulation only covers 
the years from 1999 to 2008 (plus 1998 for spin up). The 
same applies to the climate change simulations to ensure 
the same underlying SSTs less the “delta changes” are 
used.

A number of observations are used here. For present-cli-
mate mean precipitation biases, we have used the Europe-
wide E-OBS daily land-only gridded precipitation analy-
sis between 1999 and 2008 (Cornes et al. 2018; Haylock 
et al. 2008). For the seasonal cycle analysis, we have used 
hourly non-gridded station gauge precipitation observa-
tions (GSDR; Blenkinsop et al. 2018; Lewis et al. 2019). 
GSDR data for Europe are only available for a few selected 
nations (France, Germany, Ireland, Italy (Sicily, Trentino-
Alto Adige/Südtirol, and Veneto), the Low Countries (except 
Luxembourg), Norway, Portugal, Spain (Catalonia only), 
Sweden, and the UK. The data period varies, but some sta-
tions have data prior to before 1950.1 Depending on the 
analysis, gridded data are either regridded to a common 12 
km (”Euro-CORDEX”) or 25 km (“N512” GCM) grid. This 
information will be stated specifically per analysis.

3  Methods

As in Kendon et al. (2014), we have used year-block boot-
strapping to estimate the significance and confidence inter-
vals for our results. In addition, we have applied multiple-
hypothesis testing, have taken the peaks-over-threshold 
approach in diagnosing heavy precipitation events, and have 
tested the statistical significance of seasonality change. A 
outline of the above is given in this section.

3.1  Year‑block bootstrap estimates to the p value 
and confidence intervals

Given this study uses a single model realization with a rela-
tively small number of model years, we have only limited 
sampling of inter-annual variability. However, if we assume 
these model years are representative of the broader unknown 
distribution of model years, we can simulate the inter-annual 
variability by bootstrapping resampling (Efron and Tibshi-
rani 1993). This approach is used in the present analysis to 
estimate the p values and confidence intervals.

To account for the temporal correlation at sub-seasonal 
timescales, while preserving the common underlying SST 
inter-annual variability, the resampling with replacement is 
performed in year blocks for both present- and future-cli-
mate simulations using the same resampled year indices. All 
bootstraps are conducted n = 1000 times. After bootstrap-
ping, the p values are estimated in the following manner: 

1. We compute the metric of our interest (i.e. the test sta-
tistic) n times from the bootstrap, and sort them.

2. The mean of the bootstrapped metric is computed, and 
is subtracted from each of n sorted bootstrap estimates; 
this creates a n number of 0-mean metric. This gives 
us an estimate of the probability distribution of the test 
statistic under the null hypothesis.

3. The original metric is then compared with the null distri-
bution, and the p value is estimated based on where the 
original metric stands relative to the null distribution. 
For instance, if the original metric is below 2% or above 
98% of the values in simulated null distribution, the p 
value would be ≈ 0.02.

Note:

• Year-block resampling cannot simulate decadal or longer 
climate variability modes, and any meaningful analysis 
of such variability would require a much longer climate 
simulation as a prerequisite; hence, our bootstrap-esti-
mated variability is likely to be an underestimate.

• The above assumes the probability distribution of the 
metric to be independent of its mean and can be transla-
tionally moved to obtain the null distribution of the test 
statistic.

• The smallest obtainable p value is 1
n
= 0.1% when the 

actual test statistic lies outside the bootstrapped null dis-
tribution range; 0.1% is usually sufficient for statistical 
significance testing in the atmospheric sciences where 
tests are usually done at the 1–10% level.

• The 95% confidence interval of the metric is the 2.5% 
and 97.5% percentiles of the bootstrap-simulated metric. 
Such confidence intervals can be found in Fig. 4.

1 Some Italian stations have data as far back in the 1920s.
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• The confidence intervals do not indicate statistical sig-
nificance; instead, significance is indicated by the value 
of metric relative to the null distribution.

3.2  Multiple hypothesis testing for spatial 
significance

When one conducts field significance tests, one would expect 
some results to be significant just by chance (Livezey and 
Chen 1983; Wilks 2016). The problem is further compli-
cated by the natural spatial correlation of geophysical data, 
which can lead to the incorrect identification of significant 
results. To address this, Wilks (2016) applied corrections 
to the p value by controlling the false discovery rates in 
multi-hypothesis testing (Benjamini and Hochberg 1995), 
and then compared the corrected p values with a revised 
global significance level which is 2× the level for non-field 
significance tests. As the tests are two-tailed, the non-field 
significance level has to be halved, which cancels the 2× 
global significance multiplier in Wilks (2016).

We have applied the above corrections to a number of 
Europe-wide results: mean precipitation biases and changes, 
seasonality changes, and (local) precipitation extreme fre-
quency changes. The uncorrected p values are estimated 
either parametrically or by bootstrap resampling.

These p value corrections are implemented in various 
open-source numerical analysis software: p.adjust in the R 
package stats (R Core Team 2016) and stats.multitest in the 
Python package statsmodels (Seabold and Perktold 2010).

3.3  Peaks‑over‑threshold approach in diagnosing 
significant precipitation events

Following the peaks-over-threshold framework (Coles 
2001), we define heavy precipitation events per model grid 
point in the present climate to be the 6-largest daily accu-
mulated and daily 1-h maximum precipitation for all model 
days per model year. Therefore, for n model years, we select 
the 6n largest events (Blenkinsop et al. 2017). The seasonal 
timing information are also retained, so we can examine the 
change in the seasonality of these 6n largest events. The 
event “threshold” at each grid point is the smallest of the 
6n values. We then estimate the frequency with which this 
event threshold is exceeded in the future-climate simulation.

The framework assumes exceedance events as part of a 
Poisson point process (Coles 2001). Due to the equal number 
of model years (to ensure the underlying SSTs are the same) 
and the variance of the Poisson distribution being equal to 
the event probability (i.e. �2 = n∕N = � for n exceedances in 
N observations), we can then use the Z test statistic (Thode 
1997) for significance testing:

The uncorrected p value can then easily be obtained using 
the cumulative distribution function of the normal distribu-
tion, and then be adjusted for multiple hypothesis testing 
(Sect. 3.2).

3.4  Changes in seasonality of exceedance events

Seasonality analysis uses the standard �2 test. For the exist-
ence of any seasonality, a one-way test is applied with the 
null hypothesis of no seasonality. For Nseason events for a 
particular season (MAM, JJA, SON, and DJF), annual fre-
quency of nPeaks Per Year and T years of data:

For future changes, the null hypothesis is that the future 
seasonality is no different from the mean of both the present 
and future simulations. Hence, for an equal number of pre-
sent- and future-climate model years:

As the �2 test is applied to a spatial map, the multiple-
hypothesis p value correction (Sect. 3.2) is applied.

4  Results

For the first time here, we examine convection-permitting 
model projected changes for a European-wide domain. This 
allows us to examine the influence of convection-permit-
ting resolution for a range of different climates. We begin 
with an examination of the mean precipitation biases and 
changes. The 2.2 km CPM (“2p2”) and driving (“N512”) 
GCM seasonal mean precipitation biases and projections 
across Europe are shown in Fig. 2. Biases and changes that 
are significant at the 5% level are dotted.

4.1  Mean biases

Seasonal mean model biases relative to E-OBS are shown 
in Fig. 2 (panels b, g, l, q) for the 2.2 km CPM and Fig. 2 
(panels d, i, n, s) for the driving 25 km GCM. In brief, 
the 2.2 km CPM biases broadly follow the driving GCM 

(1)Z =
�future − �present

S
=

nfuture − npresent
√
nfuture + npresent

(2)�2 =
∑

MAM,JJA,SON,DJF

(Nseason − 0.25nPeaks Per YearT)
2

0.25nPeaks Per YearT

(3)�2 =
∑

MAM,JJA,SON,DJF

(Nseason − Nseason mean)
2

Nseason mean

(4)

nseason mean =
Nseason, future + Nseason, present

2

|||MAM,JJA,SON,DJF
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biases with interesting summer (JJA) differences over Cen-
tral and Eastern Europe.

Both models simulate excessive spring (MAM, pan-
els b, d) and winter (DJF, panels q, s) precipitation. Over 
land, the models typically produce 30% more precipitation 
than observations from E-OBS. Significant positive biases 
are not concentrated in specific areas, but are widespread 
across Europe from Iberia to Poland. Overall, the CPM 
biases for these two seasons follow the biases of the driv-
ing GCM.

Summer (JJA, panels g, i) precipitation biases are gener-
ally negative away from the Mediterranean. Although the 
GCM biases are generally not statistically significant, the 
CPM negative biases are somewhat larger and are signifi-
cant over parts of Central and Eastern Europe (i.e. Poland, 
Belarus and Slovakia). In contrast, positive biases in summer 
mean precipitation are found over Scandinavia.

Autumn (SON, panels l, n) is perhaps the best simulated 
season in terms of mean precipitation biases. Biases over 
land are negligible. Although pockets of significant positive 

biases are found over Eastern Europe, they are small relative 
to biases in other seasons.

4.2  Future summer European drying

The projected changes are shown in Fig. 2 panels c, h, m, 
r for the 2.2 km CPM and panels e, j, o and t for the driv-
ing 25 km GCM. The projected mean changes by 2.2 km 
and GCM simulations are dominated by a large ( 50 + % ) 
decrease in JJA mean precipitation (panels h, j) north of the 
Alps, with a smaller mean decrease in both spring (panels c, 
e) and autumn (panels m, o). Notable (10–40% ) and signifi-
cant decreases in spring mean precipitation are found over 
France, Iberia and Italy. While autumn decreases cover a 
wide area across the northern half of the simulation domain, 
only the decreases (up to ≈ 40% ) around the Alps, Czech 
Republic and Southern Poland are statistically significant. 
For the autumn Mediterranean wet season, the mean changes 
in Southern Europe are relatively moderate compared to 
the summer changes, with changes in neither season being 

Fig. 2  Seasonal mean precipitation biases (model divided by E-OBS) 
and future changes (future-climate simulation divided by present-cli-
mate simulation) for March–April–May (MAM; top row), June–July–
August (JJA; second row), September–October–November (SON; 
third row), and December–January–February (DJF; bottom role) for 
the 2.2 km (“2p2”) and driving 25 km GCM (“N512”) simulations. 

The actual E-OBS observations are shown in the first column from 
the left. Statistical significance is determined by year-block bootstrap-
ping (see Sect.  3.1) with multiple hypothesis testing p value adjust-
ments (see Sect.  3.2; Wilks 2016); area with significant biases and 
changes are dotted. The median value over land grid points are given 
in each panel’s title
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statistically significant. Winter mean changes (panels r, t) 
are generally positive across Northern and Central Europe, 
but statistically significant changes exceeding 40% are only 
found around the North and Baltic Seas. Broadly speak-
ing, the CPM mean changes follow the driving GCM mean 
changes, akin to the CPM mean biases following the driving 
GCM mean biases.

The summer drying signal largely comes from the driv-
ing GCM simulations, but there are differences between the 
CPM and GCM signal, may be due to their different precipi-
tation physics and land surface feedbacks. We show the ratio 
of seasonal projected change between the 2.2 km and driving 

GCM simulations in Fig. 3. The 2.2 km CPM projects a 
more intense drying signal across Continental Europe north 
of the Alps in summer, but differences between the GCM 
and CPM projections are less clear for spring and autumn. 
As the 2.2 km CPM is known to have less frequent but more 
intense precipitation intensities (Berthou et al. 2018), the 
CPM JJA drying signal may be enhanced by drier soils due 
to the weaker penetration of high intensity precipitation; this 
may also explain the exacerbation of JJA mean dry biases 
inland as seen in Fig. 2g.

The above projections are diagnosed from single-realiza-
tion climate simulations. To put them within the context of 

Fig. 3  Differences in seasonal projected precipitation change between 
the 2.2 km and N512 simulations beginning for a March–April–
May, b June–July–August, c September–October–November and d 

December–January–February. Data are first regridded to the common 
“N512” grid for comparison
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large multi-model multi-ensemble projections for Europe, 
we now compare these with RCP8.5 projections from the 
12 km Euro-CORDEX ensemble (Jacob et al. 2014) for 
the same time-period. Before the comparison, we note that 
the Euro-CORDEX ensemble is driven by the CMIP52 5 
GCM simulations (Taylor et al. 2012), while our driving 
GCM simulations use prescribed SSTs (Mizielinski et al. 
2014); hence, we do not expect our projections to be identi-
cal to the Euro-CORDEX ensemble. The Euro-CORDEX 
projections (Jacob et al. 2014) generally show an increase 
(decrease) of annual mean precipitation for Northwestern 
(Southern) Europe. For spring, the Euro-CORDEX ensem-
ble mean shows an increase in northeast and a decrease in 
Southwestern Europe; the 2.2 km CPM projections project 
a somewhat similar spatial pattern but with a larger area 
showing decreases. Although the Euro-CORDEX ensemble 
mean indicates a substantial (5–25%) decreases in summer 
mean precipitation, the 2.2 km CPM projected decreases are 
often higher (i.e. 50 + % for parts of France and Germany). 
The Euro-CORDEX ensemble mean projected autumn 
changes show a mean increase (decrease) for Northeast-
ern (Southwestern) Europe, while our simulations show a 
decrease across most of Northern and Central Europe up 
to ≈ 40% . For winter, the 2.2 km CPM projected increases 
across Northern Europe are generally consistent with the 
Euro-CORDEX ensemble mean.

4.3  Percentile‑based exceedances across Europe

Where long local time series are not available, regional fre-
quency analysis is commonly used for extreme value analy-
sis (RFA; Hosking and Wallis 1993). This has the advantage 
of replacing space for time therefore drawing from regional 
data pools. In RFA, regions are assumed to be homogeneous 
for precipitation extremes, and the pooled data samples inde-
pendent of each other. A pooled percentile approach is used 
in Kendon et al. (2014) for SUK because it better accom-
modates precipitation data with different biases but may still 
get the relative ordering of the intensities correct (i.e. radar 
data may have negative biases at higher intensities (Har-
rison et al. 2000), but the relative ordering of precipitation 
intensities should still be approximately correct). As we are 
comparing models with different resolutions here, we first 
upscale all model data to a common 25 km GCM grid. We 
do not specifically account for spatial coherence (i.e. multi-
grid point events) in this analysis, as is common practice 
in regional frequency analysis (Hosking and Wallis 1993).

To further ensure that results are comparable with previ-
ous ones (e.g. Chan et al. 2014a; Kendon et al. 2014), we 
also decluster the hourly data. The declustering approaches 

in Kendon et al. (2014) and Chan et al. (2014a) are dif-
ferent. The former considers continuous precipitation epi-
sodes, while the latter considers average separation times of 
peak precipitation (Ferro and Segers 2003). Here, we take 
an approach that is comparable but simpler than the latter 
approach and decluster hourly extremes by taking the daily 
maximum of hourly precipitation at each grid point, assum-
ing the local daily maximums to be independent. The current 
method is straightforward to apply, transforms and simplifies 
hourly data into daily data, and includes low/no precipitation 
days in the analysis. All subsequent analysis with hourly 
precipitation uses the above approach.

The metric of interest here is the exceedance of current 
climate thresholds (Kendon et al. 2014): we determine the 
current-climate thresholds by taking percentiles of region-
ally pooled precipitation intensities from the present-cli-
mate simulation, and we then determine how often these 
thresholds are exceeded in the future-climate simulation. 
We examine four regions for two seasons: JJA for Germany 
and the Southern UK, and for SON for Southern France and 
Eastern Spain; they are all labeled in Fig. 1. To illustrate the 
projected future changes, the future divided by the present-
climate exceedance frequencies are shown in Fig. 4. The 
underlying current-climate percentile thresholds are given 
on the two x-axes below each figure panel together with the 
future-climate percentiles in parentheses. The regions have 
been chosen due to their well-defined extreme precipitation 
season (see Sect. 4.5). Germany and the Southern UK have a 
well defined summer peak in hourly precipitation extremes; 
the two Western Mediterranean regions have a well defined 
autumn peak in hourly precipitation extremes.

The projected changes for each region differ substan-
tially. Germany (panel a), where mean summer precipita-
tion changes are strongly negative (Fig. 2), shows small to 
negligible increases for future hourly extremes; for the 2.2 
km CPM projections, it is only at percentiles greater than 
99.99 that we see any statistically significant ( 3× ) increase 
in future exceedances. For Southern UK (panel b) where the 
projected decreases in mean summer precipitation are less 
severe than Germany, both the 2.2 km CPM and GCM pro-
ject increases in exceedance frequencies for present-climate 
percentile thresholds above 99.0, with the CPM increases 
usually being somewhat higher. The 2.2 km CPM projec-
tions for the two Western Mediterranean regions (Southern 
France and Eastern Spain, panels c, d) for SON are clearly 
positive with 10 fold increases in events that exceed the pre-
sent-climate 99.99 percentile. The GCM projected changes 
are positive as well, but do not see the same 10 fold increase 
for percentiles up to 99.999 (i.e. 2× to 8× increase).

The future increase in exceedance frequencies occurs 
against the backdrop of intensity increases for the higher 
percentiles as indicated by the additional x-axes below 
each panel. With the exception of Germany, all three 2 Coupled Model Intercomparison Project.
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regions see intensity increases in hourly peak intensities 
for percentiles above 99.0 (corresponding to intensities of 
more than 6–10 mm/h, depending on the region). These 
projected increases are consistently higher for the CPM 
simulation. For Southern France, the CPM projected 
hourly peak intensity increase for the 99.999 percentile 
exceeds 50% . For Germany, increases begin at a higher 
percentile than the other three regions, but the increases 

start at a lower percentile for the CPM (99.9 percentile) 
than the driving GCM (99.999 percentile).

The underlying current-climate percentile thresholds are 
often higher in the lower-resolution GCM than the 2.2 km 
CPM. Since the analysis is conducted at the GCM horizontal 
scale, the regridded CPM intensities depend on the simulated 
spatial precipitation structure. We have explored this issue 
in further detail in the Supplementary Materials, especially 

(a) (b)

(c) (d)

Fig. 4  Future divided by present exceedance rates of present-climate 
thresholds for a JJA Germany, b JJA Southern UK, c SON Southern 
France, and d SON Eastern Spain at 25 km scale for the 2.2 km and 
N512 GCM simulations. Different simulations are marked with dif-
ferent colours—purple for the N512 GCM simulations, and red for 
the 2.2 km CPM simulations. The underlying present-climate thresh-
olds for the two models are given in the additional x axes with the 

future-climate percentiles in parentheses. The actual exceedance 
change ratios are given by the table below. Year-block bootstrap-
ping significance tests are applied (see Sect. 3.1), and future changes 
that are not rejected at the 5% and 10% level from the present-climate 
baseline are marked with “*” (asterisk/star) and “ ̂  ” (caret) respec-
tively



418 S. C. Chan et al.

1 3

how the spatial-averaging scale affects projected future 
Southern UK changes. In previous studies, areal precipita-
tion averages from lower-resolution parametrised-convection 
models can indeed be higher than CPMs (Hohenegger et al. 
2008; Lean et al. 2008) even if CPMs have a tendency to 
overestimate the intensity of the heaviest events (Kendon 
et al. 2012).

Overall, there are considerable differences between pro-
jections for Germany compared to the other three regions. 
Despite large regional variability in projected hourly inten-
sity changes, both models project increases for the highest 
percentile ( ≥ 99.995 ) events for all four regions with the 2.2 
km model projections being higher. Germany is an exception 
that the GCM projects a reduction of lower percentile events.

4.4  Local projection of future extreme changes

Pooled regional analysis may increase the detectability of 
changes by increasing sample size, but this should ideally 
only be applied to homogeneous regions (Hosking and Wal-
lis 1993). Formal definitions for homogeneous regions are 
often defined for point observations. Such an approach is 
difficult to apply to gridded climate model data due to the 
data’s high spatial density and the model’s ability to resolve 
detailed spatial inhomogeneity. Here we define our regions 
based on previous work (Kendon et al. 2014; Berthou et al. 
2018), acknowledging that homogeneous regions are dif-
ficult to define precisely. Here we use the same approach 
as Chan et al. (2014b), and look at changes for each grid 
point of Europe. As sample sizes are now smaller and fixed 
locally,3 the robustness of these results is harder to establish.

Future annual frequencies from the present-climate 
simulation (future-divided-by-present) and the underlying 
precipitation thresholds are shown in Fig. 5 for daily maxi-
mum 1-h and daily precipitation. Note for the annual case, 
the change is just future-climate annual frequencies divided 
by 6

360

4. Significance is estimated by estimating the p value 
with block bootstrapping, with multiple-hypothesis testing 
adjustments (Sect. 3). The hourly thresholds (panel a) are 
typically between 5 and 10 mm/h, lying on the lower range 
of the thresholds examined in Sect. 4.3. The daily thresholds 
(panel b) are typically between 10 and 50 mm/day with the 
highest values over orographic regions (e.g. the Alps, Pyr-
enees, Basque Country, etc.).

For daily maximum of hourly precipitation, grid points 
with significant increases in frequency are concentrated over 
Ireland, the UK and Norway (almost 2 times increase) with 

pockets of significant increases around the Mediterranean 
and over high orography (Alps and Pyrenees). Decreases are 
found in Central and Eastern Europe, but most of them are 
not statistically significant.

Like the extremes for daily maximum of hourly precipi-
tation, daily frequency increases are also concentrated over 
Northern Europe. Larger areas of significant positive change 
are found not only over the UK and Norway, but also around 
the Baltic Sea and Denmark. Outside of Northern Europe, 
the only pockets of significant changes are found in Iberia/
Morocco (negative) and Slovenia/Hungary (positive).

The annual threshold can also be applied seasonally 
to examine the seasonal distribution. We first concentrate 
on DJF here (Fig. 6) as it is the season that sees the most 
considerable change. In contrast with the annual changes, 
we find much larger areas of increasing frequency for both 
hourly and daily precipitation extremes; significant increases 
in frequency for hourly extremes are now found across the 
Northern Mediterranean, and significant increases for daily 
extremes are now found over a much broader area across 
Northern Europe. In fact, some areas in Central Europe see 
tenfold plus increases.

DJF is not the most important season for extreme pre-
cipitation under current climate conditions (see Sect. 4.5)—
Northern and Southern European hourly precipitation 
extremes tend to occur in JJA or SON, especially extremes 
that are associated with deep convective storms. JJA and 
SON changes are shown in Figs. 7 and 8. For JJA, only 
Norway and the Western British Isles show exceedance 
frequency increases, and much of these are not statistically 
significant. In fact, exceedance frequency changes are mostly 
negative across Continental Europe with the largest negative 
changes in the frequency of daily extremes across France 
and Germany. SON exceedance frequency changes are 
mostly positive. Significant local increases to 1-h precipita-
tion extremes are found mostly over Northern Europe, with 
local pockets around the Mediterranean. In SON exceedance 
frequency changes to daily extremes are locally statistically 
insignificant nearly everywhere.

Overall, results here and in the previous section indicates 
that the detection of changes in the frequency of heavy pre-
cipitation events often require a regional approach. Local 
grid point changes are difficult to diagnose and interpret 
unless the local signal is large (like increases over the UK 
and Norway).

4.5  The changing seasonal cycle of extremes

Regardless of whether changes are diagnosed using pooled 
or individual grid point data, there is a clear pattern that 
non-summer hourly extreme precipitation changes are 
much larger than the summer changes across Europe. Sum-
mer and autumn show the largest frequency of extreme 

3 The sample sizes for pooled regions depend on the number of grid 
points included in the region.
4 6 days divided by 360 days; both present- and future-climate simu-
lations use a 360-day calendar
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Fig. 5  Future frequency of exceeding the 6th annual largest present-
day daily maximum b 1-h and d 1-day precipitation intensity in 
the 2.2 km CPM. Right panels b, d are the actual future frequency 
(events per year), and left panels a, c are the underlying present-cli-
mate precipitation intensity thresholds in mm/hr and mm/dy respec-
tively. By definition, the present-climate frequencies are fixed at 6 per 
year; hence any values above (green areas in the left panels) or below 

(brown areas in the left panels) 6 indicate increases and decreases 
respectively. Dotted areas are significant at the 5% level after cor-
rected with multiple-hypothesis testing (see Sect.  3.2  Wilks 2016) 
with uncorrected p values estimated using Z test assuming threshold 
exceedances as a Poisson process. Data are regridded to a common 
12 km grid
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Fig. 6  Similar to Fig.  5, but the annual threshold is applied to DJF 
only; hence, the present-climate frequency is no longer fixed and 
depends on event seasonality. The left panels a, c show the the actual 
future frequency (events per season; same as in a, c in Fig.  5), but 
the right panels b, d now show the future divided by present change. 

Note that left panel has different units (events per 90 days), contour 
interval and colour map than in Fig. 5. Dotted areas indicate changes 
that are significant at the 5% level. Multiple-hypothesis testing correc-
tions are applied
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hourly precipitation in the present climate. The tendency 
for greater increases in the frequency of winter heavy pre-
cipitation (Fig. 6) suggests fundamental changes to the 

seasonal cycle of extreme events with warming. The com-
bination of seasonal mean and extreme precipitation changes 
may have important implications for impacts. For instance, 

Fig. 7  Same as in Fig. 6, but for JJA
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even though summer extreme changes are relatively small 
in intensity and frequency terms, the greater incidence of 
antecedent dry conditions may lead to much greater surface 
erosion; in contrast, an increase of winter extremes on top 

of already wetter winter conditions may lead to more winter 
flooding.

In Fig. 9, we show the peak seasons for 6 n daily maxi-
mum hourly precipitation events for the 2.2 km CPM 

Fig. 8  Same as in Fig. 6, but for SON
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simulations, 25 km GCM simulations, and GSDR observa-
tions. In both CPM and GCM present-climate simulations, 
events tend to peak in either summer (Northern Europe) 
or autumn (Southern Europe around the Mediterranean). 
Compared with the GSDR observations, the present-climate 
simulations capture the correct seasonal timing of hourly 
extremes over the UK (mostly JJA, some SON), the Low 
Countries (JJA), France (JJA), Germany (JJA), Scandina-
via (JJA), Switzerland (JJA), coastal Catalonia (SON; see 
discussion below for inland), and Sicily (SON). A statisti-
cally significant shift away from a summer peak to either an 
autumn peak or no-peak-at-all is evident across France, the 
British Isles, the Low Countries, Spain, and the Northern 
Balkans in the future-climate simulation.

Most of Southern Europe sees relatively small changes 
in the timing of the seasonal peak with most extremes still 
occurring in autumn. There is however a significant shift in 
timing from a spring to an autumn peak over the interior of 
Iberia. The apparent winter-spring event peak over Western 
and Central Iberia in the present-climate 2.2 km simulation 
is not a feature found in the 2.2 km CPM hindcast (panel e). 
Instead, the winter-spring peak is a feature from the driv-
ing GCM simulation (panel c). This is also not found in the 
observations; for instance, Portuguese observations indicate 
hourly extremes are most common during autumn (Fig. 9f), 
but the 2.2 km and N512 present-climate simulations have 
an incorrect DJF peak. For inland Catalonia, none of model 
simulations (SON for both hindcast and present-climate 
simulations) agree with the observed GSDR (JJA) peak. The 
simulated Iberian extreme precipitation seasonality is wrong 
in the GCM and GCM-driven simulations, and results here 
are another example of the degree of control that the GCM 
lateral boundary conditions have over the downscaled 2.2 
km CPM simulations. The same lateral boundary condition 
controls can be seen in the future changes as well, with the 
seasonal shifts in the driving GCM (panel d) generally simi-
lar to the downscaled CPM.

The shifting of extremes away from summer plus the 
large increase in both winter mean and extreme precipitation 
lead to the important question of future snowfall changes. 
Large changes to the ratio between snowfall and rainfall can 
have large implications for both social-economic impacts 
and regional climate feedbacks. The 2.2 km projected DJF 
mean melted-water-equivalent snowfall changes are shown 
in Fig. 10. There are widespread large decreases in snowfall 
across the Central/Eastern Europe lowlands and Scotland. 
Over Germany, the Low Countries, and Southern Scandi-
navia, the decrease approaches 100% . Lower decreases and 
even some increases are projected over high Alpine and Nor-
wegian orography. Our snowfall projections over the Alps 
are somewhat more moderate than the 45% decrease pro-
jected in Frei et al. (2018); however, their projections were 
based on lower-resolution climate models, so differences 

may be down to the representation of orography, otherwise 
the lowland snowfall projections are qualitatively similar.

4.6  Within the context of previous UKMO CPM 
simulations

The simulations presented here are different in many ways 
from the previous UKMO CPM simulations (Chan et al. 
2013, 2014a, b; Kendon et al. 2012, 2014): different model 
configurations and versions, different lateral boundary con-
ditions, and different model domains. Therefore, there is 
no straightforward way to attribute the differences between 
the new and previous modeling results. Nevertheless, here 
we document the differences, so that impact studies using 
the previous simulations (Dale et al. 2015; Ockenden et al. 
2016) may understand how the model results are evolving 
which may then affect the interpretation of their results.

Further details of the comparisons can be found in the 
Supplementary Materials. To quickly summarize the key 
results: 

1. Both the previous 1.5 km simulations and the newer 2.2 
km simulations do not have major mean precipitation 
biases over the Southern UK (Supplementary Fig. 1).

2. The new projections show higher frequency increases 
in winter mean precipitation but a more severe summer 
drying (Supplementary Figs. 2, 3).

3. The new 2.2 km CPM projections show larger frequency 
increases than the previous 1.5 km CPM projections in 
summer hourly extremes (Supplementary Figs. 7–10).

4. The projections of change to extreme precipitation are 
dependent on the spatial-averaging scale (Supplemen-
tary Figs. 11–12) with the 2.2 km CPM projections 
showing larger increases at the GCM scale compared to 
the native grid scale.

5. We have explored how sensitive the spatially-pooled 
results are to spatially-correlated events like “grid point 
storms” that are found in some of our “grey-zone” reso-
lution simulations (Supplementary Section 2).

5  Conclusions and discussions

This is the first time that a CPM has been used to provide 
Europe-wide future-climate projections. We find projec-
tions over Europe are dominated by wetter winters across 
Northern Europe with increased extremes. Summer is drier 
across Northern and Central Europe; the decrease in mean 
precipitation over France and Germany is even more severe 
than for the UK. Projected summer hourly extreme changes 
are much more muted across Continental Europe as shown 
in Figs. 4 and 5; there is even suggestion that summer hourly 
extremes will become less frequent for Central Europe, but 
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this result is not significant compared to year-to-year vari-
ability. While there is a decrease in mean precipitation for 
autumn, extremes are expected to become more frequent for 
some regions in Southern Europe (Fig. 4). Importantly, we 
find the 2.2 km CPM hourly extreme precipitation projec-
tions are consistently higher than the driving GCM for all 
examined regions (UK, Germany, Southern France, Eastern 
Spain), and statistically significantly so in the Mediterranean 
for “very high” ( 99.9+ ) percentiles; for instance, our simula-
tions project five fold plus increases in 20 + mm/h events 
at the 25 km scale for the Southern UK, Southern France 
and Eastern Spain (Fig. 4). Otherwise, the GCM and CPM 
results look broadly similar in terms of mean precipitation 
and seasonality changes.

The relatively muted summer changes to extreme precipi-
tation are in contrast with the much larger winter increase in 
extremes—a consistent result from the previous 1.5/12 km 
model projections which were performed over much smaller 
domains. This leads to significant changes to the future sea-
sonality of hourly extremes across Northern Europe where 
such changes may have extremely important physical and 
social-economic implications. The larger winter increase is 
generally consistent with temperature-precipitation extreme 
scaling which favors higher scaling rates at lower air tem-
peratures (i.e. ≲ 20 ◦C ) (Hardwick Jones et al. 2010; Utsumi 
et al. 2011).

The winter projections show increases in extreme and 
mean precipitation yet decreases in snowfall. Hence, the 
projections imply fundamental changes to future winter 
weather and climate risks—such as reduction of snow traf-
fic disruptions and spring snow-melt flooding, the need for 
additional management for increased winter water and hydro 
power capacity with offsets to higher summer demands due 
to warming and drying and heightened risks for rainfall-
driven winter (flash) floods (Frei et al. 2018).

Two different approaches are used to estimate our projec-
tions—projection per pooled region and projections per grid 
point. Projecting local (grid point) changes are heavily lim-
ited by the shorter time series available at each grid point; in 
contrast, pooled analysis (e.g. Fig. 4) significantly increases 

the sample size and permits the examination of the far tail 
of the extremes, but can over-count the same event multiple 
times. The over-counting of hourly events in regional pool-
ing analysis is reduced by using the daily hourly maximum 
precipitation in this study as data are temporally declustered, 
but this still does not account for spatial coherence. Pre-
cipitation is clearly a spatially and temporally correlated 
quantity, but the actual correlation (i.e. over-counting) is 
difficult to account for since many physical mechanisms can 
be involved, i.e. extreme events can be localized convection 
or organized convection/frontal precipitation that is organ-
ized at the synoptic scale. As we have demonstrated in the 
Supplementary Material section 2, spatial over-counting plus 
the possibility of very rare events can occasionally lead to 
large changes for the regional pooling results in which the 
spatial signature of the rare event is exacerbated. Hence, 
caution should be exercised when comparing changes for 
pooled regions and individual grid points; the latter is not 
subject to the above problem, where the impact of such very 
rare events is confined to the top-most extreme intensities 
at that grid point. That said, such pooling is common prac-
tice as long as the pooling is applied to a relatively uniform 
region (regional frequency analysis; Hosking and Wallis 
1993). Individual grid point projections are not impacted 
by spatial correlation, but we need to account for the impact 
from conducting hypothesis tests together over many grid 
points (Wilks 2016). Results here demonstrate the type of 
differences when both approaches are applied—significant 
changes are much harder to obtain at individual grid points, 
and local changes for the highest extremes require extrapo-
lations using extreme-value theory (Coles 2001) and are 
highly uncertain; instead, changes over a wide area can be 
examined. While individual grid point changes may not be 
statistically significant, they are consistent with the region-
ally pooled results. Future analyses may incorporate machine 
learning and pattern recognition methods where both tem-
poral and spatial correlation of extremes can be accounted 
for Prein et al. (2017a).

Overall, the most important difference between the 
GCM- and CPM-projected changes of precipitation are in 
the metrics that are related to extreme precipitation inten-
sity changes—either the actual intensities themselves or 
how often they are exceeded in the future-climate simula-
tion (Fig. 4). The mean changes and timing of precipitation 
peak intensities appear to mostly controlled by the driving 
GCM; i.e. changes to the storm track and synoptic transients. 
There are hints for inland Europe that the CPM mean pre-
cipitation decreases for summer are somewhat more severe, 
but the sign of the change is already clearly evident in the 
driving GCM projections.

Current projection uncertainties are still based on only a 
10-year single-realization for one specific (RCP8.5) emissions 
scenario and one specific time-period (end of 21st century). 

Fig. 9  Season (MAM, JJA, SON, and DJF) with the most hourly 
extremes for the a present- and b future-climate 2.2 km CPM simula-
tion, c the driving present- and d future-climate GCM simulation, e 
hindcast 2.2 km CPM simulation, and f GSDR station observations. 
Extremes are defined here as the heaviest 60 daily maximum 1h pre-
cipitation events throughout the 10-year simulation (equivalent to 
the 6 largest events per year on average, see Fig. 5). We greyed-out 
grid points and stations with seasonal differences that are not signifi-
cant in a one-way �2 test at the 5% level. For panels b, d, we dot-
ted areas with significant future distribution changes (at 5% level with 
the �2 test) relative to the present-climate simulation (see Sect. 3.4). 
Multiple-hypothesis p value adjustments (Wilks 2016) are applied to 
both the seasonal differences and their future change separately (see 
Sect. 3.2). Model sea grid points are masked for panel a–e 

◂
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We mimic inter-annual variability via year-block bootstrap-
ping, but this assumes that model years are reasonably repre-
sentative of the greater (and unknown) probability distribution 
of model years which is untrue as decadal variability has been 
ignored. This can only be addressed with longer and/or multi-
ensemble continental-scale CPM simulations, which is cur-
rently infeasible without incurring unreasonable computational 
costs. RCP8.5 represents the highest Intergovernmental Panel 
on Climate Change (IPCC) emission scenario, and CORDEX 
guidelines (Giorgi et al. 2009) recommend simulations for all 
RCP emission scenarios. Multi-model ensemble assessments 
are cornerstones to modern climate and weather sciences, and 
are recommended by the IPCC for climate change projections 
(Alley et al. 2007). For the UK, uncertainty in CPM projec-
tions can now be examined using the UKCP18 Local ensemble 
simulations (UKCP Project Team 2017), which were released 
in September 2019; headline results are now available in the 
official report (Kendon et al. 2019), which is available at https 
://www.metof fice.gov.uk/resea rch/appro ach/colla borat ion/
ukcp/guida nce-scien ce-repor ts. Beyond the UK, multi-model 
CPM projections over parts of Continental Europe are planned 
as part of the CORDEX Flagship Pilot Studies (Coppola et al. 
2018) and European Climate Prediction System (EUCP; 
Hewitt and Lowe 2018) initiative. CPM projections for all of 
Europe are still perhaps too computationally expensive; each 
of our single 2.2 km CPM simulations required more than 1 
year to complete with UKMO computing facilities. The future 
of CPM climate simulations is not just a scientific challenge 
but a technical one as well.
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