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Abstract
Convection-permitting regional climate models have been shown to improve precipitation simulation in many aspects, such 
as the diurnal cycle, precipitation frequency, intensity and extremes in many studies over several geographical regions of the 
world, but their skill in reproducing the warm-season precipitation characteristics over the East Asia has not been robustly 
tested yet. Motivated by recent advances in computing power, model physics and high-resolution reanalysis, we use the 
convection-permitting weather research and forecasting (WRF) model configured with 3 km grid spacing to simulate the 
warm-season precipitation in eastern China for 10 seasons (2008–2017). The hourly 31-km-resolution ERA5 reanalysis 
data are used to provide initial and boundary conditions for the simulations. The objectives are (1) to evaluate the model 
skill in simulating warm-season precipitation climatology in the East Asian monsoon region, (2) to identify the promises 
and problems of the convection-permitting simulation, and (3) to investigate solutions for the model deficiencies. Results 
demonstrate that the 3-km-resolution WRF model reasonably reproduces the spatial characteristics of seasonal and sub-
seasonal precipitation, the seasonal meridional migration associated with the summer monsoon activity, the diurnal variation 
phase and amplitude, and the propagating convection east of the Tibetan Plateau. The major deficiency is that the model 
overestimates precipitation amount, especially in the afternoon. Analysis and sensitivity experiments suggest that improved 
treatment of sub-grid cloud fraction and the aerosol effects may help to suppress the oft-reported high precipitation bias. 
These results provide useful guidance for improving the model skill at simulating warm-season precipitation in East Asia.

Keywords Convection-permitting simulation · Warm-season precipitation · Diurnal cycle · Propagating convection · Sub-
grid cloud · Aerosol effect · East Asia

1 Introduction

China lies on the east part of the Asian continent, west coast 
of the Pacific. Moisture in the atmosphere is mainly supplied 
by the moist and warm southwesterly monsoon flow. The 

west side of the country is the highest with the Tibetan Pla-
teau (TP), and the topography decreases in cascades towards 
the east. This specific geographical position and topographi-
cal distribution determines the general precipitation clima-
tology in China, while the detailed features of precipitation 
are results of complex interactions of multiple processes. 
The most important influence comes from the monsoons. 
During the warm season (May–September), the East Asian 
summer monsoon dictates the sequential formation of three 
major rainy seasons in China: the early summer rainy season 
in southern China (May to mid-June), the Mei-yu season 
over the Yangtze and Huai River basins (mid-June to mid-
July), and the late summer rainy season in northern China 
(late July and August) (Ding 2013).

There are other important influential factors. Ocean tem-
perature anomalies associated with El Nino and La Nina 
events, for example, affect the temperature and precipitation 
distribution in the next few seasons. The warm pool in West 
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Pacific and the Indian Ocean also play a role in modulating 
regional circulation and precipitation (Gu et al. 2018; Yuan 
et al. 2019). The Tibetan Plateau exerts significant dynamic 
and thermodynamic forcing over the large-scale circulation 
and affects the monsoon rain bands and moisture trans-
port (Li et al. 2014; Wan et al. 2017; Wu and Chen 1985; 
Xu et al. 2015). The snow pack over the Plateau has been 
shown to modulate precipitation over the upper and middle 
reaches of the Yangtze River basin (Zhang et al. 2004). Just 
like the Rocky Mountains in North America, the low-level 
vortices steered out from the Plateau can act as important 
rain-bearing synoptic systems over eastern China, and cause 
excessively heavy rainfall (Tao and Ding 1981; Wang et al. 
2012). Anthropogenic influences such as the greenhouse-
gases-induced global warming, aerosol emissions, and land 
use changes due to deforestation and urbanization, have 
also gained broad recognition (Wang and Li 2007; Wu et al. 
2019). Besides, China is one of the countries suffering the 
most from tropical cyclones (TC). TC landfalls are most 
likely to happen from July to September in the southeast 
coast of China (Li et al. 2004), causing widespread heavy 
precipitation and flooding along the coastal areas and even 
far inland.

The aforementioned processes collectively dictate an 
overall southeast-high-and-northwest-low distribution in 
the seasonal precipitation. For most regions, precipitation 
is concentrated in the summer when the monsoon prevails. 
Extreme precipitation is most intense over the south coast 
and the North China Plain (NCP), in association with TC, 
surface front, low-level vortex/shear line, and weak-synoptic 
forcing (Luo et al. 2016). The diurnal cycle of precipitation 
has significant regional variations. For instance, precipita-
tion peak time varies from midnight to late afternoon from 
the edge of the TP to the lower Yangtze River valley (Yu and 
Li 2016; Yu et al. 2007).

The simulation of precipitation in China with general 
circulation models (GCMs) has been problematic. It is 
well known that GCMs tend to predict precipitation that 
is “too-frequent-too-light” (Demott et al. 2007; Stephens 
et al. 2010), and this is true over East Asia as well (Zhang 
and Chen 2016). Also, global models overestimate precipi-
tation over the TP and its southern and eastern peripher-
ies, while underestimate precipitation in southeast China 
(Zhang and Chen 2016). Moreover, GCMs tend to phase-
lock convective precipitation to local noon (Dai 2006) 
due to deficient convective parameterization and inability 
in simulating organized propagating storms, or mesoscale 
convective systems (MCSs) (Kooperman et al. 2013; Mon-
crieff 1992). For example, over the eastern China plain, the 
CAM5 model simulates a noontime maximum of convec-
tive rainfall, which is earlier than observation. Over the TP, 
the CAM5 model simulates a late-afternoon peak of rainfall 
when the observed rainfall peaks at night. The amplitude of 

the diurnal variation is also under-represented over the TP 
and western China plain (Yuan et al. 2013). Simulating the 
northward migration of rain band in the East Asian summer 
monsoon region is another challenge to GCMs (Chen et al. 
2010).

People have been using regional climate models (RCMs) 
to dynamically downscale the GCM output to improve the 
prediction of precipitation (Dickinson et al. 1989; Giorgi 
and Bates 1989). Many studies demonstrated that RCMs are 
able to better capture the spatio-temporal distribution of pre-
cipitation in some regions (Boberg et al. 2010; Mass et al. 
2002; Rauscher et al. 2010; Salathé et al. 2008). However, as 
in global models, large errors in the phase and amplitude of 
the diurnal cycle still exist (Dirmeyer et al. 2011; Yuan et al. 
2013). Most of existing RCMs use grid spacing of 10 km or 
larger and thus require the use of cumulus parameterization, 
which is regarded as one of the largest sources of uncertainty 
for precipitation simulation (Brockhaus et al. 2008; Dai et al. 
1999; Liang et al. 2004; Molinari and Dudek 1992; Weisman 
et al. 1997). Conventional cumulus parameterization is also 
problematic when the resolution gets to the so-called “grey-
zone” (Arakawa and Jung 2011; Gao et al. 2017; Grell and 
Freitas 2013; Yun et al. 2017).

Advances in computing resource have made it possible to 
run regional climate simulations with “explicit” convection 
at grid spacing of 4-km or less (Prein et al. 2015; Weis-
man et al. 1997). Such so-called “convection-permitting” 
models (CPMs) are able to avoid the error-prone cumulus 
parameterization, and better represent small-scale physical 
processes, complex terrain, and land–atmosphere coupling. 
Studies have shown that CPMs improve the simulation of the 
orographic precipitation (Ikeda et al. 2010; Liu et al. 2011; 
Rasmussen et al. 2011, 2014), the precipitation diurnal cycle 
(Ban et al. 2014; Guichard et al. 2004; Pearson et al. 2014; 
Sato et al. 2009), the intensity and frequency of precipita-
tion (Berthou et al. 2018; Demott et al. 2007; Kendon et al. 
2012, 2017; Stephens et al. 2010; Weusthoff et al. 2010), the 
magnitude of extreme precipitation (Ban et al. 2014; Chan 
et al. 2014; Kendon et al. 2014; Li et al. 2012; Sun et al. 
2016), organized propagating storms, or MCSs (Kooper-
man et al. 2013; Liu et al. 2006; Luo and Chen 2015; Prein 
et al. 2017; Pritchard et al. 2011), and the Madden–Julian 
oscillation (Benedict and Randall 2009; Miura et al. 2007). 
Convection-permitting simulations have been applied over 
several regions of the world to improve regional climate 
modeling and projection, such as North America (Liu et al. 
2017; Wang et al. 2018), Europe (Ban et al. 2014; Berthou 
et al. 2018; Fosser et al. 2015; Kendon et al. 2014), Africa 
(Marsham et al. 2013; Pearson et al. 2014; Stein et al. 2015; 
Stratton et al. 2018), Australia (Evans et al. 2014), and the 
Maritime Continent (Birch et al. 2016).

As in other parts of the world, previous short-term CPM 
simulations over China have demonstrated the potential of 
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high-resolution simulation in this region (Li et al. 2018; Zhu 
et al. 2018). However, CPMs have not been robustly tested 
over East Asia via multi-year simulations, which are neces-
sary to evaluate the model across inter-annual variations. 
This has motivated us to perform convection-permitting 
regional climate simulations over Eastern China for 10 
warm seasons (2008–2017) to: (1) evaluate the CPM skill 
in simulating warm-season precipitation climatology in the 
East Asian monsoon region, (2) to identify the promises 
and problems of the convection-permitting simulation, and 
(3) to investigate solutions for the model deficiencies. The 
layout of the paper is as follows: model setup and data will 
be described in Sect. 2; the evaluation will be presented in 
Sect. 3, followed by an analysis of the modeled precipita-
tion bias and its mitigation in Sect. 4; finally a summary is 
given in Sect. 5.

2  Numerical model and data

2.1  Model

We use the Weather Research and Forecasting (WRF) model 
version V3.9.1.1 (Skamarock et al. 2008) with a single 
domain with 3-km grid spacing and 51 vertical levels. Key 
physics options include Morrison 2-moment scheme (Mor-
rison et al. 2005) for microphysics, Mellor–Yamada–Jan-
jic (MYJ) scheme (Janjic 1994) for planetary boundary 
layer (PBL), Rapid Radiative Transfer Model for GCMs 

(RRTMG) scheme (Iacono et al. 2008) for shortwave and 
longwave radiation, and the community Noah land surface 
model with multiparameterization options (Noah-MP; Niu 
et al. 2011) for land surface. Both cumulus parameterization 
and shallow convection scheme are turned off. This phys-
ics configuration is selected based on one-season tests with 
different microphysics and PBL scheme options. As shown 
in Fig. 1, the domain covers an area of 2622 km × 1980 km 
with 874 × 660 grid points. It covers major topography and 
precipitation regions in East China, such as the eastern 
part of the TP, the Yun-Gui Plateau, the Sichuan Basin, the 
Mei-yu region along the Yangtze River basin, and southern 
China. We conduct 10-year (2008–2017) 5-month simula-
tions between April and August. The first month in each sim-
ulation is treated as spin-up time, and our analysis focuses 
on the May–August period. The initial and boundary forcing 
data is from ERA5 reanalysis (ECMWF 2017), which has a 
grid spacing of 31-km and hourly time interval.

2.2  Validation data

We use three sets of data to evaluate the simulation 
result. The first is station data obtained from the National 
Meteorological Information Center (NMIC) of the China 
Meteorological Administration (CMA; Zhang et  al. 
2016). The data contains hourly precipitation at 2400+ 
national weather stations covering Mainland China and 
Hainan Island. It is collected from automated weather 
stations (AWS), which is only available after 2000. The 

Fig. 1  Simulation domain. 
Surface elevation is shown 
as shaded contours (unit: m). 
Station locations are marked 
as black dots. The four boxes 
are the regions of interest for 
diurnal cycle analysis. Box 
A: Sichuan Basin; Box B: 
Mei-yu region; Box C: Yun-
Gui plateau; Box D: southern 
China. Also marked are the key 
geographical features that will 
be mentioned in subsequent 
sections
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distribution of the stations is shown in Fig. 1. On the 
whole, the coverage is dense over eastern China and rela-
tively coarse over the Plateaus and mountains. The quality 
control procedure includes climatological limit value test, 
internal consistency test, and space/time continuity test. 
The annual mean correct rate of the data is above 99%. 
The difference between automated and manually observed 
daily accumulated precipitation is less than 1 mm for 
92.1% of the stations. Only 0.9% of the stations have dif-
ferences greater than 5 mm. Most of the suspicious data 
lies on the TP and the mountainous regions.

The second is a gridded dataset (CN05.1; Wu and Gao 
2013), which provides daily and monthly mean precipitation 
and temperature at 0.25° × 0.25°. It is interpolated from the 
2400+ national weather station data. The CN05.1 dataset 
is constructed using the “anomaly approach” as detailed in 
Xu et al. (2009), but with more station observations. In the 
“anomaly approach”, a gridded climatology is calculated 
first, and then a gridded daily anomaly is added to the clima-
tology to obtain the final dataset. The accuracy of the dataset 
is determined by the underlying sparsity of the original sta-
tion data. Comparison with other gridded datasets confirms 
that the uncertainty is smaller in eastern China and the plain 
regions, and larger in the west mountainous regions (Wu 
and Gao 2013).

The third is a gauge-satellite merged dataset (AWS-
CMORPH; Shen et al. 2014), merged from 30,000+ auto-
mated national and regional weather station observations 
and the NOAA Climate Precipitation Center Morphing 
(CMORPH) precipitation product (Joyce et al. 2004). The 
data has an hourly frequency, and a spatial resolution of 
0.1° × 0.1°. Since CMORPH data underestimate precipita-
tion in eastern China (Shen et al. 2010), the merged AWS-
CMORPH data also has a low bias, albeit much improved. 
The mean bias of the merged AWS-CMORPH data is 
− 0.012 mm/h from May to September 2008–2010. How-
ever, the bias increases with precipitation intensity. For pre-
cipitation intensity 8.0–16.0 mm/h and > 16.0 mm/h, the bias 
is − 1.15 mm/h and − 2.72 mm/h, respectively (Shen et al. 
2014). In terms of spatial distributions, the errors are larger 
in the west where the station distribution is comparatively 
sparse. This dataset is only available for the warm season 
(May–September), due to the lack of AWS observations in 
winter in northern and western China.

When comparing with observed precipitation, only model 
rain rates larger than 0.1 mm/h are considered due to the 
observation limit. For comparison with the station data, 
model results are interpolated to the station locations using 
the nearest neighbor method. However, differences may still 
arise from the issue that model results represent the aver-
age over a grid box, while station data is point observation. 
If more than 10% of the data is missing for a station, this 
station is discarded. To compare with the gridded datasets, 

model-simulated precipitation is interpolated to the grid of 
the observational data while conserving total precipitation.

3  Results

3.1  Seasonal and sub‑seasonal rainfall

We first examine the spatial distribution of the simulated 
monthly precipitation averaged over 10 warm seasons of 
2008–2017 (Fig. 2). For each month, the model reproduces 
the spatial distribution shown in observations. For example, 
the May–June rainy region in southern China and the middle 
and lower reaches of the Yangtze River, and the July–August 
rain band along the foothills of the Plateau and along the 
southeast coast are all well captured by the model. The major 
model deficiency is the high bias in simulated precipitation 
in most regions, similar to what Li et al. (2018) and Zhu 
et al. (2018) showed in their high resolution simulations. The 
domain-averaged monthly overestimation ranges from 16.5 
to 21.3%, with the largest bias in June. The wet bias is more 
pronounced over the Tibetan and Yun-Gui Plateaus on the 
west side of the domain and over the southern mountains. 
This spatial feature could be in part due to the sparsity and 
relatively lower quality of observations at these mountainous 
sites. In June, July and August, precipitation is also overes-
timated over the North China Plain.

The seasonal average precipitation distribution (Fig. 3) 
shows similar features in model performance. The model 
well captures the spatial pattern, but overestimates the 
amount. The overestimation of the 10-year warm-season 
mean precipitation is 18.8% compared to CN05.1 data, with 
the largest bias mainly located over the Tibetan and Yun-Gui 
Plateaus, the North China Plain, and the southern mountains. 
The convection-permitting WRF model skill at simulating 
the seasonal precipitation patterns is further confirmed by 
the validation against station observations. It shows a high 
pattern correlation at 0.83 and low root mean square error 
(RMSE) of 0.068 mm/day. Nevertheless, an overestimation 
is present at the majority of the station sites with an average 
bias of 20.5%.

The seasonal mean precipitation for each year averaged 
over the entire domain is shown in Fig. 4. The inter-annual 
variation of precipitation is generally reproduced by the 
model. For example, the fluctuation of seasonal mean pre-
cipitation during 2008–2011, the gradual increase of precipi-
tation from 2011 to 2015, and the decrease afterwards are all 
properly captured by the model. The correlation coefficient 
between the modeled and observed time series is 0.66. A 
high bias persists throughout the 10 seasons. An interesting 
feature is the smaller difference between model and obser-
vation over the recent 5 seasons (i.e., after 2013) than prior 
seasons. An examination of the spatial distribution of the 
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model bias shows that the bias reduction mostly occurs over 
the TP (figure not shown). This suggests that the reduced 
model bias in recent years may be a consequence of the 
improvement of the observation quality in the mountainous 
region.

3.2  Frequency and intensity of rainfall

Figures 5 and 6 compare the intensity and frequency of rain-
fall from the model and station observations for wet days 
(daily accumulation > 1 mm at station location) and heavy 
rain days (daily accumulation > 25 mm at station location), 

respectively. Frequency is defined as the percentage of the 
total number of days. The observed rainfall in wet days 
(Fig. 5b) shows an evident increasing trend from north to 
south. For most regions, precipitation occurs on 20–40% of 
the days, while certain parts of the Plateaus and southern 
China witness the highest precipitation occurrence of > 40%. 
The model (Fig. 5a) generally agrees with the observation 
in terms of spatial distributions, despite a prevalent over-
prediction. The modeled precipitation frequency could 
amount to more than 50% of days in some regions, such as 
the southeast coast, and parts of the southern and western 
mountains. The overestimation of frequency is widespread 
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Fig. 2  Average precipitation (colored shading) for each month (mm/
day) from model (left), CN05.1 observation (middle), and their per-
centage differences (right). The numbers inside each plot are the 

domain-averaged values. The black–white contour lines show the ter-
rain height in meters. From white to black the terrain heights are 100, 
500, 1000, and 3000 m
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over the domain, with a high value region on the west edge 
of the Sichuan Basin. The percentage difference (Fig. 5c) 
shows an average overestimate of about 16%, with the high-
est bias located on the west Sichuan Basin and North China 
Plain.

The distribution of precipitation intensity (daily precipita-
tion amount averaged over all wet days; Fig. 5, lower panels) 
is different from that of precipitation frequency. As such, 
the regions with frequent precipitation are not necessarily 

collocated with intense precipitation. The middle-lower 
reaches of the Yangtze River valley receives the most intense 
precipitation with average rain rates > 20 mm/day, consistent 
with high seasonal precipitation therein (Fig. 3e), although 
it is not a frequent precipitation region. High intensity pre-
cipitation is also seen along the southeast coast, which, 
concurrent with high frequency, accounts for the largest 
amount of seasonal precipitation in the domain (Fig. 3e). 
In contrast, the Plateaus witness frequent precipitation, but 
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Fig. 3  2008–2017 Seasonal (May–August) average precipitation 
(mm/day) from a model, b CN05.1 observation, and c their dif-
ference; seasonal average precipitation at station locations from d 
model, e station observation, and f their scatter plot comparison. The 

numbers inside each plot are the domain-averaged values. The black–
white contour lines show the terrain height in meters. From white to 
black the terrain heights are 100, 500, 1000, and 3000 m

Fig. 4  Seasonal (May–August) 
mean precipitation (mm/day) 
for each year from model (blue) 
and CN05.1 observation (red)
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Model Obs Model-Obs

38.36 33.05 16.1%

ycneuqerF

(a) (b) (c)

16.33 15.67 4.2%

ytisnetnI

(d) (e) (f)

Fig. 5  Wet day (daily accumulation > 1  mm) frequency (% of total 
days, top row) and intensity (mm/day, bottom row) from model (left 
column), station observation (middle column), and their percent-
age difference (right column). The numbers inside each plot are the 

domain-averaged values. The black–white contour lines show the ter-
rain height in meters. From white to black the terrain heights are 100, 
500, 1000, and 3000 m
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Fig. 6  Heavy rain day (daily accumulation > 25 mm) frequency (% of 
total days, top row) and intensity (mm/day, bottom row) from model 
(left column), station observation (middle column), and their percent-
age differences (right column). The numbers inside each plot are the 

domain-averaged values. The black–white contour lines show the ter-
rain height in meters. From white to black the terrain heights are 100, 
500, 1000, and 3000 m
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with weak intensity (< 10 mm/day), implying abundant driz-
zles or light rains. Rain intensity is better simulated than 
frequency in terms of the areal mean error. The model over-
estimates precipitation intensity over similar region where 
seasonal mean rainfall is overestimated (Fig. 3). There are 
also numerous regions witnessing a low intensity bias, such 
as the central and eastern Basin, and the southeast coast. The 
coastal underestimation is probably related to the biased rep-
resentation of boundary layer southerly jets and/or land-sea 
circulations due to the insufficient resolution, both playing 
important roles in shaping convection development at the 
coast and nearby inland where synoptic forcing is weak (Du 
and Chen 2018, 2019).

The model and observation show a good agreement: 
heavy rain days (Fig. 6) account for about one-fifth of total 
rainy days, but the mean intensity is more than 3 times larger. 
For heavy rain days, the intensity distribution is similar to 
that of all rain days, but the frequency distribution has more 
regional variability because of the relative rareness. Heavy 
rain days are most frequently observed along the southeast 
coast, the west side of the Wu-Yi Mountains, and the lower 
Yangtze-River valley. They are least likely to occur in the 
northwest region of the domain (Fig. 6b). The regions with 
overmuch heavy rain days (Fig. 6c) are often coincident with 
high bias in total wet days and overall precipitation intensity 
(Fig. 5c, f). Such regions include the Plateaus, the southern 
mountains, and the North China Plain. The bias in heavy 
precipitation intensity is much smaller, most noticeable over 
the North China Plain.

In brief, for wet days and heavy rain days, the model 
reproduces their different distribution patterns, even though 
both the precipitation intensity and frequency are high 
biased at the majority of the station sites. The biases for 
heavy rain days are larger than those for wet days. In addi-
tion, overly frequent precipitation, especially too numerous 

heavy rains, seems to be the leading contributor to the model 
wet bias.

Figure 7 displays the statistics for the occurrence fre-
quency of different daily and hourly rain categories. The 
good agreement between the modeled and observed prob-
ability distribution provides further evidence on the model’s 
ability at generating the daily and sub-daily precipitation. 
Regardless, the model underestimates the occurrence of the 
smallest rain category, such as clear or cloudy days (< 1 mm/
day), and < 0.2 mm/h hourly rain rate, but overestimates 
the frequency of all larger precipitation categories. The 
overestimations of both daily and hourly rain rates feature 
a U-shaped pattern with the minimum bias for moderate 
rains with intensity of 1–5 mm/h or 10–25 mm/day, and the 
maximum bias for extreme events. These results confirm that 
overly modeled seasonal precipitation is mainly caused by 
too-abundant intense rainfall events.

3.3  Seasonal migration of rain band

The seasonal meridional migration of rain band is a distinct 
feature of precipitation in China. During May and early June, 
with the onset of the East Asian summer monsoon, heavy 
rain is mostly confined to South China. Thereafter the rain 
band marches northward following the monsoon advance. 
Around mid-June, it reaches the Yangtze River basin, and 
the Mei-yu season starts. In early or mid-July, the rain 
band jumps to the Yellow River basin. At the same time, 
the subtropical high seeks control over the Yangtze-Huaihe 
region and leaves the climate there hot and dry. While at the 
southern border of the subtropical high, southern China is 
influenced by tropical storms and typhoons and once again 
becomes a rainy region. In late July and early August, the 
rain band reaches northeast China, the farthest north point 
in its seasonal migration path. Then in September, due to the 
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influence of the cold air in the north and the retreat of the 
southwesterly monsoon flow, the rain band quickly retreats 
to the south.

We evaluate the simulation of the meridional displace-
ment of rain band by comparing the daily precipitation 
anomaly (relative to the warm-season mean, zonally aver-
aged between 110° E and 123° E) in eastern China from the 
model and AWS-CMORPH observation (Fig. 8). As shown 
in the time-latitude diagram, during the pre-summer rainy 
season in May, the rain band lies from 20° N to 28° N, while 
heavy rainfall mainly resides south of 26° N. Starting from 
June, the simulated rain band starts to move northward, and 
reaches 30° N in mid-June, indicative of the rainy season 
along the Yangtze River valley. At the end of July, precipi-
tation is concentrated north of 32° N in North China, and 
south of 24° N in South China. The latter is linked to the 
effect of tropical weather systems such as tropical cyclones. 
Comparing with the observation, the model successfully 
reproduces the latitudinal span, the temporal duration, and 
the migration characteristics of rain band, although the 
anomaly magnitude is somewhat larger. However, this could 
partly be due to the low bias in the AWS-CMORPH data 
(Shen et al. 2014).

3.4  Precipitation diurnal cycle

3.4.1  Spatial patterns

The diurnal cycle of precipitation is caused by solar heating 
and is modulated by regional and synoptic-scale circulation 
and thermodynamic conditions. Due to its large amplitude 
and short timescale, diurnal cycle provides a good test bed 

for weather and climate models (Dai and Trenberth 2004). 
To analyze the simulated diurnal cycle, we first interpolate 
the model results to the observation grid, and then use the 
hourly precipitation of the entire simulation period to com-
pute a 10 warm-season composite diurnal cycle for each 
location. If more than 10% of the observation value is miss-
ing for a particular hour, the mean rain rate of this hour is 
set to missing. If any of the 24-h composite rain rates is 
missing, the maximum precipitation amount/frequency time 
are not computed for this location. This way, we can prevent 
calculating erroneous diurnal cycles over places where there 
are frequent missing observations, for example, over the TP. 
All the following diurnal cycle analysis is based on local 
solar time (LST).

The diurnal cycle of precipitation in China exhibits dis-
tinct regional characteristics. Over the Plateau and Sichuan 
Basin, precipitation features nocturnal peaks (Fig. 9b). The 
peak time gradually delays to the morning and then transi-
tions to the afternoon as it goes further to the east. Late 
afternoon peak prevails east of 110° E, while scattered night-
morning peaks exist in the lower reaches of the Yangtze 
River valley, northern China, and coastal areas. The wide-
spread late afternoon peak in the domain is a well-known 
result of accumulated daytime solar heating at the surface, 
which leads to the highest low-level instability and thus the 
maximum potential for convection initiation in the after-
noon. The leading mechanism for the nocturnal peak of pre-
cipitation in Sichuan Basin is still an open-ended question. 
Previous studies have attributed the nighttime precipitation 
preference to (1) the upslope/downslope-wind-induced daily 
alteration of the low-level divergence and convergence in 
connection with the surrounding elevated daytime heating 

Model Obs (AWS-CMORPH)

May

June

July

August

September

(a) (b)

Fig. 8  Time-latitude distributions of zonally averaged (110° E–123° E) daily precipitation anomaly relative to the seasonal mean from a the 
model and b AWS-CMORPH observation (mm/day)
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and nighttime cooling (Huang et al. 2007; Jin et al. 2013), 
(2) the eastward propagating convective systems from the 
Plateau (Bai et al. 2008; Qian et al. 2015), (3) the cloud top 
radiative cooling during the night (Yuan et al. 2013), and 
(4) the diurnal inertial oscillations of south-southwesterly 
low-level jet into the basin (Zhang et al. 2016).

The model captures most of the regional variability, par-
ticularly the night-morning transition from the lee side of 
the Plateaus through the Yangtze River basin, and the broad 
afternoon peaks (Fig. 9a). But the model over-predicts the 
occurrence of the afternoon peak across the domain, and 
under-predicts the occurrence of the night precipitation 
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Fig. 9  a, b Maximum precipitation amount time (LST), c, d maxi-
mum precipitation frequency time (LST), e, f and amplitude of diur-
nal variation (%). The left and right panels are for model and station 

observation, respectively. The black–white contour lines show the ter-
rain height in meters. From white to black the terrain heights are 100, 
500, 1000, and 3000 m
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peak in central Yun-Gui Plateau and the east side of the 
Sichuan Basin. The distribution of maximum frequency time 
(Fig. 9d) is similar to that of maximum precipitation time, 
except for the more popular early-morning timing of peak 
frequency in North China. The modeled precipitation is too 
frequent in the afternoon, especially east of 108° E.

Besides the timing of maximum precipitation, amplitude 
is another often-used parameter for characterizing diurnal 
variations. The amplitude of diurnal variation is calculated 
as:

For each station location,  Pmax and  Pmean are the maximum 
and average hourly precipitation in the composite diurnal 
cycle, respectively. From observation (Fig. 9f), the regions 
with the largest amplitude (exceeding 100%) are the south-
ern China, Hainan Island, and the west side of the Sichuan 
Basin. These strong diurnal signals may be related to the 
land-sea breeze over the island and coastal regions, and the 
mountain-valley breeze over the steep terrain between the 
Plateau and the Basin (Mao and Wu 2012). The model does 
an excellent job in reproducing the observed geographical 
characteristics of diurnal amplitude, notwithstanding a slight 

(1)A =
P
max

− P
mean

P
mean

× 100%.

over-prediction in the southern coastal area and under-pre-
diction on the west side of the Basin (Fig. 9e).

3.4.2  Regional features

In view of the complex spatial patterns, we select four 
regions for more detailed investigations: the Sichuan Basin 
(28° N–32° N, 103° E–107° E), the Mei-yu region (27° 
N–32° N, 112° E–120° E), the Yun-Gui Plateau (22° N–26° 
N, 100° E–106° E), and southern China (22° N–27° N, 110° 
E–120° E). The locations of the four regions are shown in 
Fig. 1. In Fig. 10 the diurnal cycle is depicted by the hourly 
precipitation anomaly from the daily mean value. As the 
observation shows, the Sichuan Basin features a single 
nocturnal peak in precipitation; the Mei-yu region has two 
peaks, one in the early morning, the other in the mid-after-
noon; the Yun-Gui Plateau displays a double peak as well, 
but is dominated by the late night peak; southern China is 
dominated by a mid-afternoon peak.

It is readily seen that the model captures the different 
regional features of the diurnal cycle reasonably well. 
Nevertheless, there are apparent deviations from observa-
tions, especially in the afternoon precipitation. For Sichuan 
Basin, the model captures the nocturnal peak, but produces 
a secondary peak in the afternoon, which may be caused 

(a) (b)

(c) (d)

Fig. 10  Diurnal cycle over four sub-regions: a Sichuan-Basin, b Mei-yu Region, c Yun-Gui Plateau, and d southern China. The lines are precipi-
tation anomaly with respect to daily mean (mm/h) from model (orange) and AWS-CMORPH observation (black)
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by enhanced mountain solar heating (Jin et al. 2013). For 
the Mei-yu Region, the model reproduces the morning 
peak successfully, but exaggerates the afternoon precipi-
tation. For the Yun-Gui Plateau, the model under-predicts 
the late-night-to-morning precipitation but over-predicts 
the afternoon precipitation. A similar model deficiency is 
also notable for southern China. In general, the model tends 
to over-predict the afternoon precipitation, in line with the 
over-prediction of precipitation amount and frequency dis-
cussed earlier.

The diurnal pattern in Fig. 10 helps to understand the 
model bias in the diurnal variation amplitude over south-
ern China and Sichuan Basin shown in Fig. 9. According 
to Eq. 1, the diurnal variation amplitude is determined by 
the maximum precipitation anomaly and the mean precipi-
tation. In the Sichuan Basin, the model predicts a smaller 
maximum precipitation anomaly during the night (Fig. 10a), 
and a larger mean precipitation (Fig. 3c), both of which con-
tribute to the diurnal variation amplitude underestimation 
therein. For southern China, the diurnal cycle plot (Fig. 10d) 
shows that the maximum precipitation anomaly in the after-
noon is larger from the model, while the bias in the mean 
precipitation is not consistent (Fig. 3c). The end result is 
dominated by the over-simulated afternoon precipitation 
anomaly, and thus results in an over-prediction of diurnal 
variation amplitude.

3.4.3  Effect of propagating convection

Previous observational studies have documented the fre-
quent occurrence of organized propagating convection (such 
as mesoscale convective systems, or MCSs) in the warm 
season, and its remarkable impact on the diurnal variation 
of precipitation over some continental regions: the con-
tiguous US (Carbone et al. 2002), East Asia (Wang et al. 
2004), Africa (Laing et al. 2008), and South Asia (Liu et al. 
2008). Similar to the well-studied summertime convection 
east of the Rocky Mountains, diurnally-repeated daytime 

convection in response to strong surface heating of the ele-
vated Plateau can organize into various long-lived mesoscale 
systems under favorable large-scale conditions such as the 
presence of adequate vertical wind shear, and then travels 
off the Plateau from the eastern flank (Bai et al. 2008). These 
sequences of organized convection cause precipitation epi-
sodes with lifetimes far exceeding those of individual con-
vective systems (Wang et al. 2004), significantly affecting 
the spatio-temporal precipitation patterns and causing coher-
ent diurnal variation patterns from the Plateau to the far 
downstream.

The time-longitude plots of diurnal precipitation 
anomaly (often referred to as Hovmöller diagrams) in 
Fig. 11 gives a closer look at how propagating convection 
modulates the regional diurnal variation along the Yang-
tze River valley and how well the convection-permitting 
simulation replicates it. Herein, composite hourly pre-
cipitation is first latitudinally averaged between 27° N 
and 32° N. Then the anomaly relative to the daily mean is 
calculated, with the highest positive anomaly correspond-
ing to the daily precipitation peak at each longitude. In 
both observation and the model (Fig. 11), the precipita-
tion anomaly indicates a coherent signature, commencing 
at the plateau periphery and traveling all the way to the 
lower Yangtze River valley. Specifically, the eastward-
delayed timing of peak precipitation is characteristic 
of an evening precipitation maximum at the lee side, a 
nocturnal maximum over the upper Yangtze River val-
ley (between 102° E and 108° E), and a morning maxi-
mum at the further downstream. This phase shifting is a 
clear manifestation of sequential propagating convection 
reported in Wang et al. (2004), comparable to the travel-
ling diurnal signature in North America (Carbone et al. 
2002). Of note is that as well as the morning precipitation 
linked to propagating convection, the lower reaches of 
the Yangtze River valley (east of 114° E) is dominated 
by synchronous rainfall peaking in the afternoon. It is 
also worth pointing out that the observed and modeled 

(a) (b)

Fig. 11  Time-longitude distributions of precipitation anomaly (mm/hour) relative to daily means from a model and b AWS-CMORPH observa-
tion. The precipitation diurnal cycle is averaged temporally over 10 warm seasons and spatially between 27° N and 32° N
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coherent phase transition convinces us of the foremost 
importance of propagating convection from the Plateau 
in accounting for the nocturnal precipitation east of the 
Plateau.

In summary, the convection-permitting model captures 
the diurnal phase transition along the Yangtze River val-
ley reasonably well, suggestive of its superior skill at 
representing propagating convection compared to GCMs 
relying on parameterized convection (Yuan 2013; Yuan 
et al. 2013). However, as noted earlier, the model over-
estimates the afternoon precipitation almost at all longi-
tudes, giving rise to a false precipitation maximum in the 
afternoon between 105° E and 110° E.

4  Discussion

The motivation for dynamical downscaling is to improve 
the representation of topography, the precipitation diur-
nal cycle, the simulation of high-intensity precipitation 
events, and organized propagating convective systems. 
The preceding evaluation shows that the convection-per-
mitting model we used capably fulfills these purposes and 
reasonably reproduces the major features of eastern China 
precipitation in the warm season. However, there exist 
an overarching problem of over-predicting precipitation 
amount and frequency, especially in the afternoon. The 
simulation by Li et al. (2018) using a convection-permit-
ting version of the Met Office Unified Model showed a 
similar wet bias over eastern China. Zhu et al. (2018) 
also found an over-prediction of afternoon precipitation in 
southeast China in their daily forecasts using 4-km WRF 
model. As such, the high precipitation bias seems to be a 
common problem for convection-permitting simulations, 
not specific to the WRF model, and exists in both long-
term regional climate simulations and weather-forecast 
simulations. Part of the bias may come from observa-
tional uncertainties as stated in Sect. 3.1, while part of 
it may come from model deficiency. Based on the setup 
of the simulation and the specific conditions in eastern 
China, we speculate at least two reasons for this model 
deficiency. Firstly, the 3-km grid spacing is not sufficient 
to resolve shallow convective clouds. This could lead to 
too much solar radiation reaching the surface and conse-
quently too strong near-surface thermal instability in the 
afternoon. Secondly, China is one of the regions with the 
highest aerosol concentrations in the world, however the 
multiple effects of aerosols are not fully considered in 
the simulation design. In the following, we will present a 
preliminary analysis and discussion of these issues, but 
their thorough investigations are beyond the scope of the 
present study.

4.1  Effect of sub‑grid clouds

Studies have found that GCMs tend to under-predict low-
altitude cloud coverage (Ma et al. 2014). Diagnostic cloud 
fraction schemes are therefore used in GCMs to mitigate this 
problem. For regional models, although the dynamics and 
physics are more realistic, such under-prediction remains 
even with single-digit kilometer grid spacing (Eikenberg 
et al. 2015). The under-prediction of low clouds will lead to 
high-biased surface insolation and development of unrealis-
tically strong thermal instability. The cloud fraction scheme 
in our model setup is the commonly used Xu and Randall 
(1996) scheme in the WRF community. This scheme is 
based on grid-scale condensate generated by the microphys-
ics scheme and predicts zero cloud fraction when there is no 
grid-scale condensate. This will likely lead to an under-pre-
diction of sub-grid clouds because sub-grid clouds can exist 
when the grid-scale relative humidity (RH) is below satura-
tion (i.e., when there is no grid-scale condensate). Insuf-
ficient low clouds associated with the Xu–Randall scheme 
has been consistently reported in evaluations against satellite 
data (Cintineo et al. 2014; Thompson et al. 2016).

In an attempt to improve the cloud representation in the 
WRF model, Thompson et al. (2017) developed a new cloud 
fraction scheme. The scheme uses a RH-based approach fol-
lowing Sundqvist et al. (1989), with an additional grid spac-
ing dependence for the critical RH threshold  (RHcrit). Differ-
ent  RHcrit values are used over ocean versus land, as follows:

Here Δx is grid spacing in km. Besides cloud fraction, the 
scheme also diagnoses sub-grid cloud condensates (i.e., liq-
uid water content and ice water content) for use in radiation 
calculations. When the grid is sub-saturated, the RH-based 
scheme does not require the existence of grid-scale conden-
sate and can predict the existence of sub-grid clouds when 
RH is above  RHcrit. Therefore the new scheme generally 
increases low cloud amounts and reduces surface solar inso-
lation. Comparison with U. S. Climate Reference Network 
(NSCRN) solar radiation measurements confirms this advan-
tage over the Xu–Randall scheme (Thompson et al. 2017).

In order to assess the possible benefits of the new cloud 
fraction scheme, we conduct one warm-season test for the 
year 2008. The domain-averaged daytime vertical profile 
of cloud fraction (Fig. 12) shows that the Thompson et al. 
scheme increases cloud fraction at almost all altitudes from 
900 hPa up to about 200 hPa, consistent with the testing over 
North America (Thompson et al. 2017). The cloud fraction 
increase occurs over most of the domain, including the TP 
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and the Mei-yu region (figures not shown). In response to the 
widespread increase in cloud amount, the shortwave radia-
tion reaching the surface reduces from 245.7 to 225.3 W/m2 
for domain averages (Fig. 13). The resultant surface ther-
modynamic instability weakening leads to a reduction of 
the seasonal mean precipitation from the original 7.57 mm/
day (Fig.  14b) to 6.83 mm/day (Fig.  14c), correspond-
ing to a 9.8% precipitation decrease. The difference from 
CN05.1 observation decreases from 23% (Fig. 14e) to 10.9% 
(Fig. 14f). The result generally supports our hypothesis that 
the improper sub-grid cloud treatment in our simulations 
may partially contribute to the high precipitation bias. How-
ever, we should point out that due to the limit of computing 
resources and the scope of the study, the internal variability 
of the model is not assessed. A complete understanding of 
the significance of the sub-grid cloud effects, taking model 
internal variability into account, deserves further investiga-
tions and would be the focus of a separate study.

4.2  Effect of aerosols

A distinct regional feature in East Asia is the high aerosol 
concentration (de Leeuw et al. 2018). On one hand, aerosols 
can affect solar radiation by absorbing or scattering sun-
light (aerosol-radiation interactions, or ARI). On the other 
hand, aerosols acting as cloud condensation nuclei (CCN) 
and ice nuclei (IN) can affect cloud microphysical processes 
by altering cloud droplet and ice particle concentrations, 
and modulate precipitation efficiency (aerosol-cloud inter-
actions, or ACI). According to the Fifth Assessment Report 
of the Intergovernmental Panel on Climate Change (IPCC 
2013), the global radiative impact due to aerosol-radiation 

Fig. 12  Vertical profile of daytime cloud fraction for the 2008 warm 
season from the Xu–Randall and the Thompson et al. scheme. Profile 
is averaged on model levels over the entire domain. The pressure cor-
responds to the domain mean at each model level

245.7

Xu-Randall

225.3

Thompson et al.

(a) (b)

Fig. 13  2008 warm-season (May–August) mean short-wave radiation 
flux at surface (W/m2) from a the Xu–Randall and b the Thompson 
et al. scheme. The numbers inside each plot are the domain-averaged 

values. The black-white contour lines show the terrain height in 
meters. From white to black the terrain heights are 100, 500, 1000, 
and 3000 m
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interactions is a negative (cooling) − 0.45 W/m2. The effects 
of aerosol-cloud interactions are more complex and uncer-
tain, especially when ice nuclei are considered (Altaratz 
et al. 2014; Fan et al. 2016; Khain 2009; Seinfeld et al. 2016; 
Yun and Penner 2012, 2013). The net effect of ARI and 
ACI is assessed to be a negative − 0.9 W/m2 with medium 
confidence (IPCC 2013). Observational and modeling stud-
ies have found that aerosols can significantly affect long-
term precipitation trends in China (Guo et al. 2017, 2018; 
Huang et al. 2007; Liu et al. 2016, 2019; Qian et al. 2009; 
Wang et al. 2011; Yang and Li 2014). Multi-year regional 
chemistry-climate model simulations for East Asia by Giorgi 
et al. (2003) showed that both aerosol direct effect through 
radiation and indirect effect through cloud interactions result 
in a cooling of the surface and a decrease in precipitation. 
With a similar model, Huang et al. (2007) showed that sul-
fate and carbonaceous aerosols reduce solar radiation and 
decrease surface temperature, while increase cloud liquid 
water through aerosol-cloud interactions. The end result is 

a 10% decrease of precipitation in fall and winter, and 5% 
decrease in spring and summer. Liu et al. (2016) found that 
anthropogenic aerosols reduce shortwave flux at surface, 
increase cloud droplet number concentration and decrease 
daily precipitation in most areas of East Asia.

In our model setup, the aerosol-radiation interactions are 
considered by using a 5° × 4° 1990s aerosol climatology in 
the RRTMG radiation scheme. The aerosol optical depth 
(AOD) is very small with an area average of 0.13 (Fig. 15), 
compared to satellite observation of East China in recent 
years (typical values > 0.5; de Leeuw et al. 2018). Therefore, 
the impact of aerosol-radiation interactions is undoubtedly 
underestimated in current simulations.

In addition to the improper treatment of aerosol-radia-
tion interactions, the aerosol-cloud interactions are com-
pletely missing in the simulations, because the employed 
microphysics scheme uses a constant number of cloud 
droplets. To quantify the impact of poorly treated ARI 
and ACI, we carry out a sensitivity simulation with the 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 14  2008 warm-season mean precipitation (mm/day) from 
a observation, b simulation with the Xu–Randall cloud fraction 
scheme, c simulation with the Thompson et al. cloud fraction scheme, 
and d simulation with the aerosol-aware microphysics scheme, and 

e–g the percentage differences from observation. The numbers inside 
each plot are the domain-averaged values. The black–white contour 
lines show the terrain height in meters. From white to black the ter-
rain heights are 100, 500, 1000, and 3000 m
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Thompson aerosol-aware microphysics scheme (Thomp-
son and Eidhammer 2014). This scheme parameterizes an 
aerosol emission flux using near-surface aerosol concen-
tration and surface wind. Hygroscopic particles are com-
bined together into a water-friendly aerosol species, while 
dust particles are accumulated into an ice-friendly aerosol 
species. The effects of aerosols on radiation are added to 
the radiation scheme. Cloud droplet nucleation from aero-
sols is included using a lookup table. Ice nucleation on 
dust is treated following DeMott et al. (2010) and Phillips 
et al. (2008). So both aerosol-radiation and aerosol-cloud 
interactions are taken into account in this scheme. The 
deficiency of the scheme is apparent, due to its oversimpli-
fied aerosol emission treatment, and monthly varying aero-
sol climatology. Despite these deficiencies, the scheme has 
advantage for long-term simulations because of the limited 
additional computational cost.

One season simulation is conducted with the aerosol-
aware microphysics scheme for the warm-season of 2008. 
The result shows a reduction of wet bias from 23.1% 
(Fig. 14e) to 17.8% (Fig. 14g). However, it should be 
pointed out that this is only a preliminary test with highly 
simplified aerosol emissions. Future study with more 
realistic aerosol emissions and taking internal variabil-
ity into account is needed to further investigate the effect 
of aerosols on eastern China precipitation, including the 
relative importance of aerosol-radiation and aerosol-cloud 
interactions.

Taken together, the missing clouds, the low AOD, and 
the absent aerosol-cloud interactions could be collec-
tively responsible for the high bias in model precipitation. 

Improved representations of these processes will potentially 
improve the model performance greatly.

5  Summary

The warm-season precipitation in China has many unique 
features associated with complex interactions among the 
East Asian summer monsoon, ocean temperature, orographic 
forcing, and anthropogenic changes. Its simulation has been 
a tremendous challenge for both global and regional climate 
models, largely due to deficient cumulus parameterizations. 
Convection-permitting simulations have been shown to 
improve regional climate simulation and projection over 
many regions of the world. However, their performance in 
simulating East Asia precipitation has not been robustly 
tested. In this study, 10 warm-season (2008–2017) simula-
tions are performed with the convection-permitting WRF 
model over eastern China. The model uses 3-km grid spac-
ing and covers major topography and precipitation regions in 
China. The simulation results are compared to station obser-
vations, gridded station data, and gauge-satellite merged 
observational data. The results are summarized as following:

• The model faithfully reproduces the spatial distribution 
of seasonal and sub-seasonal precipitation, as well as the 
inter-annual variations of precipitation.

• The distribution patterns of precipitation intensity and 
frequency are well simulated, but the values are high 
biased, particularly for heavy rain days.

• The meridional migration of rain band following the 
seasonal advance and retreat of the East Asian monsoon 
flow and the west North Pacific subtropical high is suc-
cessfully reproduced. The migration span, duration, and 
timing are all comparable to observations.

• The model shows good skill in simulating the regional 
patterns of precipitation diurnal cycle and the phase tran-
sition from west to east, but tends to over-predict the 
afternoon precipitation. The modeled diurnal amplitude 
agrees with observations over most of the domain, with 
exceptions of an overestimation in southern China and 
underestimation along the west side of the Basin.

• Propagating convection east of the Plateau is well simu-
lated, as evinced by the diurnal phase variation from the 
Plateau through the Yangtze River valley. This confirms 
the value of convection-permitting models in simulating 
organized convection and coherent diurnal signal.

• The model overestimates precipitation amount up to 
about 20%, mostly over the Tibetan and Yun-Gui Pla-
teaus, the southern mountains, and the North China 
Plain. The overestimation of precipitation amount is 
mainly resultant from the overestimated precipitation 
frequency, in particular heavy rain occurrence.

0.13

Fig. 15  AOD of the climatological aerosol field used in the RRTMG 
radiation scheme in current model setup. The number inside the plot 
is the domain-averaged value. The black–white contour lines show 
the terrain height in meters. From white to black the terrain heights 
are 100, 500, 1000, and 3000 m
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This study is the first multi-year convection-permitting 
simulation of warm-season precipitation in a geographical 
region under the East Asian monsoon climate. The demon-
strated value of convection-permitting simulations suggests 
their promising application to studying regional climate 
changes and impacts. The proposed mitigation of the pre-
cipitation bias provides a pathway for future model develop-
ment and a useful guidance for simulation design. Several 
physical processes, which are either poorly represented or 
completely absent in the model physics configuration, are 
suggested for an interpretation of the excessive model pre-
cipitation. They include the under-representation of sub-grid 
clouds, such as shallow convective clouds, the under-repre-
sentation of aerosol-radiation interactions and the missing 
aerosol-cloud interactions. These speculations are tested 
by sensitivity simulations performed with a newly devel-
oped RH-based cloud fraction parameterization and with an 
aerosol-aware microphysics scheme that accounts for both 
aerosol-radiation and aerosol-cloud interactions. However, 
we want to emphasize that our analysis of these model phys-
ics is quite preliminary, and an in-depth examination is much 
needed to fully understand the role of sub-grid clouds and 
aerosols in modulating the warm-season precipitation in the 
East Asian monsoon climate.
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