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Abstract
In the context of decadal climate predictions, a climate-mode initialization method is being tested by which ocean ORAS4 
reanalysis is projected onto dominant modes of variability of the Earth System Model from the Max Planck Institute for 
Meteorology (MPI-ESM). The method aims to improve the prediction skill of the model by filtering out dynamically unbal-
anced noise during the initialization step. Used climate modes are calculated as statistical 3-D modes based on the bivariate 
empirical orthogonal function (EOF) analysis applied to temperature and salinity anomalies from an ensemble of historical 
simulations from the MPI-ESM. The climate-mode initialization method shows improved surface temperature skill, particu-
larly over the tropical Pacific Ocean at seasonal-to-interannual timescales associated with the improved zonal momentum 
balance. There, the new initialization somewhat outperforms the surface temperature skill of the anomaly initialization also 
for lead years 2–5. In other parts of the world ocean, both initialization methods currently are equivalent in skill. However, 
only 44% of variance in the original ORAS4 reconstruction remains after the projection on model modes, suggesting that 
the ORAS4 modes are not fully compatible with the model modes. Moreover, we cannot dismiss the possibility that model 
modes are not sufficiently sampled with the data set underlying the EOF analysis. The full potential of the climate-mode 
initialization method for future decadal prediction systems therefore still needs to be quantified based on improved modal 
representation.
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1  Introduction

How to optimally use available climate observations to gener-
ate initial conditions for climate predictions and how to best 
insert them into a coupled climate model with minimum loss 
of prediction skill remain active areas of research with many 
open questions to be answered (Balmaseda and Anderson 
2009; Meehl et al. 2009, 2014; Kirtman et al. 2013; Boer et al. 
2016; Penny et al. 2017). Among them are questions con-
cerned with prediction errors, ensemble generation, predict-
ability and processes involved in generating prediction skill.

With respect to prediction errors, they encompass: (i) 
model biases—the errors that are attributed to uncertainties 

in representation of physical processes in a model, to simpli-
fications and assumptions made for numerical modeling and 
resolution limitations, and (ii) drifts or initial shocks—the 
errors that occur when predictions are started from unbal-
anced initial conditions imposed during assimilation or ini-
tialization procedure (Malanotte-Rizzoli et al. 1989). Hav-
ing experienced initial shock, the model begins adjusting to 
dynamical imbalances in the region by spurious transports 
and exchange of spurious fluxes with the adjacent model 
components until the dynamical balance is reached. The 
associated errors can thus lead to a rapid degradation of 
prediction skill. Mulholland et al. (2015) distinguishes three 
major sources of initial shock in a coupled model imposed 
by: (i) imperfect initialization procedure from off-line assim-
ilation efforts in which there is a mismatch in communicated 
fluxes between the ocean and the atmosphere, (ii) using dif-
ferent model set-ups for generating initial states and pre-
dictions, and (iii) switching off bias correction at the start 
of predictions resulting in a change in the dynamics of the 
model components. The latter is similar to using full-field 
initialization approach, when in the assimilation the model is 
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brought as close as possible to the observed attractor elimi-
nating model biases and then, in the prediction mode, is let 
to run freely without bias control.

Some decadal prediction studies report that a large-scale 
decrease of skill and dynamical adjustments that last several 
lead years can happen due to initial shock (Pohlmann et al. 
2017; Kröger et al. 2018). These few examples show that 
the degree of the associated decadal prediction skill reduc-
tion could be considerable. However, to what extent different 
sources of initial shock (also as compared to model biases) 
can effect decadal prediction skill remains rather unknown.

Based on the long-standing experience gained in short-
term climate predictions (Rosati et al. 1997; Sugiura et al. 
2008; Balmaseda and Anderson 2009), it can be expected that 
initial conditions respecting the model’s dynamics should lead 
to the best prediction skill also in decadal predictions (Counil-
lon et al. 2014; Liu et al. 2017; Mochizuki et al. 2016; Polkova 
et al. 2019). From a theoretical point of view, it appears obvi-
ous that only a dynamically consistent assimilation approach 
for generating initial conditions applied to the same coupled 
model that is being used to perform the predictions can lead to 
a best prediction skill through a reduced initial model adjust-
ment shock. This would involve using the same assimilation 
approach to remove model biases by adjusting uncertain 
model parameters and using this improved system during pre-
diction effort. Although first emerging steps in this direction 
appear promising (Stammer et al. 2016; Penny et al. 2017), 
no functioning system exists at the time of writing and might 
not do so for some time to come.

Due to the absence of such a sophisticated assimilation 
and initialization approach, previous studies tested various 
practical initialization methods (i.e., full-field initializa-
tion, anomaly initialization and flux correction) for decadal 
predictions aiming to find a method which can best handle 
prediction errors and yield high prediction skill (Magnusson 
et al. 2013; Hazeleger et al. 2013; Smith et al. 2013; Polkova 
et al. 2014; Volpi et al. 2016). A refinement of the anomaly 
initialization for decadal predictions was proposed recently 
(Volpi et al. 2017), where the initial states were weighted with 
the ratio between the modeled and the observed variability 
to avoid initialization which goes beyond of the range of the 
model variability. Still, all these initialization methods remain 
suboptimal when dealing with non-stationary errors including 
initial shocks (Goddard et al. 2013; Magnusson et al. 2013).

The idea that the initial state contains predictable and non-
predictable components, and that filtering out non-predict-
able ones can yield more long-lasting skill, was previously 
tested in the context of numerical weather predictions. Along 
these lines, different filtering approaches were applied to ini-
tial conditions to improve forecasts by minimizing noise from 
the internal-gravity waves (Williamson 1976; Ballish 1981) 
and remove random components from initial conditions, 
which limit predictability, and retain those that are potentially 

more predictable (Branstator et al. 1993). In the context of 
seasonal El-Niño Southern Oscillation (ENSO) predictions, 
an idea of initialization of coupled climate modes of variabil-
ity was tested, where observed coupled modes of variability 
were remapped onto modeled ones (Hurrell et al. 2009). This 
remapping procedure also filters out components from cou-
pled initial states that do not match model variability. Such 
approaches of selectively initializing model variability have 
not been fully explored for decadal predictions.

In the current study, we build on these ideas of filtered ini-
tialization and design the initialization method, which aims to 
bring ocean initial conditions in consistency with the dynam-
ics of the decadal prediction system by initializing the climate 
modes of variability of the prediction system and filtering out 
components from the initial conditions that cannot be pre-
dicted by the prediction system. For this, we project the ocean 
reanalysis onto model variability modes and subsequently test 
the sensitivity of the prediction skill to the filtered versus non-
filtered initial conditions. Climate modes of variability are 
presented in terms of the statistical modes from the empirical 
orthogonal function (EOF) analysis applied to an ensemble 
of the twentieth century simulations. The EOF modes do not 
necessarily correspond to physical modes of variability. The 
ocean reanalysis anomalies are then projected onto a truncated 
set of the EOF-modes. In this mapping step, the reanalysis 
variability that is not compatible with the climate modes from 
the model is filtered out, retaining the ocean states that serve 
as initial conditions for ensembles of decadal predictions. A 
possible problem that we envision from such initialization 
is the removal of part of the observed variability by the pro-
jection step, which can at initialization time reduce the skill 
of predictions, in contrast to using the complete information 
about initial conditions. The expectation is that this part of the 
skill is quickly lost anyway such that the skill remains more 
persistent when initialized by climate modes. The climate-
mode initialization method addresses initial shocks that arise 
from using different model set-ups for generating initial states 
and predictions. The method is implemented with anomaly 
initialization omitting the drift which is present when the 
model is initialized from the full-field state. Since we only 
project the ocean state in this initialization approach, some 
imbalance between the ocean and the atmosphere is still possi-
ble. Ideally, we would aim for deriving coupled climate modes 
and projecting the ocean and the atmosphere states on them.

The remaining paper describes, in Sect. 2, the prediction 
system (based on the Max Planck Institute for Meteorology 
Earth System Model—MPI-ESM), climate-mode initializa-
tion method and experiments. This section also describes 
details of the calculation of the EOF-modes and compares 
variability of the model and the ORAS4 ocean reanalysis 
(Balmaseda et al. 2013) that is used as a source of initial 
conditions in this study. Section 3 deals with prediction skill 
resulting from climate-mode initialization and compares it 
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with a reference approach based on anomaly initialization. 
A discussion and concluding remarks are given in Sect. 4.

2 � Methodology of the climate‑mode 
initialization

The implementation of the climate-mode initialization 
requires the following elements and steps:

1.	 An ensemble of the twentieth-century simulations (here-
after historical simulations) that are carried out with the 
MPI-ESM.

2.	 Derivation of climate modes through a bivariate EOF 
analysis of the historical simulations.

3.	 Establishment of filtered initial conditions by projecting 
the ORAS4 ocean reanalysis onto the truncated set of 
EOF-modes.

4.	 Nudging run and ensembles of decadal predictions 
(hereafter initialized hindcasts) started from the climate-
mode initialization and carried out with the MPI-ESM.

2.1 � Model and input for the EOF analysis

During this study all model simulations were performed with 
the MPI-ESM1.2. The model consists of the atmospheric 
component ECHAM6.3 with a resolution of T63L47 and 
the oceanic component MPIOM1.6.3 with 1.5◦ horizontal 
resolution and 40 vertical levels (Jungclaus et al. 2013). The 
resolution used in this study corresponds to a low-resolution 
(LR) configuration. For an analysis of the MPI-ESM perfor-
mance with respect to its resolution see (Müller et al. 2018). 
The MPI-ESM in similar configuration was recently used 
for decadal predictions (Marotzke et al. 2016; Kröger et al. 
2018; Polkova et al. 2019).

The historical simulations that are used as input for the 
EOF analysis were forced using the CMIP5 solar irradiance 
data, aerosol and greenhouse gas concentrations (Taylor 
et al. 2012). The CMIP5 historical simulations cover the 
period 1850–2005. For the current analysis, we use only the 

time slice 1958–2005 and 15 members of historical-simula-
tions ensemble (see Table 1).

2.2 � Derivation of climate modes

Applying the bivariate EOF analysis (as used by e.g., Nardelli 
and Santoleri 2005; Hawkins and Sutton 2007; Bretherton 
et al. 1999), modes of climate variability are derived from 
the bivariate model state vector, X, composed out of monthly 
potential temperature ( � ) and salinity (S) anomalies from each 
depth level at every latitude and longitude of the model grid. 
The anomalies are sampled from a 15-member ensemble of 
historical simulations. Because the resulting EOFs should cap-
ture interannual variability, we consider only October monthly 
mean anomalies for: (i) the EOF analysis, (ii) the reconstruc-
tion of the ORAS4 anomalies and (iii) the nudging of these 
fields into the MPI-ESM. October is selected because it by 
one month precedes the initialization of the preoperational 
MiKlip decadal prediction experiments used as a reference for 
comparison here (Marotzke et al. 2016; Polkova et al. 2019). 
For both parameters, � and S, monthly October anomalies are 
calculated with respect to the period 1958–2005, overlapping 
with historical simulations and the ORAS4 ocean reanalysis. 
The total number of temperature and salinity data points enter-
ing the state vector are m × n , where m represents the sum of 
all vertical and horizontal grid points and n represents the 
number of October monthly fields available from 15 ensemble 
members each being 48 years long. Hence, the dimension of X 
is 2m × n = 2 ⋅ 220 ⋅ 256 ⋅ 40 × 15 ⋅ 48 = 4, 505, 600 × 720 . 
The anomalies from the ensemble of historical simulations 
are arranged in the following form:

(1)X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(z1, t1) �(z1, t2) ⋯ �(z1, tn)

�(z2, t1) �(z2, t2) ⋯ �(z2, tn)

⋮ ⋮ ⋱ ⋮

�(zm, t1) �(zm, t2) ⋯ �(zm, tn)

S(z1, t1) S(z1, t2) ⋯ S(z1, tn)

S(z2, t1) S(z2, t2) ⋯ S(z2, tn)

⋮ ⋮ ⋱ ⋮

S(zm, t1) S(zm, t2) ⋯ S(zm, tn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Table 1   Summary of experiments

Experiment Ocean nudging Simulation length Ensemble 
members

References

Historical 1958–2005 used for the EOF 
analysis

15 CMIP5 experiment (Giorgetta et al. 
2013)

ANOM-INIT ORAS4 anomalies Yearly started over 1960–2015, 
10-years long

10 MiKlip Preop-LR

ANOM-1m-INIT October ORAS4 anomalies Yearly started over 1960–2015, 
10-years long

10

MODE-INIT Filtered October ORAS4 anomalies Yearly started over 1960–2015, 
10-years long

10 FAI experiment (Polkova et al. 2019)
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where z and t stand for space and time dimensions, respec-
tively. Each of the monthly mean three-dimensional � and S 
fields is normalized prior to the compilation of the X state 
vector. Ensuring parity in variance at each grid cell and 
aiming for capturing deep-ocean variability or regions of 
strongest density changes, several combinations of normali-
zation and weighting are possible. We tested several schemes 
including commonly used normalization by the standard 
deviation (as in e.g., Hawkins and Sutton 2007); for more 
details see Supplementary Fig. S1. Eventually, we picked 
the scheme which led to the highest variance explained 
after ORAS4 was projected onto the EOF-modes that were 
constructed based on this weighting/normalization scheme. 
Thus, we apply weighting the EOF input fields by their con-
tribution to density changes (the thermal expansion ( � ) and 
haline contraction ( � ) coefficients) and by the square root of 
the grid-cell area ( 

√
wA ): w� = � ⋅

√
wA and wS = � ⋅

√
wA , 

for temperature and salinity, respectively. The grid-cell area 
weighting, 

√
wA , represents the ratio of a grid-cell area to 

the total area; the 
√
. is used here, to assure that during the 

EOF decomposition the variance is weighted by the grid-cell 
area. Coefficients � and � are calculated as: 𝛼 = −𝜌−1

0
𝜕𝜌̄∕𝜕𝜃̄ 

and 𝛽 = 𝜌−1
0
𝜕𝜌̄∕𝜕S̄ , where �0 is the reference density and 

the overbar refers to long-term October monthly mean for 
potential temperature, salinity and density fields ( �).

Starting from the state vector, X, as given above, the EOF-
modes are computed by solving the eigenvalue problem:

using a SVD decomposition. In Eq. 2, E = [ek] represents 
the k = 1, ...,K number of eigen modes describing patterns 

(2)X
T
XE = EL,

of variability ek = (e�
k
, eS

k
) for temperature and salinity anom-

alies, respectively. The vector L = �I contains the associated 
eigenvalues on its diagonal. The fraction of total variance 
explained by each eigenvector is expressed as �2 =

�k∑K

1
�k

.

The cumulative eigenvalue spectrum and the first bivari-
ate full-depth EOF-mode are shown in Figs. 1 and 2, respec-
tively. The first EOF-mode is shown for the surface layer, 
and along the equator as function of depth. This first-mode 
explains 11.4% of the total model variability (Fig. 1). At the 
ocean surface, the EOF structure for temperature reminds of 
the El-Niño Southern Oscillation joint by an Indian Ocean 
Dipole pattern. In the North Atlantic, there is some indica-
tion of a gyre pattern; however it is weaker in amplitude 
than what we see in the Pacific and the Indian Oceans due 
to the fact that, globally, the temperature and salinity vari-
ances are dominated by the changes in the Pacific Ocean. To 
represent each basin by its own modal structure, properly 
merged basin-scale EOFs might be required.

The vertical structure of the mode for both temperature 
and salinity fields along the equator is also shown in Fig. 2. 
The first mode reflects ocean dynamics mostly in the upper 
1000 m. Further description of the vertical modal structure 
is provided in Fig. 3 in terms of the first four vertical tem-
perature modes plotted for the three dynamically distinct 
locations marked in Fig. 2. In all three locations the EOFs 
are dominated by near-surface variability as represented by 
mode 1. Typically amplitudes decay with increasing mode 
number; however, in some locations, mode 3 can be larger 
than mode 2, e.g., in the North Pacific. The shape of some 
gravest vertical EOF-modes reminds that of vertical dynamic 
modes (Supplementary Fig. S2). With respect to amplitudes, 

Fig. 1   a Cumulative variance explained by the EOF-modes (blue) 
and the ORAS4 reconstruction (black and grey). Here in black is 
ORAS4 projected onto truncated set of EOFs and in grey—onto full 
set of EOF-modes. The variance explained by the reconstruction is 
calculated as the difference of total variance of the ORAS4 weighted 
anomalies, var(X), and the variance of the difference between the 

reconstructed and ORAS4 weighted anomalies, var(X̂ − X) , and fur-
ther expressed as a fraction of total variance: 
𝜎2 =

(
1 −

var(X̂−X)

var(X)

)
⋅ 100% . b Logarithmic fit (black solid) to �2 for 

the reconstructed ORAS4 using 5- to 15-members to derive EOF-
modes (blue squares) and extrapolation (black dashed) of �2 if using 
more ensemble members to derive the EOF-modes
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for the equatorial Pacific Ocean, enhanced amplitudes are 
limited to the upper 800 m. In the North Pacific amplitudes 
different from zero reach to 1000 m, while in the central 
North Atlantic enhanced amplitudes are also distributed over 
the top 1600 m but with a complex vertical structure, as it 
would result from a different tendency in the near-surface 
water and the upper North Atlantic Deep Water. The differ-
ent tendencies in the near-surface and deep North Atlantic is 
reminiscent of Atlantic Multidecadal Variability signatures 
noted by Polyakov et al. (2005) and Kim et al. (2018).

2.3 � ORAS4 reconstruction

Projecting ORAS4 ocean reanalysis onto the set of eigenvec-
tors ek provides the principal component (PC) time-series:

where � represents the time dimension (1958–2016) of 
the ocean reanalysis anomalies, XORAS4(z, �) . The trun-
cation level for index k = 1...n∗ is picked at the arbitrary 
point, where the reconstruction losses about 4% of variance 
explained, i.e., the first 360 EOFs explain 40% of variance 
and the further 360 only—4% (Fig. 1, grey curve). The 
time evolution of the filtered 3-D ORAS4 temperature, 
𝜃̂ORAS4(z, 𝜏) , and salinity, ŜORAS4(z, 𝜏) , anomalies are then 
obtained according to:

(3)a
ORAS4

k
(�) =

2m∑
i=1

eikX
ORAS4

i
(�),

Figure 4 shows examples of original ORAS4 temperature 
and salinity fields for October 2010 from 6 to 150 m depth, 
respectively, together with reconstructed fields based on 
Eq. 4. In agreement with the visual impression, the recon-
structed fields are smoothed version of the original fields; 
they represent only 40% of the total variance in the ORAS4 
reanalysis. The patterns of variance explained for several 
depth layers are provided in Supplementary Fig. S3. Overall, 
the filtering approach seems to strongly reduce the small-
scale (in space and time) temperature and salinity signal, 
especially in the Atlantic Ocean. By contrast, the Pacific 
Ocean signal in general is well captured and represented.

These findings are further supported by Fig. 5 showing 
time series of October temperature and salinity anomalies 
averaged over the Niño 3.4 and the North Atlantic subpolar 
gyre regions. While the tropical Pacific ORAS4 time series 
are well represented by the reconstruction, the interannual 
signal in the North Atlantic is largely muted in both tem-
perature and salinity. However, the reconstruction repro-
duces the multi-annual to decadal variability in the Atlantic 
Ocean. Good representation of the initial signal in the North 
Atlantic Ocean is considered to be important for enhanced 

(4)

𝜃̂ORAS4(z, 𝜏) ≡
n∗∑
k=1

a
ORAS4

k
(𝜏)e𝜃

k
(z),

Ŝ
ORAS4(z, 𝜏) ≡

n∗∑
k=1

a
ORAS4

k
(𝜏)eS

k
(z).

Fig. 2   The first bivariate 3-D EOF-mode for temperature (left, ◦ C) and salinity (right, psu) for the ocean surface layer (upper panels) and for the 
equatorial section (lower panels)
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prediction skill in decadal predictions (Yeager and Robson 
2017). We therefore have to expect that diminished anoma-
lies will lead to less skill in those regions in comparison to 
non-filtered anomaly initialization method.

The value of 40% of variance explained in the reconstruc-
tion is rather low and raises the questions: will the remaining 
signal be sufficient for initializing decadal hindcasts, and 
why does the filtering process eliminate so much of ORAS4 
variance? By fitting a logarithmic curve to the variance 
explained plotted versus number of EOFs considered, we 
find that using more members of historical simulations for 
the EOF analysis could increase the value of explained vari-
ance in the reconstructed data (Fig. 1b). In addition, further 
understanding how compatible ORAS4 is with the model 
variability is important for the design of the initialization 
method and understanding its performance.

To discuss the latter, we show in Fig. 6 the model and 
reanalysis standard deviation (STD) patterns for linearly 
detrended temperature and salinity fields averaged for differ-
ent depth levels. Model STD is calculated from one ensem-
ble member of the historical simulations. The model and the 
reanalysis STD patterns for temperature resemble relatively 
well in the Northern Hemisphere near the ocean surface and 
in the upper-ocean layer. The figure reveals that near the 
surface the model simulates slightly stronger variability in 
the Southern Hemisphere, except near the equator, where the 
simulated variability is slightly weaker in comparison to the 
ORAS4 reanalysis. Below 300 m, the model simulates about 
3 times stronger STD over the subtropical gyres than what is 
shown by the ORAS4 reanalysis. In the layer between 700 
and 2000 m (not shown), the strongest STD is localized in 
the North Atlantic in ORAS4; in the historical simulation, 
the largest values of STD are along the Antarctic Circum-
polar Current and the western sides of the subtropical gyres. 
In terms of the STD for salinity, the resemblance is worse 
than for temperature fields already in the surface layer. In 
general, the salinity STD from the model is stronger than 
what is shown by the reanalysis for all depth layers.

The discrepancy in the STD patterns between the histori-
cal simulations and the ORAS4 reanalysis that holds for both 
temperature and salinity and increases with depth, might 
very well indicate that ORAS4 variability modes are not 
entirely compatible with model modes.

3 � Mode‑initialized predictions

3.1 � Initialized experiments

In this study, anomaly initialization (ANOM-INIT) is 
used as a reference against which the climate-mode ini-
tialization (MODE-INIT) is compared (see Table 1). The 

Fig. 3   First four vertical EOF-modes for temperature scaled by their 
explained variances at three locations depicted in Fig. 2: in the North 
Pacific (upper panel, 170◦ E, 40◦N), the North Atlantic (middle panel, 
40

◦ W, 40◦ N) and the equatorial Pacific (lower panel, 140◦W)
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anomaly initialization is common to many decadal predic-
tion efforts (Kirtman et al. 2013; Meehl et al. 2014). It is 
concerned with an attempt to retain the model close to 
its attractor during the initialization step and further dur-
ing prediction itself. An initial condition is constructed 
by adding observed (or reanalysis) monthly anomalies to 
the model’s climatology. Predictions initialized in such a 
way eliminate initial drift (lead-time dependent bias) as 
compared to predictions initialized close to the observed 
climate state as in full-field initialization.

ANOM-INIT and MODE-INIT are started from nudg-
ing runs, ANOM-ASSIM and MODE-ASSIM, respec-
tively. In ANOM-ASSIM, the ocean component of the 
MPI-ESM is nudged toward ORAS4 temperature and 
salinity (T&S) anomalies added to model’s climatology. 
In MODE-ASSIM, the ocean component is nudged toward 
the filtered ORAS4 anomalies added to model’s clima-
tology. The nudging runs are started from the historical 
simulation and are carried out over the period 1960–2015. 
Different to ANOM-ASSIM, MODE-ASSIM starts every 
year from a historical simulation on the 30th of September. 
This is because we only consider October monthly mean 
anomalies for the EOF analysis, for the reconstruction of 
ORAS4 and now for nudging. October is selected because 
it precedes the initialization dates (November 1) in the 
reference ANOM-INIT experiments (Polkova et al. 2019). 
To estimate the effect of one-month nudging, we carried 

Fig. 4   An example of ORAS4 (a, c, e and g) and filtered ORAS4 (b, d, f and h) temperature anomalies (in ◦ C; a, b, e and f) and salinity anoma-
lies (in psu; C, D, G and H) for October 2010 at 6 m depth (upper panels) and 150 m depth (lower panels)

Fig. 5   Time series of October temperature (left, ◦ C) and salinity 
(right, psu) anomalies from ORAS4 (blue) and the reconstruction 
(black): for the Niño 3.4 region (a and b) and the North Atlantic sub-
polar-gyre region (SPG; c and d). The time series for the Niño 3.4 
region are calculated at the ocean surface, 5 ◦S–5◦ N and 170–120◦ W. 
For the SPG region, temperature and salinity anomalies are averaged 
over the upper-ocean 300 m, 50◦–60◦ N and 65◦W–10◦E
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out anomaly nudging over one month with non-filtered 
ORAS4 states (ANOM-1m-ASSIM) and compared the 
results against ANOM-ASSIM.

Figure 7 demonstrates STD for the temperature snapshots 
at the beginning of initialized hindcasts from three nudging 
runs. The difference in terms of STD between the two exper-
iments ANOM-1m-ASSIM and ANOM-ASSIM appears to 
be very marginal. Overall, the STD at different depth lev-
els in MODE-ASSIM is about 1.5–2 times lower than in 
ANOM-1m-ASSIM and ANOM-ASSIM. The variability at 
the ocean surface over the Pacific basin is well represented 
in MODE-ASSIM as was also suggested by previous Figs. 4 
and 5. While in the Atlantic Ocean, the amplitude of the 

initial anomalies in MODE-ASSIM is lower than in the non-
filtered nudging experiments (see for instance, the Labrador 
Sea). The STD from MODE-ASSIM is also lower than what 
the model simulates in the historical simulations, apart from 
the tropics (Fig. S4 in the Supplementary material). To sum-
up, regions of high STD are mostly captured in MODE-
ASSIM, however in many regions with lower amplitudes 
than in other nudging runs and the historical simulations.

The initialized hindcasts use ERA-40/ERA-Interim 
(Uppala et al. 2005; Dee et al. 2011) temperature, vorticity, 
divergence and surface pressure full-field values for nudging 
the atmosphere. The relaxation time is 11 days in the ocean; 
in the atmosphere it is 6 h for vorticity, 24 h for temperature 

Fig. 6   STD from a historical simulation (one member) and ORAS4 for October temperature ( ◦ C) and salinity (psu) fields averaged for different 
depth layers and linearly detrended at each grid-point: surface layer (left panels), upper 300 m (middle panels) and 300–700 m (right panels)
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and surface pressure, and 48 h for divergence. For sea-ice 
concentration, the nudging toward the NSIDC data (Fetterer 
et al. 2016) is applied using a 11-days relaxation time scale.

All initialized hindcasts are yearly started from the cor-
responding nudging run from November 1 over the period 
1960–2015, and are 10 years and 2 months long. As with 
ANOM-INIT, MODE-INIT also uses lagged initialization to 
generate an ensemble of predictions, however with some dif-
ferences in detail: because MODE-ASSIM and ANOM-1m-
INIT are 1-month long, initial conditions are sampled from 
9-days long free runs following each assimilation. Similar 
to historical simulations, the initialized experiments until 
2005 use the same external forcing and the RCP4.5 pathway 
over 2006–2025. A summary of all experiments is given in 
Table 1. When analyzing hindcast anomalies, a long-term 
mean is removed from the time-series of ensemble mean 
hindcast and the verification data set for a particular lead 
time at each grid-point. This procedure also removes the 
mean bias from the hindcasts. The MODE-INIT hindcasts 
do not show a lead-time dependent bias.

3.2 � Prediction skill

To demonstrate performance of climate-mode initialization, 
we provide in Figs. 8 and 9 the correlation skill patterns 

for sea surface temperature (SST) with respect to HadISST 
(Rayner et al. 2003) for seasons of the first lead year and 
multi-year means, respectively. The correlation skill differ-
ences with respect to a reference ANOM-1m-INIT (both 
Figures) and historical simulations (Fig. 9) are also shown. 
ANOM-1m-INIT correlation skill patters are provided in the 
supplementary; ANOM-INIT skill was reported earlier by 
Polkova et al. (2019).

Shortly after initialization (Fig. 8), in DJF and MAM, the 
ANOM-1m-INIT slightly outperforms MODE-INIT in the 
subpolar regions and tropical Atlantic, while elsewhere the 
correlation skill is comparable. However, in JJA and SON, 
the results suggest that MODE-INIT outperforms ANOM-
1m-INIT in the tropics. The percentage of the area where 
MODE-INIT significantly improves (reduces) the correla-
tion skill is estimated as a number of grid-cells of positive 
(negative) significant correlation difference to the total num-
ber of grid-cells of significant correlation difference values. 
Statistically significant values are estimated based on the 
t-test at 90% confidence level (Weaver and Wuensch 2013). 
Thus, the area percentage of the significantly improved skill 
is 52% in JJA and 64% in SON as estimated globally, and 
67% in JJA and 92% in SON as estimated for the tropical 
oceans. Improvements in skill on seasonal timescales might 

Fig. 7   STD for temperature snapshots ( ◦ C) from three nudging runs: 
MODE-ASSIM (upper panels), ANOM-1m-ASSIM (middle panels) 
and ANOM-ASSIM (lower panels) for different depth layers: 6  m 

(left column), 0–300 m (middle column) and 300–700 m (right col-
umn). Snapshots correspond to initialization dates (November 1) over 
the period 1960–2015
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reflect improved initialization of the El-Niño Southern 
Oscillation (ENSO).

In terms of SST skill for multi-year averages (Fig. 9), 
MODE-INIT outperforms ANOM-1m-INIT in the northern 

and tropical Pacific in lead years 2–5. The percentage of 
grid-cells with significantly improved skill amounts to 63 %  
globally and 89% over the tropics. At lead years 6–9, the 
skill from both initialization methods is comparable.  

Fig. 8   Correlation skill of the ensemble mean SST for DJF (the first 
row), MAM (the second row), JJA (the third row) and SON (the 
fourth row) seasons of the first lead year from MODE-INIT (left) 
and the significant correlation skill difference between MODE-INIT 
and ANOM-1m-INIT (right). Verification dataset is HadISST. Hatch-

ing  (left) and colored regions (right) indicate statistically significant 
values estimated based on the t-test at 90% confidence level Weaver 
and Wuensch (2013). Skill is estimated for the experiments initialized 
over the period 1961–2015
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To assess prediction skill due to external forcing changes, 
the skill of MODE-INIT is compared to that of historical 
simulations. In the first lead year, initialization brings sig-
nificant improvement in 86% of the areas globally and 95% 
in the tropics. Because historical simulations by design are 
not synchronized with observations, on short time-scales 
(seasonal-to-interannual), it is unlikely that historical sim-
ulations can outperform any initialized predictions. For 
longer lead years and multi-year averages, the externally 
forced response dominates the prediction skill for surface 
temperature and, apart from the subpolar North Atlantic, the 
improvements from initialization are less obvious.

Interestingly, MODE-INIT for multi-year averages shows 
some indication of slightly improved skill over ANOM-1m-
INIT along the Gulf Stream path. This also holds when com-
paring skill from MODE-INIT and ANOM-INIT (Polkova 
et al. 2019). An analysis of the Gulf Stream paths in the two 
experiments shows some differences in the hindcast perfor-
mance, however does not allow to explain the reasons of 
the skill improvements. We think that the problem of low 
skill along the Gulf Stream path arises due to the existing 
mismatch between mean and variability when composing 
the fields for the anomaly initializations. Namely, it is well 

known that after the Gulf Stream separation at Cape Hat-
teras, the flow path evolves more zonally in most of the 
climate models than in reality. The path from the ocean 
reanalysis that we use for initialization also somewhat devi-
ates from that of the model. Thus, in the superposition of 
reanalysis anomalies and model climatology, meridional 
shifts of the observed Gulf Stream are not realized as shifts 
but materialize as local minima or maxima that cannot be 
dynamically sustained in the same way as shifts could be 
but creates unphysical anomalies. As the model has low 
variability in regions of high observed Gulf Stream vari-
ability, the MODE-INIT method will essentially filter out 
the observed variability rather than placing it at the wrong 
position. Thus, this issue of wrongly placed anomalies might 
not be as strong as in ANOM-1m-INIT or ANOM-INIT.

To understand what causes the improved skill for MODE-
INIT in the equatorial and tropical Pacific Ocean, we analyze 
the Niño 3.4 index (Fig. 10) and the momentum balance in 
the equatorial Pacific (Fig. 11). That initialized hindcasts 
carried out with the MPI-ESM sometimes lag the observed 
ENSO events by one year was reported recently (Polkova 
et al. 2019) and is also apparent here: The hindcasts initial-
ized in November are not able to predict El-Niño events 

Fig. 9   Correlation skill of the ensemble mean SST for lead year  1 
(the first row), 2–5 (the second row) and 6–9 (the third row) from 
MODE-INIT (the first column) and the significant correlation skill 
difference between MODE-INIT and ANOM-1m-INIT (the sec-
ond column) and the significant correlation skill difference between 
MODE-INIT and historical simulations (the third column). Verifica-

tion dataset is HadISST. Hatching (left column) and colored regions 
(middle and right columns)  indicate statistically significant values 
estimated based on the t-test at 90% confidence level (Weaver and 
Wuensch 2013). Skill is estimated for the experiments initialized over 
the period 1961–2015
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developing in fall of the following year (e.g., 1982 and 
1997). However, once the hindcasts are initialized from the 
strong anomaly (e.g., 1983 and 1998) they usually show 
good skill by the right duration of persistence. That the pre-
dictability of the El-Niño is limited to less than a year is 
known from previous studies as “spring-barrier”. In terms 
of differences in the performance, ANOM-1m-INIT tends 

to simulate stronger ENSO events, for instance, at the begin-
ning of the 1960s. Also the initial point is slightly offset in 
the two experiments.

Overall, MODE-INIT shows higher skill for the Niño 
3.4 region in terms of both correlation and the root-mean-
squared error (RMSE) calculated with respect to HadISST 
(Fig. 10). Both experiments start from the same level of 
skill, but it seems that ANOM-1m-INIT losses skill faster 
than MODE-INIT, which is consistent with our hypothesis 
that filtering out noise component from the initial state might 
lead to a more persistent prediction skill.

The momentum balance between the zonal pressure gra-
dient and the zonal wind stress forcing was shown previously 
to be a crucial element for balanced initial conditions (Liu 
et al. 2017; Thoma et al. 2015). Offsetting the balance can 
lead to an artificially increased number of El-Niño events 
and explain reduced skill in the tropical Pacific (Liu et al. 
2017). Figure 11 shows the residual of the zonal momentum 
balance along the equator for the first month of initialized 
hindcasts. The residual is derived from the momentum bal-
ance equation in the upper equatorial Pacific in the zonal 
direction:

where Av is the vertical eddy viscosity, u is the zonal veloc-
ity. The wind stress, �x , is compensated by the pressure gra-
dient force, ∫ zo

0

�P

�x
dz , integrated down to the depth, zo, 

where the vertical shear of zonal velocity �u
�z

 becomes zero 
(Bryden and Brady 1985). From this follows that for the 
dynamical balance in the equatorial Pacific, the residual 
between the integrated pressure gradient force and the zonal 
wind stress should be zero.

Figure 11 suggests that MODE-INIT has indeed a better 
balance of the ocean and the atmosphere states at the begin-
ning of the hindcasts as compared to ANOM-1m-INIT. The 
balance from the historical simulations is used as a refer-
ence, demonstrating that a certain amount of imbalance is 
expected to allow for variability, in particular, at the western 
side of the Pacific Ocean, where for instance westerly wind-
burst may trigger El-Niño events. The MODE-INIT zonal 
momentum balance is between that of historical simulations 
and ANOM-1m-INIT. Further analysis shows a better match 
between the terms of the momentum balance equation in 
the eastern equatorial Pacific basin (120–90◦ W) and lower 
amplitudes of the terms in the western and central basins 
(160◦E–120◦ W) for MODE-INIT as compared to ANOM-
1m-INIT (Supplementary Fig. S7).

Nevertheless, reduced imbalances alone may not be 
indicative of an improved initialization, as balanced states 
may still miss the required variability. In fact, the STD of 
the upper 300 m temperature of the historical simulation 

(5)Av

�u

�z
=

1

�0

(
�x − ∫

zo

0

�P

�x
dz

)
,

Fig. 10   Monthly Niño 3.4 Index of lead year 0–1 (14 months) from 
HadISST (grey) and the hindcasts: MODE-INIT (black) and ANOM-
1m-INIT (red). A 3-months running mean is applied to the time 
series. Correlation coefficients, root-mean-square errors (RMSE) and 
the 95% confidence level according to the t-test (gray dashed) are 
shown

Fig. 11   Zonal momentum balance (N/m2 ) of the upper equatorial 
Pacific calculated as a difference between integrated pressure gradient 
force and zonal wind stress. The balance is plotted for the MODE-
INIT (left) and ANOM-1m-INIT (middle) in the first month after ini-
tialization, and for the historical simulation (right) over the counter-
part period
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shown in Fig. 6 demonstrates much smaller variability in 
comparison to ORAS4. A further factor is a mismatch of the 
ocean and atmosphere mean fields. The initialization proce-
dure, which we employ in this study, uses full-field ERA40/
ERA-Interim initialization in the atmosphere and anomaly 
ORAS4 initialization in the ocean. Analyzing wind-stress 
from the first lead year of the hindcasts and the counter-part 
from the ERA-40/ERA-Interim reanalyses indicates that 
the reanalyses have larger zonal wind-stress values than 
the initialized hindcasts (not shown). The thermocline from 
the hindcasts is also slightly weaker than from the ORAS4 
reanalysis (not shown). Differences in mean states were in 
fact responsible for large number of artificial El-Niño events 
and reduced skill in comparison to more consistent initiali-
zation reported earlier (Liu et al. 2017). However, as both 
hindcasts use anomaly initialization, difference in the mean 
between MODE-INIT and ANOM-1m-INIT remain small 
and is unlikely to explain the difference in prediction skill.

4 � Discussion and concluding remarks

Dealing with observational and model errors is one of the 
major challenges for decadal climate predictions and poses 
questions as how to best initialize internal variability and 
initialization of which regions and variables matters for the 
prediction skill at decadal time scale? For optimal use of 
observations, it thus remains important to identify predicta-
ble components of the climate system that have to be initial-
ized. In terms of the skill, decadal predictions might benefit 
from filtering out unpredictable elements in the observa-
tions. This task involves identifying spatial and temporal 
characteristics of internal variability that should be reflected 
in initial states. In the current study, we address this problem 
by reshaping reanalysis variability onto model variability 
modes to filter out unpredictable signal. Though, the cur-
rent initialization method best addresses variability in the 
upper ocean, it achieves comparably high prediction skill 
and improves the reference anomaly initialization method, 
particularly in the tropics and on time scales larger than 6 
months. This suggests that initializing the ocean subsurface 
might be sufficient for short-term predictions. With respect 
to the results in the North Atlantic, deep ocean observations 
are needed to better define the initial state.

We anticipate that further improvements can be expected 
once improved EOFs are being used during the climate-
mode initialization. In the following, we offer several sug-
gestions to improve the method:

–	 To derive the EOFs, 15-member ensemble of histori-
cal simulations was used. Using a large ensemble, such 
as now available 100-member ensembles (Bittner et al. 

2016), could significantly boost the variance explained 
in the reconstruction data set, not only at the subsurface 
but also in the deeper ocean layers. This step is also con-
nected to a decision on truncation level and calls further 
testing a boundary that separates dominant modes from 
the noise. Further normalization/weighting used for the 
EOF analysis can be tested to improve scheme for repre-
senting inhomogeneity of variance in different data sets.

–	 In the EOF analyses, we did not exclude linear trends 
associated with the external forcing response, since this 
is one of the major sources of prediction skill at decadal 
time scales (Boer et al. 2013). The trends in MODE-
ASSIM and MODE-INIT for some variables (e.g., the 
North Atlantic sub-polar gyre index) resemble historical 
simulations rather than ORAS4. It is thus a further ques-
tion of whether to include the trend in the EOF analysis 
and if not, how to alternatively represent the trend in the 
initial fields.

–	 For future studies, we suggest to use merged regional 
rather than global EOF-modes to better represent 
regional anomalies “carrying” prediction skill, e.g., in 
the North Atlantic Ocean. It has been shown previously 
that regional modes can perform significantly better in 
reconstructing Atlantic sea level variability (Meyssignac 
et al. 2012) in comparison to using global EOFs (Carson 
et al. 2017).

–	 Near the equator, initializing velocity field in addition to 
temperature and salinity can carry extra benefits to better 
represent meridional transports and pressure balances. 
To provide better-balanced states anomaly assimilation 
should also be employed for the atmosphere. Ultimately, 
this might call for coupled-mode initialization.

Although used here only in a pilot setting, the climate-mode 
initialization method shows encouraging results and sug-
gests potential for future application in climate predictions. 
The current initialization efforts either use the initial state 
from the “native” data assimilation systems built specifi-
cally for the prediction system or they introduce external 
data assimilation products into the prediction system. The 
latter is cheaper but external reanalyses might not be con-
sistent with the prediction system. If the method that is pro-
posed in this study is further improved it could be useful 
for producing centers which cannot afford advanced data 
assimilation systems.

The important question that still remains to be answered 
by future studies on initialization of decadal predictions 
is: to what extent can dynamically consistent initializa-
tion improve skill? Seasonal prediction studies showed that 
dynamically consistent initialization pays off for the ENSO 
skill (Zhang et al. 2005; Chen and Cane 2008; Liu et al. 
2017). For decadal prediction, the associated benefit is not 
clear. This may call into question the need for advanced data 
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assimilation schemes that take better care of imbalances. 
Thus, more evidence is needed to demonstrate that advanced 
data assimilation and initialization schemes pay off in terms 
of better prediction skill on decadal time-scales.

The results of this study reveal improved prediction skill 
in the equatorial Pacific on seasonal time scales resulting 
from an improved dynamical balance in the filtered initial 
conditions. Also on longer time scales, there are some mod-
est skill improvements over anomaly initialization. Since, 
the only difference in the compared experiments comes from 
filtering initial states, we believe that the method proved 
to have realized its intention to improve skill by improving 
dynamical consistency between the prediction system and 
the initial states. However, as we suggested above, there is 
room for improving the method. The climate-mode initiali-
zation method shows a shortcoming in the North Atlantic, 
where the EOF basis over-smoothes the climate signal in the 
initial conditions responsible for prediction skill. A com-
parison with other initialization methods shows an added 
value in terms of the prediction skill from the climate-mode 
initialization method (Polkova et al. 2019). We therefore 
anticipate further benefits over the current setting once the 
improvements suggested above were implemented.
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