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Abstract
Here, we explored in depth the relationship among the deterministic prediction skill, the probabilistic prediction skill and 
the potential predictability. This was achieved by theoretical analyses and, in particular, by an analysis of long-term ensem-
ble ENSO hindcast over 161 years from 1856 to 2016. First, a nonlinear monotonic relationship between the deterministic 
prediction skill and the probabilistic prediction skill, derived by theoretical analysis, was examined and validated using the 
ensemble hindcast. Further, the co-variability between the potential predictability and the deterministic prediction skill 
was explored in both perfect model assumption and actual model scenario. On these bases, we investigated the relationship 
between the potential predictability and probabilistic prediction skill from both the practice of ENSO forecast and theoretical 
perspective. The results of the study indicate that there are nonlinear monotonic relationships among these three kinds of 
measures. The potential predictability is considered to be a good indicator for the actual prediction skill in terms of both the 
deterministic measures and the probabilistic framework. The relationships identified here exhibit considerable significant 
practical sense to conduct predictability researches, which provide an inexpensive and moderate approach for inquiring 
prediction uncertainties without the requirement of costly ensemble experiments.

Keywords  ENSO ensemble forecast · Predictability · Nonlinear monotonic relationship

1  Introduction

Usually, it involves two branches in the field of predictabil-
ity researches on the El Niño-Southern Oscillation (ENSO) 
prediction. The first one is to investigate the ENSO poten-
tial predictability, which will reveal what the upper limit 
of the prediction skill might be and how much room would 
leave for the improvement of ENSO prediction systems 
(Tang et al. 2005, 2008; Cheng et al. 2010a; Kumar and Hu 
2014; Kumar and Chen 2015). The common measures of 
the potential predictability can be categorized into variance-
based metric and information-based metric, both without 
using the observations. Specifically, the signal-to-total vari-
ance ratio (STR) and signal-to-noise ratio (SNR) are two 
variance-based measures that are extensively employed 
(Kumar and Hoerling 2000; Peng et al. 2011; Hu and Huang 
2012; Kumar et al. 2016), whereas several commonly used 
information-based measures include the predictive power 
(PP), predictive information (PI), relative entropy (RE), 
and mutual information (MI) (Tang et al. 2008). The stud-
ies that use these methods have revealed that the ENSO 
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predictability is mainly dominated by signal component 
(Tang et al. 2008; Cheng et al. 2011; Kumar and Hu 2014).

The second one is to improve the actual prediction skill 
through the model development (Zebiak and Cane 1987; 
Tang and Hsieh 2002; Zhang et al. 2013), data assimila-
tion (Chen et al. 2004; Zheng et al. 2007; Deng et al. 2010; 
Zheng and Zhu 2010; Zhu et al. 2014; Tang et al. 2016), 
and ensemble prediction etc. (Tang et al. 2006, 2008; Zheng 
et al. 2009a; Cheng et al. 2010a; Hou et al. 2018). Many 
efforts have been paid and significant progresses have been 
made toward this goal in last decades, as summarized in a 
recent review paper by Tang et al. (2018). Typically, the 
actual prediction skill can be measured in a deterministic 
manner and a probabilistic way. The former is widely meas-
ured using ensemble mean that is able to filter out the unpre-
dictable feature and provide a nearly unbiased estimate for 
the future state of the climate element, whereas the latter 
intends to provide an estimated likelihood for the future state 
of climate variable, which can be commonly verified using 
Brier skill score (BSS).

The connection between the actual prediction skill and 
the potential predictability has been an interesting issue in 
the study of ENSO predictability. Several efforts have been 
devoted for investigating their relationship in the framework 
of the deterministic measures. For instance, it was found 
that the potential predictability metrics are good indicators 
in quantifying the deterministic actual skill in many ENSO 
models (Kumar and Hoerling 2000; Kumar et al. 2001; Tang 
et al. 2008; Cheng et al. 2011; Kumar et al. 2001; Kumar 
and Chen 2015). Recently, the linkage between probabilistic 
actual skill and deterministic actual skill has been addressed. 
Cheng et al. (2010a) found that the deterministic correlation 
skill is nonlinearly related with BSS probabilistic skill in the 
ENSO prediction. Yang et al. (2016, 2018) further theoreti-
cally derived their relationship and found that this relation-
ship originated from the effect of the resolution term, while 
the reliability did not make contribution.

An interesting issue that has not been explored yet is the 
possible relationship between the probabilistic prediction 
skill and the potential predictability. Such a relationship, 
if existed and found, would be considerably interesting and 
important, since it offers practical confidence and estimate 
how much reliable the issued prediction is. Given the poten-
tial predictability-deterministic prediction skill relationship 
and the connection between probabilistic predictability and 
deterministic prediction skill, one can expect such a relation-
ship existing.

In this paper, we will focus on investigating the relationship 
among the deterministic skill, probabilistic skill and potential 
predictability based on a long-term ensemble hindcast produc-
tion of ENSO. Emphasis is placed on examining the poten-
tial predictability and the probabilistic prediction skill from 
both practical hindcast experiments and theoretical analysis. 

In Sect. 2, a concise description of the coupled model and 
the predictability measures are presented. Section 3 provides 
detailed information on the construction of the ensemble pre-
diction and evaluates the forecast skill. In Sect. 4, we emphati-
cally explore the relationships among the deterministic skill, 
the probabilistic skill and the potential predictability, in par-
ticular, the relationship between the probabilistic skill and the 
potential predictability. The main conclusion and discussion 
are summarized and followed in the final section.

2 � Model and predictability metrics

2.1 � The LDEO5 model

In this study, we employ the latest edition of the 
Zebiak–Cane (ZC) model, which is also named as LDEO5 
model (Chen et al. 2004). The ZC model is an intermedi-
ate coupled model with a linear reduced-gravity ocean 
model and a Gill-type atmospheric model which driven 
by the anomalous heating combined sea surface tempera-
ture anomaly (SSTA) and low-level moisture convergence 
(Zebiak 1986). ZC model can reproduces certain key feature 
of the ENSO phenomenon and is the first coupled model 
used for ENSO prediction. It has high efficiency in calcula-
tion and been extensively applied to investigate the ENSO 
predictability. The domain of this model spans the tropical 
Pacific Ocean (124°E–80°W and 28.75°S–28.75°N), with a 
temporal resolution of 10 days. To initialize the long-term 
retrospection prediction, we assimilate the monthly recon-
structed Kaplan SST V2 datasets (Kaplan et al. 1998) from 
1856 to 2016 via a coupled nudging scheme (Chen et al. 
2004). We also employ two model output statistic (MOS) 
procedures as present by Chen et al. (2004) at each integra-
tion step to rectify the systematic errors of the model.

2.2 � Measures for ensemble prediction

1.	 Deterministic prediction skill

We employ the anomaly correlation coefficient (ACC) to 
measure the deterministic prediction skill. For a given lead 
time of prediction, the ACC is defined below:

where x is the variable of interest, o and f  indicate the 
observation and forecast, respectively. xo and xf  denote 
the time mean of the observation and forecast, respec-
tively. M denotes the total number of the initial conditions 

(1)r =

∑M

i=1
(xo − xo)(xf − xf )

�∑M

i=1
(xo − xo)2

�∑M

i=1
(xf − xf )2
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(161 years × 12 months = 1932). Prior to performing the 
calculation, anomalization is applied to the prediction and 
observation via eliminating seasonal cycle.

2.	 Probabilistic prediction skill

Here we consider three categorical events: above-normal, 
below-normal and near-normal, and which are identified by 
the one-third percentiles of the climatic distribution. The 
Brier Score (BS), a commonly used probabilistic measure, 
is used. The BS can be formulated as:

here M denotes the number of prediction cases, xi is the fore-
cast probabilistic of an event, and oi is the relevant observed 
outcome. The value of 0 for oi indicates that the event does 
not occur and 1 otherwise. Using the binning method (Atger 
2004), the probabilistic space has been equally divided into 
N boxes (taken 10 here). The BS is further decomposed into 
three terms, that can be referred to as resolution ( BSRES ), 
reliability ( BSREL ), and uncertainty ( BSUNC ), which is 
defined as follows (Wilks 2011):

where Mn and xn are the number and mean of all xi s clas-
sifying into n th box and the on denotes the correspond-
ing observed probabilistic. o indicates the mean of on and 
indicates the observed climatological probabilistic. The BS 
includes three items. The term of reliability is a metric of 
measuring the consistency between the observed probabil-
istic and the forecast probabilistic. The resolution refers to 
quantify the difference between the climatological proba-
bilistic and the observed frequencies. The uncertainty term 
depicts the “a priori” information original from the clima-
tological, which is equivalent to the BS of climatological 
prediction (i.e., BSUNC = BSCLIM).

The BSS is defined as follows (Wilks 2011):

Given that BSUNC = BSCLIM , the BSS is further expressed 
as (Kharin and Zwiers 2003):

(2)BS =
1

M

M∑
i=1

(xi − oi)
2

(3)
BS =

1

M

N∑
n=1

Mn(xn − on)
2 −

1

M

N∑
n=1

Mn(on − o)2

+ o(1 − o) ≡ BSREL − BSRES + BSUNC

(4)BSS = 1 −
BS

BSCLIM

(5)

BSS = 1 −
BS

BSUNC
=

BSRES

BSUNC
−

BSREL

BSUNC
= BSSRES − BSSREL

Compared with BS, BSS is positively oriented. In this 
study, we employed BSS as the overall probabilistic skill 
measure; further, the “standardized” reliability and resolution 
of the BS refer to as the reliability and resolution terms of the 
BSS (Kharin and Zwiers 2003).

3.	 Potential predictability

To quantify the potential predictability, we employed the 
STR measure and an information-based metric (MI). Both of 
the two measures do not involve with the observation, which 
are different from the actual prediction skill.

The variabilities of the signal and noise for the ensemble 
prediction can be measured as the variance of the ensemble 
mean and ensemble spread of all the initial conditions (Tang 
et al. 2013), and can be expressed as follows:

where xj,k denotes the k th member of the ensemble predic-
tion for the j th initial condition. K is the ensemble size and 
M indicates the total number of the initial conditions. Given 
the influence of the sampling error on measuring the signal 
variance, the more reasonable estimation of the signal vari-
ance can be given as follows (Rowell 1998):

Further, the STR is defined as:

MI is one of the information-based metrics that can meas-
ure the overall potential predictability of the prediction sys-
tem. According to the information theory, MI is expressed as 
(DelSole 2004):

where � denotes the predicted future state of a climate varia-
ble, with a climatological distribution of p(�) . p(i) indicates 
the probabilistic distribution of the initial condition i.p(�, i) 
is the joint probabilistic distribution between � and i . When 
the climatological and forecast distribution are Gaussian, 
which are believed to be applicable in the climate prediction, 
the simplified MI as follows (DelSole and Tippett 2007):

(6)Var(S) =
1

M

M∑
i=1

(xi − x)2

(7)Var(N) =
1

MK

M∑
j=1

K∑
k=1

(xj,k − xj)
2

(8)Var(S) =
1

M

M∑
i=1

(xi − x)2 −
1

K
Var(N)

(9)STR =
Var(S)

Var(S) + Var(N)

(10)MI=∬ p(�, i)ln

[
p(�, i)

p(�)p(i)

]
d�di
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where �2
�
 and �2

�|i indicate the climatological variance and 
the ensemble variance of i th initial condition, respectively. 
Here we followed the lead-time-dependent method used by 
Yang et al. (2012) to estimate �2

�
 . Specifically, the total mem-

bers of all the initial conditions (sample size:M × K ) at each 
lead time are employed to calculate �2

�
 . �2

�|i is estimated 
based on all the members of the i th initial condition.

In the perfect model framework, we assumed that an arbi-
trarily predicted ensemble member can be recognized as the 
“observation”. The square root of STR is often defined as 
the potential correlation, which can measure the perfect cor-
relation skill, denoted by R as follows (Kumar 2009; Tippett 
et al. 2010; Tang et al. 2013):

For the Gaussian variable and forecast variance is con-
stant, there is a theoretical relationship between MI and R 
as flowing (DelSole 2004):

For more details, see relevant literatures (Kleeman and 
Moore 1997; DelSole 2004; Tang et al. 2013).

3 � Construction of the ensemble prediction

Generally, uncertainties for the ENSO prediction derived 
from the uncertainties in initial condition and the deficien-
cies in model formulation. The practice of the ensemble 
prediction is a useful strategy for sampling and evaluating 
these uncertainties (Wilks and Vannitsem 2018). From the 
perspective of optimal error growth, we combined two kinds 
of the optimal perturbation schemes for the initial condition 
and the stochastic atmospheric noise that has not been well 
considered in the framework of model.

The initial condition perturbation is constructed by the 
singular vector (SV) approach (Lorenz 1965), which can 
capture the fastest growing initial errors in the ENSO evo-
lution (Xue et al. 1997; Fan et al. 2000; Cheng et al. 2009, 
2010b). Following Cheng et al. (2009), we carry out the 
SV analysis for every monthly initial conditions with the 
optimal period of 12 months from 1856 to 2016. Consistent 
with the previous research (Cheng et al. 2009), the spatial 
pattern of the first SV is not sensitive to the initial condition 
in the LDEO5 model, and the fastest perturbation growth 
occurs at around 12 month lead (not shown). The averaged 
first SV pattern over the past 161 years of 12 month lead 

(11)MI=
1

2

(
ln�2

�
−

1

M

M∑
i=1

ln�2
�|i

)

(12)R =
√
STR

(13)MI= −
1

2
ln(1 − R2) = −

1

2
ln(1 − STR)

is featured by an east–west dipole pattern over the tropical 
Pacific region (Fig. 1a), and the associated zonal SST gradi-
ent can favor the eastward warm Kelvin wave to transport the 
warmer water into the eastern Pacific Ocean, and resulting 
in an El Niño anomalies pattern as in Fig. 1b.

The increasing researches have indicated that the sto-
chastic atmospheric events significantly contributed to 
the ENSO variability (Penland and Sardeshmukh 1995; 
Kleeman and Moore 1997; Thompson and Battisti 2000; 
Zavala et al. 2005; Gebbie et al. 2007; Lian et al. 2014; 
Chen et al. 2015). Further, the model used in this study 
is free of stochastic processes. An effective method that 
considering the impact of stochastic uncertainties on the 
predictions in such noise-free models would be to use 
the stochastic optimals (SOs, Kleeman and Moore 1997) 
analysis. Compared with the SVs that can only consider 
the uncertainties related to the initial condition, the SOs 
analysis characterizes the uncertainties that are triggered 
by the stochastic processes during the entire prediction 
(Tang et al. 2008). More detail of SOs can be found in 
the related references (Kleeman and Moore 1997; Tang 
et al. 2008). In this study, we only consider atmospheric 
stochastic processes, and construct the SOs by perturb-
ing the wind stress during the prediction integration. 

(a)

(b)

Fig. 1   a The first singular vector of SST anomalies (°C) averaged in 
the past 161 years. b The corresponding final pattern of SST anoma-
lies (°C) for a 
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Figure 2 depicts the leading EOF mode of the first SOs 
of all predictions, representing the fastest error growth of 
SST due to stochastic processes incorporated into wind 
stress. Figure 2 shows the strong convergence in the east 
of 140°W and the offshore wind near 100°W, both favor-
ing upwelling in the eastern Pacific, and leading to the La 
Niño-like SST anomalies, and vice versa.

Given that involving two or more perturbation modes 
does not improve the prediction skill (Cheng et al. 2011), 
the ensemble hindcast here is constructed by jointly per-
turbing the initial conditions with the leading SV of SST 
and the leading SO of wind stress. The hindcast is per-
formed on the first day of each calendar month for from 
1856 to 2016, each lasting 12 months, with an ensemble 
size of 100. As depicted in Fig. 3, this joint perturbation 
scheme provides a skillful and reliable ENSO forecast. 
The correlation skill of Niño 3.4 SSTA index (defined 
as the averaged SSTA over the 5°S–5°N, 120°–170°W) 
between the ensemble mean and the observation (Fig. 3a, 
red line) is much better than the persistence forecast 
(Fig. 3a, blue line). Further, the correlation skill is over 
0.7 (0.5) at 6-month (12-month lead) for the period of 
the past 161 years, which can catch up, even better than, 
that of the current state-of-the-art coupled models. If an 
ensemble prediction system reasonably considers possible 
uncertainties, the averaged ensemble spread (SPRD) will 
be close to its root mean square error ( RMSEEM , Toth 
et al. 2003). The latter should be comparable with, or 
even better than, the RMSE of the unperturbed single 
forecast ( RMSECTL , Toth and Kalnay 1997). The afore-
mentioned relationship holds well in our ensemble fore-
cast system as shown in Fig. 3b.

4 � Relationship among the deterministic 
skill, the probabilistic skill 
and the potential skill

4.1 � Relationship between the deterministic skill 
and the probabilistic skill

Previous studies have reported that monotonic nonlinear 
relationships are observed between the probabilistic skill 
(BSS) and the deterministic skill (r) in the practice of the 
seasonal climate prediction with respect to the precipitation 
(Wang et al. 2009; Yang et al. 2016), surface air tempera-
ture (Alessandri et al. 2011), zonal wind (Yang et al. 2016), 
and geopotential height (Yang et al. 2018). Furthermore, 
these monotonic nonlinear relationships benefit from the 
contributions of the covariability between the correlation 
and the resolution skill (Alessandri et al. 2011; Yang et al. 

Fig. 2   The leading mode of the first stochastic optimal winds (m s−1) 
over the past 161 year

(a)

(b)

Fig. 3   a Correlation skill (red) and persistence skill (blue) of the 
Niño 3.4 index from ensemble mean along with lead time. b Root 
mean square error of Niño 3.4 index from ensemble mean (green), 
control run (red) and ensemble spread (blue) along with lead time
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2016, 2018). For ENSO ensemble prediction experiment, 
this principle is also operating (Fig. 4). As depicted in the 
Fig. 4a, the distribution in the scatterplot of the reliability 
versus the correlation is irregular and it’s difficult to draw a 
relationship. In contrast, there is a distinct monotonic non-
linear relationship in the scatterplot of the resolution versus 
the correlation (Fig. 4b). In each lead month, the correlations 
exhibits covariability with the resolution skills for all three 
categorical ENSO events. The scatter pattern also highly 
obeys the theoretical relationship derived by Yang et al. 
(2018). Since the resolution dominates the BSS, a good rela-
tionship between BSS and the correlation is also observed as 
shown in Fig. 4c, although it is not as much as that in Fig. 4b 
due to the degradation of reliability.

In short, the monotonic nonlinear deterministic skill-
probabilistic skill relationship which was found in previ-
ous studies (Yang et al. 2018), also holds well in the ENSO 
ensemble prediction system. This implies that the improve-
ment of the ENSO resolution prediction also enhances its 
deterministic skill, and vice versa.

4.2 � Relationship between the potential 
predictability skill and the deterministic 
prediction skill

Previous studies argued that the potential predictability, 
measured by MI, exhibits a good monotonic relationship 
with the deterministic skill under the prefect model scenario 
(Tang et al. 2008; Cheng et al. 2010a, b). This is also true 
in this case. Shown in Fig. 5a is the potential correlation R 
against the MI, depicting an evident monotonic nonlinear 
relationship (the blue dots). Compared with the theoreti-
cal value (the red dots), it reveals that the theoretical rela-
tionship in Eq. (13) can be approximate represented in our 
ENSO prediction In fact, the equalities in the above equation 
hold is and only if the forecast variance is constant. How-
ever, this is not strictly hold in our ensemble prediction (not 
shown), which results in the difference between the real MI 
and the corresponding theoretical value. Interestingly, such 
a relation also exists between the actual deterministic skill 
(r) and the MI as depicted in Fig. 5b. Namely, a larger MI 

Fig. 4   Scatterplots of a reliabil-
ity versus correlation; b resolu-
tion versus correlation; c Brier 
skill score (BSS) versus correla-
tion of the Niño 3.4 index along 
with lead time for below-normal 
(red), above-normal (green) and 
near-normal (blue) events

(a) (b)

(c)
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corresponds to a higher deterministic correlation skill both 
in perfect and actual model scenarios, which approximately 
follow the theoretical relationship as expressed in Eq. (13).

4.3 � Relationship between the potential 
predictability skill and the probabilistic 
prediction skill

The aforementioned discussion indicates that a monotonic 
nonlinear relationship exists between the probabilistic skill 
(resolution) and the deterministic skill. Also, the determinis-
tic skill exhibits a nonlinear monotonic relationship with the 
potential predictability skill (MI). On this basis, the expecta-
tion of the connection between the probabilistic skill and the 
potential predictability skill comes naturally. As discussed 
in Yang et al. (2012), the actual correlation (r) should be 
equal to the potential correlation (R) under the perfect model 
scenario. In our ENSO prediction system, the two exhibits 
co-variability with the correlation coefficient is 0.987, indi-
cating that the potential correlation is a useful indicator for 
the actual correlation. In addition, Yang et al. (2018) also 
proved mathematically such a relationship existing between 

the actual correlation and the resolution. Therefore, after 
substituting the correlation term of Eqs. (21)–(23) in Appen-
dix A with the Eq. (13) of this study, we obtain the theoreti-
cal resolution as a function of the MI for the perfect model 
scenario in the following manner (for more details, refer to 
Appendix A):

where X =
�−�C

��
 , � is the ensemble mean prediction; further, 

�c and �� are the corresponding climatological mean and 
standard deviation, respectively. P(O = 1|� ) denotes the 
probabilistic of each categorical event. The cumulative dis-
tribution function and the its inverse function are indicated 
as �(.) and �−1(.) , respectively.

Figure 6 depicts the numerical integration (the lines) of 
Eq. (17), thereby denoting that the resolution is a mono-
tonic nonlinear function of MI both for the above-normal 
(Fig.  6a), below-normal (Fig.  6b) and the near-normal 
events (Fig. 6c). Compared with the model MI-resolution 
relationship under the perfect model scenario (the dots in 
the Fig. 6), theoretical relationship is more well hold for 
the above-normal and below-normal events than that for 
the near-normal events. The possible reason is that there 
are more reliable probability prediction skills for the above-
normal and below-normal events in this ensemble prediction 
system. Figure 7 presents the observed frequency against 
the forecast probability for three categorical events. For the 
near-normal events (Fig. 7c), the curves are more deviated 
from the diagonal line (perfect line) than the above-normal 
(Fig. 7a) and below-normal (Fig. 7b) prediction’s, illustrat-
ing the significant “overconfidence” character in the prob-
ability prediction for the near-normal events. This indicate 
that this ensemble prediction system can give more reliable 
probability prediction skill for the above-normal and below-
normal events. Even so, there is also some bias between the 
theoretical value and the model result from lead 1–3 months 
for the above-normal and below-normal events to a certain 
extent. Due to the inadequate development of the spread, 
the ensemble prediction system underestimated the possible 
uncertainties, which results in the low probability prediction 

(14)P(OAN = 1�� ) = �

�
�−1(1∕3) +

√
1 − e−2MIX

e−2MI

�

(15)P(OBN = 1�� ) = �

�
�−1(1∕3) −

√
1 − e−2MIX

e−2MI

�

(16)P(ONN = 1|� ) = 1 − P(OAN = 1|� ) − P(OBN = 1|� )

(17)

BSSRES=
9

2 ∫
∞

−∞

1√
2�

exp
�
−
1

2
X2

��
P(O = 1�� ) − 1

3

�2
dX

(a)

(b)

Fig. 5   Scatterplots of a potential correlation (R) versus MI along with 
lead time. The blue and red dots in a indicated the model and theoret-
ical values, respectively. b Same as a, but for the real model scenario
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skill and accounting for the above mentioned bias. The 
insufficient spread in the lead 1–3 months (as shown in the 
Fig. 3b) may be limited by the linear perturbation method 
as used here, and it still exists in previous research (Cheng 
et al. 2010a, b). We can employ some no-linear methods to 
overcome this deficiency in the future.

In addition, although the Eq. (17) describes the monotonic 
relationship between the MI and the resolution based under 
a perfect model assumption, it seems that this theoretical 

resolution-MI relationship is also approximately validated in 
real ENSO ensemble prediction (Fig. 8). A salient feature is 
that there seemingly exists a nonlinear relationship between 
MI and the resolution. And that the relationship is nearly 
monotonic, namely, a larger MI corresponds a higher resolu-
tion and the variation of the resolution with the MI changes 
more rapidly when the MI is at small value. However, the 
biases between the model result (the dots) and the theoretical 
value (the line) are certainly more visible than that under the 
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Fig. 6   Theoretical relationship (the lines) between the MI and resolution and corresponding the model predictions (the dots) under the perfect 
model scenario for a above-normal events, b below-normal events and c near-normal events
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perfect model scenario (Fig. 6). The possible reason lie in 
that the model uncertainties also affect the prediction result 
and lead to the more imperfect bias between the theoretical 
value and the model results. Of particular note is with the 
development of the ensemble spread, the real model result 
nearly lay on the theoretical curve of resolution-MI rela-
tionship and come near to the theoretical value, suggesting 
that the reliable ensemble prediction system, which contain 
the possible uncertainties may can cover the shortage of the 
model formulation to some extent.

In spite of these insignificant imperfections, the theoreti-
cal nonlinear monotonic potential predictability–probability 

prediction skill relationship can still be well verified in our 
ENSO ensemble prediction. As the deterministic prediction 
skill also exhibits covariability with the potential predictability 
skill in our ENSO ensemble forecast system (Fig. 5b), then 
indicating that a high potential predictability MI always cor-
responds to more accurate actual prediction skill in both the 
deterministic manner and probabilistic way.

(a) (b)

(c)

Fig. 7   Reliability diagram for a above-normal events, b below-normal events and c near-normal events the from lead 1–12 months
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5 � Summary and discussion

The practice of evaluating and understanding the ENSO 
predictability involves two perspectives: actual prediction 
skill and the potential predictability. The former one can 

be investigated either from the deterministic viewpoint 
or probabilistic angle. Further, the inherent relationship 
between these two actual prediction skills has been vali-
dated from both the theoretical derivation and the prac-
tice of the seasonal climate prediction (Wang et al. 2009; 
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Alessandri et al. 2011; Yang et al. 2016, 2018). In addition, 
the potential predictability measures are considered to be 
potential candidate indicators for the actual deterministic 
skill in a perfect model scenario (Tang et al. 2008; Cheng 
et al. 2010a, b). However, it still lacks systematic research 
on the issue about the coherent relationship among the 
deterministic skill, the probabilistic skill and the poten-
tial predictability in the ENSO prediction. In this study, 
we investigated the relationship among them based on the 
ENSO ensemble hindcast prediction over the 161 year, and 
especially discussed the connection between the proba-
bilistic skill and the potential predictability skill from the 
practical application and theoretical identification, which 
has never been involved.

First, we constructed the ensemble forecast system with 
the combination of the optimal perturbations of the initial 
condition and the model stochastic physical processes. Based 
on this forecast system, we performed long-term hindcast 
over the past 161 year (1856–2016). The evaluation of the 
prediction indicated that this joint ensemble construction 
strategy could provide the skillful long-term ENSO predic-
tion at lead 12 months. The further analysis demonstrated 
that the deterministic skill exhibited a nonlinear monotonic 
relationship with its probabilistic counterpart, in which the 
resolution property made the dominant contribution. These 
further confirm the theoretical result reported by Yang et al. 
(2018) with respect to the practice of the ENSO prediction 
and to imply that the enhancement of the ENSO resolution 
skill can also correspond to the improvement of the correla-
tion skill.

In addition, our analysis also demonstrated that there was 
a nonlinear monotonic relationship between the determinis-
tic prediction skill and the information-based potential pre-
dictability skill (MI) whether under the perfect model sce-
nario or actual model prediction. These relationships could 
be approximately explained by a Gaussian-based theoreti-
cal equation, implying that MI has potential to indicate the 
actual prediction skill in this system.

Given that both the probabilistic skill and the potential 
predictability skill exhibit covariability with its deterministic 
compatriot in our ENSO ensemble forecast system, it’s natu-
rally motivated us to further investigate the possible relation-
ship between the probabilistic prediction skill and potential 
predictability skill. The result revealed the existence of a 
nonlinear monotonic link between the two in our ENSO 
ensemble forecast. Specifically, the high potential predict-
ability skill always corresponds with high probabilistic skill. 
Under the assumptions that the forecast probabilistic density 
function is Gaussian, we derived a theoretical expression for 
the BSSRES-MI relationship for the perfect model scenario. 
This theoretical demonstration was also practically well con-
firmed in our ENSO ensemble prediction.

All in all, the nonlinear monotonic relationships among 
the deterministic skill, the probabilistic skill and the poten-
tial predictability that are discussed in this study implies that 
we can quantify the model prediction skill (deterministic 
correlation or probabilistic resolution) by estimating the MI 
while issuing the prediction, which offers useful information 
for the end-users of prediction. According to the resolution-
correlation relationship, it can be inferred that a possible 
effective way to improve the deterministic skill of ENSO 
prediction is to perform the multi-model ensemble predic-
tion (Tippett and Barnston 2008), which has the potential to 
improve the resolution (Yang et al. 2016, 2018).

In short, the theoretical relationships among the determin-
istic skill, probabilistic skill and the potential predictability 
can approximately hold for the ENSO ensemble forecast. 
However, there are still some imperfections, especially with 
regard to the short lead time, where the ensemble spread is 
not sufficiently developed. This may be related to the linear-
based perturbations we employed here. In further, we will 
focus on improving the ENSO actual skill through a com-
bination of multiple-model ensemble prediction approach 
and some nonlinear-based perturbation methods, such as 
stochastic model-error perturbations (Zheng et al. 2009b) 
and Conditional Nonlinear Optimal Perturbation (Duan and 
Mu 2004) and so on.
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Appendix A

As Yang et al. (2016, 2018) discussed, the resolution could 
be understood as the statistical dependence between the 
event occurrence and the probabilistic forecast. On the infi-
nite sample size condition, the formal resolution is expressed 
as (Palmer et al. 2000; Yang et al. 2016, 2018):

where p denotes the forecast probabilistic of the considered 
event and O represents the corresponding observational fact 

(18)BSSRES =
9

2 ∫
1

0

fp(p)[P(O = 1|p ) − P(O = 1)]2dp

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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of this event, and 1 and 0 are to indicate occurrence and 
nonoccurrence, respectively. P( ) and P( | ) indicate uncon-
ditional and conditional probabilities separately. fp(p) refers 
to as the probabilistic density function (PDF) of p.

If the forecast PDF obeys a Gaussian distribution with a 
homogeneous forecast variance [the seasonal average variables 
always satisfied this assumption (Kumar et al. 2000; Tang et al. 
2008; Yang et al. 2012, 2016, 2018)], then the p is eventually 
a function of the forecast mean � only. Then, Eq. (18) can be 
rewritten as:

where f�(�) is the PDF of � . This equation implies that the 
resolution is governed by the statistical dependence between 
the forecast ( � ) and observation ( �).

Generally, the seasonal mean forecast ( � ) and observation 
( � ) variables would approximately satisfy a joint Gaussian 
distribution. And the conditional PDF of �  given � 
( f�|� (�|� ) ) is a Gaussian PDF with mean ( E(�|� ) ) is 
�c + r

��

��
(� − �c)) and variance ( Var(�|� ) ) is (1 − r2)�2

�
)) . 

Where �c(�2
�
 ) represents the climatological mean (variance) of 

� and xc(�2
�
 ) denotes the climatological mean (variance) of � , 

and r is the correlation between � and �.
Then P(O = 1|� ) in Eq. (19) can be obtained by integra-

tion of f�|� (�|� ) from the �l to �r . Then it further would be 
written as the form of the cumulative distribution function of 
Standard Gaussian distribution:

For  the below-normal  event ,  �l = −∞ and 
�r = �c + ���

−1(1∕3) ; for the above-normal event, 
�l = �c + ���

−1(2∕3) = �c − ���
−1(1∕3) and �r= +∞ . 

Here �−1 is the inverse function of � . That is, we have

(19)BSSRES =
9

2 ∫
∞

−∞

f�(�)[P(O = 1|� ) − P(O = 1)]2d�

(20)
P(O = 1�� ) = �[(�

r
− E(��� ))∕√Var(��� )]

− �[(�
l
− E(��� ))∕√Var(��� )]

(21)

P(O
BN

= 1�� ) = �

⎛
⎜⎜⎝

�
c
+ ���

−1(1∕3) − �
c
− r

��

��
(� − �

c
)

√
(1 − r2)��

⎞⎟⎟⎠

− 0 = �

⎛⎜⎜⎝

�−1(1∕3) − r
(�−�

c
)

��√
(1 − r2)

⎞⎟⎟⎠

(22)

P(OAN = 1�� ) = 1 − �

⎛
⎜⎜⎝

�c − ���
−1(1∕3) − �c − r

��

��
(� − �c)

√
(1 − r2)��

⎞
⎟⎟⎠

= �

⎛⎜⎜⎜⎝

�−1(1∕3) + r
(�−�c)

��√
(1 − r2)

⎞⎟⎟⎟⎠

(23)P(ONN = 1|� ) = 1 − P(OAN = 1|� ) − P(OBN = 1|� )

Given under the perfect model scenario, the actual correla-
tion ( r ) should be equal to potential correlation ( R , Yang et al. 
2012; Kumar et al. 2014), and replacing the correlation item 
of the Eqs. (21–23) based on the relationship between the MI 
and R , we have:

When substituting the explicit Gaussian PDF of f�(�) and 
considering the fact that P(O = 1) = 1∕3 , the expression of 
resolution is:
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