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Abstract
We demonstrate robust skill in forecasting winter (DJF) mean 10 m wind speeds for the period 1992/3–2011/12 over south-
eastern China and the South China Sea (SE China) and northern-central (NC) China, with correlations exceeding 0.8 and 
0.6 respectively. High skill over these regions is seen in two independent initialised ensembles which cover different time 
periods. The NC China region suffers from a similar signal-to-noise problem as identified in forecasts of the North Atlantic 
Oscillation, where the model appears to be less predictable than the real world. In SE China, the predictability of wind 
speeds comes from the model’s ability to predict the El Niño Southern Oscillation. In NC China, the wind speed is strongly 
related to two neighbouring geopotential height anomalies. Cross-validated linear regression models using the above climate 
indices give similar skill to using the direct model wind predictions in both regions. The model also has significant skill in 
predicting the strength of the Middle Eastern jet stream, which has previously been shown to be related to winter climate in 
central China. The model skill demonstrated here may be high enough to develop useful sector-specific seasonal forecasts, 
for example wind power forecasts for the energy industry, or air quality forecasts for the health sector.
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1  Introduction

Seasonal forecasts of wind speed have a variety of appli-
cations. Recent initiatives such as the EU funded project, 
EUPORIAS (Buontempo et al. 2018), are encouraging the 
use of seasonal forecasts within the wind energy sector. The 
amount of wind power generated in a season has a large 
effect on electricity price and redispatch costs (Wohland 
et al. 2018), so advance knowledge of extreme seasons is 
useful information for energy traders. In China, wind power 
is becoming increasingly important, with the Chinese 

government has pledging to produce 15% of all electricity 
by 2020 using renewable resources, including 210 GW of 
wind power expected to come online by the end of the dec-
ade (National Energy Adminitstration 2016). Energy trad-
ing in China may become important as the market evolves 
(Yu et al. 2017). Another use for the wind energy industry 
is using seasonal forecasts to anticipate potentially damag-
ing conditions to energy infrastructure (Bett et al. 2017, 
Clark et al. 2017). Other areas such as the health sector 
could also benefit from seasonal forecasts of wind, given 
the link between wind speed and air pollution (e.g. Csavina 
et al. 2014). Air pollution is estimated to contribute 1.6 mil-
lion deaths per year in China (Rohde and Muller 2015), so 
advance warning of seasons likely to have poor air quality 
could aid decision makers in reducing the impact.

There is strong seasonal variability in wind speeds over 
China, with the highest wind speeds generally in winter (Yu 
et al. 2016). In winter a large pressure gradient develops 
between the Aleutian Low and Siberian-Mongolia High 
(SMH) which results in strong northerly winds along the 
east coast (Chang et al. 2006). This circulation is one of the 
main features of the East Asian Winter Monsoon (EAWM). 
In the mid-troposphere, a prominent feature of the EAWM 

 *	 Julia F. Lockwood 
	 julia.lockwood@metoffice.gov.uk

1	 Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, 
UK

2	 College of Engineering, Mathematics and Physical Sciences, 
University of Exeter, Exeter, UK

3	 Center for Monsoon System Research, Institute 
of Atmospheric Physics, Chinese Academy of Sciences, 
Beijing 100029, China

4	 Laboratory for Climate Studies, National Climate Center, 
China Meteorological Administration, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-019-04763-8&domain=pdf


3938	 J. F. Lockwood et al.

1 3

is the East Asian Trough (EAT) near Japan, with a strong 
sub-tropical jet to the south (Chang et al. 2006). There is 
considerable inter-annual variability in winter wind speeds 
(Yu et al. 2016), and so skill in predicting wind speeds on 
seasonal time scales could be particularly useful to the sec-
tors mentioned above.

Interannual variability in winter wind speeds over China 
can have many causes. The El Niño Southern Oscillation 
(ENSO) is strongly linked with climate in southern China 
(e.g. Chen et al. 2013). The Arctic Oscillation (AO) has been 
shown to correlate with climate in northern China due to its 
effect on snow cover in the SMH region: a positive phase of 
the AO reduces snow cover and hence the build-up of cold 
air during the SMH development, resulting in weaker circu-
lation (e.g. Chang and Lu 2012, Chang et al. 2011). Varia-
tions in the East Asian Trough are also linked to variations in 
the SMH and Aleutian Low (e.g. Song et al. 2016) and thus 
also affect surface winds. The strength of the Middle Eastern 
Jet Stream has also been linked to climate in central China 
(e.g. Zuo et al. 2015, Wen et al. 2009, Li and Sun 2015), 
with changes in the MEJS linked to Rossby wave activity.

Bett et al. (2017) investigated the ability of the Met Office 
seasonal forecasting system, GloSea5 (Global Seasonal 
Forecasting System 5), in predicting winter and summer 
forecasts of variables relevant to the energy sector in China, 
including 10 m wind speeds. They found that GloSea5 
has skill in predicting winter (December–January–Febru-
ary, DJF) mean 10 m wind speeds over regions of China, 
in particular in south-eastern China and South China Sea 
(SE China), and a region in northern-central China, south of 
Mongolia (NC China). They proposed that skill in SE China 
was related to the El Niño Southern Oscillation (ENSO), 
whereas the NC China region was less well understood.

The aim of this paper is to investigate the robustness of 
wind speed prediction skill in the areas identified by Bett 
et al. (2017), by seeing if the results hold for two independ-
ent ensembles over different time periods, and to identify 
the sources of predictability. By finding the sources of 
predictability of wind speed over China, it may be possi-
ble to improve the direct model skill, for example using the 
atmospheric circulation as a proxy for wind speed (Scaife 
et al. 2014, Clark et al. 2017). These studies showed that the 
skill of forecasting temperature over the UK and Europe is 
significantly improved by predicting the temperature from 
the forecast of the North Atlantic Oscillation (NAO, Hur-
rell 1995) rather than using the temperature directly from 
the model.

The paper is structured as follows: In Sect.  1.1 we 
describe the seasonal forecast model and observational 
dataset used, and the methods are described in Sect. 1.2. In 
Sect. 2.1 we assess the seasonal prediction skill of the model 
and also discuss the signal-to-noise paradox. In Sects. 2.2 
and 2.3 we examine the sources of predictability of wind 

speed in SE and NC China, and in Sect. 2.4 we discuss using 
these sources in linear regression models. Discussion and 
conclusions are given in Sect. 3.

1.1 � Data

We assess the skill in predicting winter (DJF) mean 10 m 
wind speeds from forecasts initialised 1 month in advance, 
from two in-house ensembles generated by the second 
Global Coupled configuration of the Hadley Centre Global 
Environment Model version 3 (HadGEM3-GC2; Williams 
et al. 2015). HadGEM3-GC2 uses the GA6.0 configura-
tion of the Met Office Unified Model (UM, version 8.4) as 
its atmospheric component, on an N216 grid (a horizontal 
resolution of 0.83o in longitude and 0.55o in latitude) and 
85 vertical levels reaching a height of 85 km near the meso-
pause (Walters et al. 2017). This is coupled to the GL6.0 
configuration of the JULES land surface model (Best et al. 
2011), the GO5.0 configuration of the NEMO ocean model 
with a 0.25o nominal resolution and 75 vertical levels (ver-
sion 3.4, Megann et al. 2014; Madec 2008), and the GSI6 
configuration of the CICE sea ice model (version 4.1, Rae 
et al. 2015; Hunke and Lipscomb 2010).

The first ensemble is a set of retrospective forecasts (hind-
casts) from the GloSea5 prediction system (Global Seasonal 
Forecasting System 5; MacLachlan et al. 2015). It is the 
same ensemble as used in Bett et al. (2017). This ensemble 
is produced by collating 8-member ensemble hindcasts ini-
tialised each year on 25th October, 1st November and 9th 
November, giving a total of 24 members per season. The 8 
members started on each date differ due to a stochastic phys-
ics scheme (MacLachlan et al. 2015). The hindcasts cover 
DJF 1992/93–2011/12 (20 years).

The second ensemble is a set of decadal hindcasts from 
DePreSys3 (Decadal Prediction System 3; Dunstone et al. 
2016). Here, 40 ensemble members are started from initial 
conditions provided by assimilation runs on 1 November. 
The ensemble members differ due to the same stochastic 
physics scheme of GloSea5. Only the first winter is used 
and the DePreSys3 hindcasts cover DJF 1980/1981–2014/15 
(35 years).

We also combine the two ensembles to create a 64 mem-
ber ensemble. Since the two ensembles were created by the 
same underlying model (HadGEM3-GC2), it is straightfor-
ward to combine them, with each of the 64 members given 
equal weight. This results in the DePreSys3 ensemble being 
given more weight than GloSea5, due to the larger number 
of ensemble members. By taking the mean of this larger 
ensemble, unpredictable ‘noise’ is further reduced leaving a 
more accurate estimation of the forced (predictable) signal. 
The greater number of ensemble members should therefore 
give a better estimation of the true skill of our systems over 
the common time period, DJF 1992/93–2011/12.
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We use the ERA-Interim re-analysis dataset (ERAI, Dee 
et al. 2011) as a proxy for observations to assess the perfor-
mance of the ensemble hindcasts. Previous studies compar-
ing ERAI wind speeds to station and sounding observations 
over China have shown that although biases exist in ERAI, 
the dataset captures observed inter-annual and seasonal vari-
ations well (Zha et al. 2017).

1.2 � Methods

Skill is calculated using the Pearson correlation coefficient 
(r). A correlation skill score is chosen because they are not 
affected by errors in amplitude from the forecasts, which 
is important given the signal-to-noise paradox previously 
identified in seasonal NAO forecasts (Eade et al. 2014; see 
Sect. 2.1). The Pearson correlation coefficient is favoured 
over the rank correlation coefficient because the former puts 
more weight on prediction of extreme seasons, which is 
likely to be important for users. All significance level thresh-
olds are calculated assuming a two-tailed Student’s t test, 
and the significance level used throughout the paper is 95%.

When calculating internal relationships between climate 
indices and variables within ERAI [Figs. 4a, 5a, b and in 
Table 2 (second row)], we calculate the correlation coef-
ficient for the full ERAI period (DJF 1979/80—2015/16, 
37 years of data). For calculating the same internal relation-
ships within the model [Figs. 4b, 5c, d and Table 2 (second 
row)], we use the data from all individual ensemble members 
from the combined ensemble. Since the combined ensem-
ble covers 1993–2012 and has 64 members, this amounts 
to 1280 years of data. Consequently there is a much lower 
threshold of r for an internal correlation to be considered 
significant compared to the threshold in ERAI.

To assess the signal-to-noise ratio in the combined 
ensemble in Sect. 2.1 (Fig. 3), we use the method of Dun-
stone et al. (2016). We estimate the skill, r, of the combined 
ensemble for a given number of ensemble members, n, by 
randomly sampling n ensemble members for each hindcast 
year independently without replacement to create n ‘new’ 
ensemble members. Thus each ‘new’ member is a combina-
tion of years from different members of the original ensem-
ble. This is possible due to the construction method of the 
ensemble and reinitialisation of the model every winter. The 
mean of the n-member ensemble is taken and r is calculated. 
This is repeated 5000 times, and the mean r of the 5000 
samples is plotted against ensemble size.

To estimate the skill of the model predicting itself 
(dashed line in Fig. 3), the method above is repeated but 
a new ‘observational’ time series is created by randomly 
sampling from the ensemble members. The theoretical rela-
tionship between number of ensemble members (n) and skill 
(rn) depends only on the average skill of a single ensemble 
member in predicting observations (rsing), and is given by 

rn = n1∕2rsing∕
[

1 + (n − 1)rsing
]1∕2 (Murphy 1990). To obtain 

an accurate estimation of rsing we sample as above (using 
n = 1) but with 10,000 samples.

The ratio of predictable components between the observa-
tions and model (RPC, Eade et  al. 2014), calculated in 
Sect. 2.1, is estimated as RPC ≥ r∕

√

�
2
sig
∕�2

tot , where is �2
sig

 
is the variance of the model signal (i.e. the variance of the 
model mean), and �2

tot
 is the variance of the ensemble mem-

bers. If the model and observations are interchangeable then 
RPC ≈ 1. If the model ensemble is overconfident (which 
results in an under-dispersed ensemble), then RPC < <1. 
RPC ≫ 1 corresponds to the more unusual case of undercon-
fident forecasts, which has recently been reported for winter 
seasonal predictions of the NAO (Scaife et al. 2014).

For the analysis in Sects. 2.2 and 2.3, and the linear 
regression models in Sect. 2.4, the ENSO index used is the 
Niño 3.4. We use a fixed definition of the Arctic Oscillation 
(AO, Thompson and Wallace 1998), defined as the differ-
ence in MSLP between two bands of latitude at 35oN–45oN 
and 60oN–70oN. The National Oceanic and Atmospheric 
Administration (NOAA)/Climate Prediction Center (CPC) 
define the AO as the projection of the 1000 mb height 
anomalies poleward of 20°N onto the first leading mode 
from EOF analysis of monthly mean height anomalies at 
1000 hPa. Our fixed definition avoids discrepancies between 
the model and observations due to possible different loading 
patterns, and is very similar to the definition used by Li and 
Wang (2003), who use zonally averaged MSLP anomalies 
between 35oN and 65oN. In ERAI, the AO definitions are 
very highly correlated, with r = 0.9.

The definitions of the bespoke climate indices for the NC 
China region (Z500-N, Z500-S, MSLP dipole index and 
MEJS), used in the analysis in Sect. 2.3 and linear regres-
sion modelling in Sect. 2.4, are summarised in Appendix 1.

The composites of MSLP and 10 m wind vector anoma-
lies for El Niño (La Niña) winters in Fig. 4 are made by 
selecting winters which have Niño 3.4 index value of greater 
(less) than one standard deviation in ERAI over the entire 
ERAI period. The corresponding model composites are for 
the same winters as ERAI. Only DePreSys3 data is used for 
the model composites so that more years can be included. 
Similarly the composites of 500 hPa geopotential height and 
wind vector anomalies in Fig. 6 for windy (calm) winters in 
NC China are made by selecting winters with a normalised 
area averaged wind speed over NC China of greater (less) 
than one standard deviation in ERAI, and only DePreSys3 
data is included in the model composites.

In Sects. 2.2 and 2.3, we identify the likely sources of 
skill for wind speeds in SE and NC China. The correlations 
between the predicted index describing the skill source (e.g. 
ENSO for SE China) and the observed wind speed give an 
indication of the skill that would be obtained if using the 
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index rather than the wind speed direct from the model. How-
ever, this indirect method requires the relationship between 
the predictor and observed wind speed to be established. 
For a real forecast the observation would be unknown, so 
to obtain fairer indication of the performance of the indirect 
method, cross-validated linear regression is necessary. This is 
performed in Sect. 2.4. Here, the wind speed for a given year 
is predicted using the linear regression model derived from 
the remaining years in the hindcast. The regression coeffi-
cients are calculated using normalised values of the predic-
tors from the dynamical model (combined ensemble) and 
normalised wind speeds from the observations.

2 � Results

2.1 � Skill assessment

Figure 1a, b show maps of the correlation coefficient (r) 
at each grid point between ERAI DJF 10 m wind speed 
with the ensemble mean DJF 10 m wind speed from Glo-
Sea5 and DePreSys3 respectively. Figure 1a reveals five 
regions over China with statistically significant skill at the 
5% level, marked in Fig. 1a–c with boxes. These regions 
are (1) south-eastern China and the South China Sea (SE 
China, 108oE–125oE, 18oN–28oN), (2) Yunnan province 
(98oE–105oE, 22oN–30oN), (3) Southern Tibet (81oE–91oE, 
28oN–35oN), (4) Northern central China (NC China, 

100oE–112oE, 34oN–43oN), and (5) North East China (NE 
China, 115oE–123oE, 40oN–50oN). The correlation coef-
ficients for the area averaged DJF mean wind speed for 
regions (1)–(5), for GloSea5, DePreSys3 and the combined 
ensemble, are given in Table 1. For DePreSys3 the results 
are given over the whole ensemble time period (1981–2015) 
and the common time period (1993–2012).

The skill appears to be robust to using an independ-
ent ensemble and longer time period because all regions 
also show areas of statistically significant skill in the 

Fig. 1   Winter seasonal 
prediction skill (correlation) 
for China in a GloSea5 (24 
members, 1992/93–2011/12); 
b DePreSys3 (40 members, 
1980/81–2014/15); and c the 
combined ensemble for the 
common period (64 members, 
1992/93–2011/12). Stippling 
shows regions where the skill 
is significant at the 5% level, 
and the boxes correspond to the 
regions in Table 1

Table 1   Skill of regional wind speed predictions

The values give the correlation coefficient (r) between the area aver-
aged DJF wind speed in model and observations over each region 
shown in Fig.  1. Bold type indicates significance at the 5% level. 
The significance levels are different for each model due to the differ-
ent time periods used [5% significance for GloSea5, the combined 
ensemble and DePreSys3 over the common time period is |r| > 0.44 
(20 data points), for DePreSys3 over the whole time period it is 
|r| > 0.33 (35 data points)]

GloSea5 
(1993–
2012)

DePreSys3 
(1993–
2012)

DePreSys3 
(1981–
2015)

Combined 
(1993–2012)

(1) SE China 0.83 0.81 0.75 0.83
(2) Yunnan 0.34 0.35 0.40 0.38
(3) Tibet 0.26 0.44 0.47 0.43
(4) NC China 0.59 0.60 0.43 0.63
(5) NE China 0.43 0.46 0.13 0.48
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DePreSys3 ensemble (Fig.  1b), apart from NE China 
(region five). Given the longer time period and larger 
ensemble size of the DePreSys3 hindcast, this gives 
added confidence that the skill in regions (1)–(4) is robust. 
Table 1 shows that DePreSys3 does have significant skill 
in NE China when only 1993–2012 is considered, and 
the DePreSys3 skill is also higher for this time period for 
NC China and SE China compared to 1981–2015. This 
may hint at more predictability in the later period for 
these regions, as has previously been observed for other 
phenomena such as the NAO (Weisheimer et al. 2017), 
although there is not yet enough evidence to say this 
definitively here. The skill map of the combined ensem-
ble (Fig. 1c) resembles that of GloSea5 and DePreSys3 
individually, with significant skill in all five areas. These 
results confirm the findings of Bett et al. (2017), showing 
that they hold for a larger ensemble and also over a longer 
time period.

For the remainder of this paper we focus on finding the 
sources of skill in SE China and NC China, because these 
are the regions where we are most confident the skill is 
robust, since they have the highest skill in the combined 
system (r = 0.83 and 0.63 respectively; see Table 1), and 
the skill is statistically significant in the GloSea5 and DePr-
eSys3 ensembles independently. In addition, according to 
the freely available map images of wind farm locations on 
thewindpower.net, there is a substantial number of wind 
farms within NC China (especially in the within Ningxia 
province and around its border with Inner Mongolia), and 
in SE China along the Fujian coastline.

The observed and ensemble mean time series of area 
averaged DJF wind speed for SE and NC China are shown 
in Fig. 2a, b. Note that for NC China the observed and model 
wind speeds are plotted on different scales due the model 
having a negative bias of approximately 1 ms−1 (~ 30%) and 
smaller variability by a factor of five. The bias may be due to 
the complex terrain of the NC China region, since it includes 

Fig. 2   Time series of area averaged DJF mean wind speed in 
ERAI, DePreSys3 (1981–2015), GloSea5 and combined ensemble 
(1993–2012) for (a) SE China (region 1) and (b) NC China (region 
4) respectively. Note the different y-scale for ERAI and dynamical 

model wind speeds in (b). The dashed line in each plot shows the 
cross validated linear regression models described in Sect. 2.4. In (a) 
the covariate is ENSO and in (b) the covariates are the Z500-N and 
Z500-S indices
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the edge of the Tibetan plateau. The true bias, however, 
may not be as pronounced as shown in Fig. 2b since ERAI 
shows a positive bias in surface wind speed compared to 
station observations in general over China (Zha et al. 2017). 
Small amplitude variability is expected in ensemble means 
because the wind speed is the sum of a predictable (signal) 
and unpredictable (noise) component, so taking the mean 
leaves only the signal. The reason this is more of an issue 
in NC China compared to SE China could be because the 
predictable signal comes from different mechanisms (see 

Sects. 2.2 and 2.3) and is weaker in NC China. The vari-
ability of the model mean may be further underestimated if 
the relative strength of signal and noise in the model differ 
from observations, as discussed below.

Recent studies have shown that for extratropical climate 
indices such as the NAO, a large ensemble is required to 
achieve high skill (Scaife et al. 2014, Eade et al. 2014). This 
is interpreted as the signal-to-noise ratio in the model being 
significantly smaller than estimated from observations, 
i.e. the real world appears to be more predictable than the 

Fig. 3   Prediction skill (r) against ensemble size for a SE China, and 
b NC China. The solid line shows the skill measured experimentally 
by calculating the mean skill of repeated random samples of ensem-
ble members for each year to create ‘new’ ensemble members. The 

dotted line shows the theoretical relationship (Murphy 1990). The 
dashed line shows the skill of the model in predicting one of its own 
members, measured experimentally

Table 2   Skill of predicting climate indices and their correlation with Chinese wind speed

First row: Skill (r) of combined ensemble in predicting the climate indices identified for SE and NC China (5% significance level is |r| > 0.44 [20 
data points]). Second row: correlation between climate index and area averaged wind speed in SE or NC China in ERAI, over the whole ERAI 
period [5% significance level is |r| > 0.32 [37 data points)]. Model values from the combined ensemble calculated from ensemble members are 
in brackets [5% significance level is |r| > 0.055 [1280 data points)]. Third row: correlation between the model predicted index and observed area 
averaged wind speed in NC China [5% significance level is |r| > 0.44 (20 data points)]. This gives an indication of the skill that could be achieved 
using a non-cross-validated linear regression model on the indices rather than wind speed directly from the model. Numbers in bold are statisti-
cally significant at the 5% level

Index SE China NC China

ENSO MSLP dipole AO Z500-dipole MEJS

Model skill = r(ERAI index, model index) 0.99 0.30 0.56 0.45 0.67
r(index, ws10) in ERAI (in model members) − 0.66 (− 0.68) − 0.65 (− 0.45) − 0.45 (− 0.35) 0.77 (0.71) − 0.64 (− 0.61)
r(model index, ERAI ws10) − 0.83 − 0.05 − 0.19 0.70 − 0.46
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model. We test if this is the case for wind speed in SE and 
NC China in Fig. 3 by plotting the estimated skill, r, of the 
combined ensemble, against number of ensemble members, 
n (see Sect. 1.2). Comparing Fig. 3a, b, a larger ensemble is 
required to achieve high skill in NC China compared to SE 
China. The ratio of predictable components between obser-
vations and model (RPC, Eade et al. 2014; see Sect. 1.2) is 
2.1 for NC China, whereas for SE China the RPC is closer 
to 1 (RPC = 1.1).

RPC greater than 1 also implies that the skill of the model 
in predicting one of its own ensemble members is less than 
the skill of the model in predicting observations (Eade et al. 
2014). The skill of the model predicting itself is shown by 
the dashed lines in Fig. 3. Indeed, for NC China the skill 
of the model predicting itself is much lower than the skill 
in predicting observations and not statistically significant, 
whereas for SE China these quantities are comparable. This 
is in agreement with previous results, that extra-tropical 

Fig. 4   ENSO connection to SE 
China winds. Correlation of 
area averaged DJF wind speed 
in SE China (region marked 
with inner box) with sea surface 
temperatures in ERAI (a) and in 
the combined model ensem-
ble, calculated on ensemble 
members (b). Stippling shows 
significance at the 5% level 
[|r| > 0.32 for ERAI (37 data 
points), |r| > 0.055 for the model 
(1280 data points)]. The larger 
box shows the area in the panels 
below. c, d Mean DJF MSLP 
and 10 m wind vectors over 
China in ERAI and the com-
bined model respectively (over 
the whole ERAI and combined 
model period). e, f Composites 
of MSLP and 10 m wind vector 
anomalies in ENSO positive 
(El Niño) winters (1983, 1992, 
1998, 2010 and 2016) in ERAI 
and DePreSys3 respectively. 
g, h Composites of MSLP and 
10 m wind vector anomalies 
in ENSO negative (La Niña) 
winters (1989, 1999. 2000, 
2008 and 2011) in ERAI and 
DePreSys3 respectively. Note 
that for panels f and h, only 
DePreSys3 data is used rather 
than the combined model (see 
Sect. 1.2)
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phenomena such as the NAO and AO appear less predict-
able (i.e. have a smaller forced component) in seasonal fore-
cast models compared to the real world (Scaife et al. 2014, 
Eade et al. 2014, Stockdale et al. 2015, Dunstone et al. 2016, 
Athanasiadis et al. 2017, Kumar and Chen 2017).

2.2 � SE China

In this and subsequent sections, all skill values presented 
refer to the combined ensemble unless otherwise stated. 
The model shows very high skill (r = 0.83) in predicting 
DJF wind speed over SE China. The strength of the EAWM 
is often quantified by anomalies in the lower tropospheric 
meridional winds around the SE China region (Yang and Lu 
2014), but note that here we find very similar skill in both the 
time mean meridional and zonal components (r = 0.74 and 
0.77 for the meridional and zonal components respectively).

Bett et al. (2017) attributed the skill in this region to the 
El Niño Southern Oscillation (ENSO). ENSO is the lead-
ing mode of variability in the tropics (Barnston et al. 2011) 
and is highly predictable in winter on seasonal timescales 
(the skill of the Niño 3.4 index for the combined ensem-
ble is r = 0.99, see Table 2). Figure 4a shows the correla-
tion between the area averaged wind speed in SE China 
with sea surface temperatures (SST) over the period DJF 
1979/80–2015/16, which does indeed reveal a La Niña-
like pattern. The model reproduces this pattern (Fig. 4b), 
although the region of significance is much larger than in 
ERAI due to the larger amount of data (1280 years in the 
model compared to 37 years for ERAI). In Table 2 we also 
see that the correlation between the Niño 3.4 index and area 
averaged wind speed in SE China in ERAI and in the model 
ensemble members are − 0.66 and − 0.68 respectively, 
confirming this relationship. Note that the relationship is 
stronger in the model when calculated using the ensem-
ble mean ENSO and ensemble mean wind speed, with 

Fig. 5   Relations between surface wind speeds in NC China and 
other variables. a Correlation of area averaged wind speed in NC 
China (red box) with MSLP in ERAI; c Correlation of area aver-
aged wind speed in NC China with MSLP in the combined model 
ensemble (calculated on ensemble members); e Skill of the com-
bined model ensemble in predicting MSLP. The solid and dashed 
black boxes mark the regions used to calculate the MSLP dipole 

index in Sect. 2.3. b, d, f As left hand panels but for Z500. The solid 
and dashed boxes outline the Z500-S (central Asia, 45oE–85oE, 
30oN–50oN) and Z500-N (eastern Siberia, 90oE–135oE, 45oN–65oN) 
regions in Sect. 2.3 respectively. Stippling marks significance at the 
5% level [|r| > 0.32 for a and b (37 data points), |r| > 0.055 for c and d 
(1280 data points), |r| > 0.44 for e and f (20 data points)]
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r = − 0.92. The correlation between the model predicted 
Niño 3.4 index and the observed area averaged wind speed 
in SE China is − 0.83, indicating that using the predicted 
ENSO index to predict wind speed in SE China gives as 
good a prediction as using the wind speed taken directly 
from the model. This is consistent with ENSO being the 
main source (> 50% variance) of wind speed skill in this 
region. This is discussed further in Sect. 2.4 where we test 
cross-validated linear regression models.

The mechanism by which ENSO affects wind speeds in 
SE China is shown in Fig. 4c–h. For ERAI, Fig. 4c shows the 
mean MSLP (mean sea level pressure) and DJF 10 m wind 

vectors in the region, and composites of the anomalies for El 
Niño and La Niña winters are shown in Fig. 4e, g. The com-
posites show high (low) pressure anomalies off the south-
east coast of China in El Niño (La Niña) winters. The flow 
around these anomalies opposes (enhances) the mean flow 
shown in Fig. 4c, leading to decreased (intensified) wind 
speeds. These results are consistent with the findings of Lu 
et al. (2017), who found that the anomalous south-westerly 
flow in SE China in El Niño winters results in enhanced 
precipitation over the region.

The model mean flow and composite anomalies are 
shown in Fig. 4d, f, h, with the anomalies plotted for the 

Fig. 6   Windy and calm winters 
over NC China. a, b Mean DJF 
Z500 and 500 hPa wind vectors 
in ERAI and the combined 
ensemble respectively (over the 
whole ERAI and model peri-
ods). c, d Composites of Z500 
and 500 hPa wind vector anom-
alies in windy winters over NC 
China (1981, 1983, 1987, 2001, 
2009, 2010 and 2011) in ERAI 
and DePreSys3 respectively. 
e, f Composites of Z500 and 
500 hPa wind vector anomalies 
in calm winters over NC China 
(1989, 1990, 1992, 2008 and 
2012) in ERAI and DePreSys3 
respectively. The small black 
box marks the NC China region, 
and the larger black boxes mark 
Z500-N and Z500-S. The red 
box marks the MEJS region 
defined in Sect. 2.3
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same years as for ERAI. The composites show that the 
model captures the surface wind anomalies in El Niño and 
La Niña years remarkably well.

These results are consistent with the findings of Yang and 
Lu (2014), who investigated the predictability of 21 different 
EAWM indices in the ENSEMBLES dataset (van der Lin-
den and Mitchell 2009). They found that the EAWM indi-
ces measuring anomalies in lower tropospheric meridional 
winds around SE China were the most predictable, and these 
same indices also had the strongest correlations with ENSO.

2.3 � NC China

The skill of wind speed predictions in NC China is not 
related to ENSO. Over the ERAI period the correlation 
between the observed Niño 3.4 index and observed wind 
speed in NC China is 0.11, and over the period covered by 
the combined model hindcast (1992/93–2011/12) it is even 
smaller (− 0.02). As for SE China, the model skill is very 
similar for the time mean meridional and zonal components 
(r = 0.34 and 0.33 respectively), although the lower skill in 
the components indicates that the model is better at captur-
ing changes in wind speed rather than direction.

Large scale climate modes such as the Arctic Oscillation 
(AO) have particular spatial patterns in MSLP, so in Fig. 5a, 
c we show the correlation between area averaged DJF wind 
speed in NC China with MSLP in ERAI and the combined 
model ensemble. Both ERAI and the model show that the 
wind speed in NC China is related to a local east–west pres-
sure gradient (the difference in MSLP between the black 
solid and dashed boxes), but since the mean elevation of the 
NC China region is approximately 1600 m in our model and 
has an average surface pressure of ~ 800 hPa in DJF, using a 
local MSLP gradient as a predictor of surface winds makes 
little sense here. In fact, the model has insignificant skill 
at the 5% level in predicting this MSLP gradient, and the 
correlation between the model predicted MSLP difference 
and observed wind speed in NC China is just r = − 0.05 (see 
Fig. 5e and Table 2), confirming that this is not the source 
of predictability seen in the model. Figure 5a, c also show 
that the wind speed in NC China is not dominated by the 
intensity of the Siberian-Mongolian High (SMH), which is 
centred north west of the eastern MSLP box (solid line). The 
correlation of the SMH (using an index defined by MSLP 
anomalies in the region 40–60oN and 70–120oE; Chang and 
Lu 2012) with wind speed in NC China in ERAI data is only 
r = − 0.24, reflecting this fact.

Figure 5a, c, however, do also resemble a negative AO 
pattern, which can be skilfully predicted on our systems 
(MacLachlan et al. 2015). From Table 2, we see that the skill 
in predicting the AO is 0.56 (significant at the 1% level), and 
it has a significant anti-correlation with wind speed in NC 
China in both the observations and model (r = − 0.45 and 

− 0.35 respectively, both significant at < 1%). However, the 
correlation between the model predicted AO and observed 
wind speed in NC China is only r = − 0.19 (statistically 
insignificant). So although wind speed in NC China appears 
to be related to the AO, it is not the full source of predict-
ability and does not appear to explain the wind speed skill 
seen in the model.

In Fig. 5b, d, f we examine 500 hPa geopotential height 
signals. Figure 5b, d show the correlation between wind 
speed in NC China with the geopotential height at 500 hPa 
(Z500) in ERAI and the combined ensemble respectively, 
and the skill of the model in predicting Z500 is shown in 
Fig. 5f. There are two regions identified where there is 
strong correlation between Z500 and wind speed in NC 
China, and where the model has areas of significant skill 
in predicting Z500: over eastern Siberia (Z500-N) and cen-
tral Asia (Z500-S) (marked with the dashed and solid black 
boxes in Fig. 5b, d, f. This Z500 pattern has a slight resem-
blance to the type 2 Eurasian pattern (also known as the 
East Atlantic/West Russia (EATL/WRUS) pattern (Liu et al. 
2014), although we find that the correlation of the EATL/
WRUS index as calculated by the Climate Prediction Center/
National Oceanic and Atmospheric Administration (CPC/
NOAA, https​://www.cpc.ncep.noaa.gov/data/teled​oc/telec​
onten​ts.shtml​) with wind speed in NC China in ERAI is 
low (r = − 0.23). Therefore, we define an index based on the 
Z500 anomalies in the regions mentioned above.

Table 2 shows that the model has significant skill in 
predicting the difference in Z500 (Z500 dipole) over these 
two regions (r = 0.45, significant at the 5% level), and that 
Z500-dipole is very highly correlated with wind speed in 
NC China in both the observations and model (r = 0.77 and 
0.71 respectively, both significant at < 1%). The correlation 
between the model predicted Z500-dipole and observed 
wind speed in NC China is 0.70 (significant at < 1%) and 
comparable to the direct model skill (0.63). This could 
indicate that the model’s skill in wind speed in NC China 
is related to its skill in predicting Z500 over the identified 
regions. Using Z500 as a predictor of wind speed in NC 
China is discussed further in Sect. 2.4

The mechanism by which Z500 in these regions influ-
ences wind speed in NC China is shown in Fig. 6. Figure 6a, 
b show the ERAI and model mean Z500 and 500 hPa wind 
vectors for DJF, revealing the average north-westerly flow 
at 500 hPa in NC China. Figure 6c, e show composites of 
the Z500 and 500 hPa wind vector anomalies for observed 
windy and calm winters, and Fig. 6d, f show the model com-
posite anomalies for the same years. The anomalies seen in 
the model are much smaller compared to ERAI (and hence 
different colour and vector scales are used in Fig. 6). This is 
to be expected since the model composites are based on the 
ensemble mean anomalies, so they only show the predictable 
component (the signal) of the anomalies in the same years as 

https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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the observations. Furthermore, in Sect. 2.1 we demonstrated 
that the signal in the model over NC China is smaller than 
observations (RPC > > 1), resulting in even smaller model 
mean anomalies. If instead we made model composites tak-
ing the windy/calm years from individual ensemble mem-
bers we would expect similar magnitude variations.

In windy winters, both ERAI and the model show there is 
a strong negative Z500-N anomaly, with Z500-S remaining 
close to climatology. Cyclonic circulation around this anom-
aly intensifies the mean flow in NC China. In calm win-
ters, in ERAI there is a strong negative anomaly in Z500-S 
and weaker positive anomaly in Z500-N, and the cyclonic 
and anti-cyclonic flow around these anomalies respectively 
weakens the mean flow in NC China. The model captures the 
pattern of these anomalies well, but their relative strength 
is reversed.

It should be noted that there is much diversity in the 
Z500 patterns in both the ERAI and model composites. The 
Z500-S anomalous cyclone in the ERAI calm composites 
(see Fig. 8) are dominated by the calm winters 2008 and 
2012, and this feature was also well captured by the DePr-
eSys3 anomalies for the same years (Fig. 9). The Z500-N 
anomalous cyclone in ERAI windy composites are dom-
inated by the winters 2001, 2009 and 2010 (Fig. 10). Of 
these, only winter 2010 appears to be well forecast by the 
model (Fig. 11). The time series of wind speed in NC China 
in Fig. 2 shows that 2008 and 2012 we both extreme calm 
years, while 2010 was extremely windy, and it is clear that 
much of the model’s skill comes from the accurate forecast-
ing of these years. In fact, if these years are removed from 
the time series, the skill for the combined model reduces 
to r = 0.18 (statistically insignificant). The significance lev-
els tell us it is unlikely these winters were well forecast by 
chance, but this highlights the sensitivity of the skill to indi-
vidual years.

Also revealed in Fig. 6c–f is a region over the Middle East 
where strong negative (positive) anomalies in the zonal com-
ponent of the 500 hPa wind are seen in windy (calm) years, 
marked by the red box (35oE–70oE, 25oN–35oN). These 
anomalies are also seen higher up in the atmosphere, at 
250 hPa, where the geopotential height anomalies resemble 
those at 500 hPa. These zonal anomalies are due to both the 
anomalies in Z500-S, and smaller anomaly of the opposite 
sign over the Arabian Sea. We mention this because it has 
previously been noted that the strength of the upper atmos-
phere Middle Eastern jet stream (MEJS) has an influence 
on the winter climate in central China (e.g. Zuo et al. 2015, 
Wen et al. 2009, Zhang et al. 2009). The correlation between 
the MEJS (defined by area averaged anomaly in zonal wind 
over the red box) and wind speed in NC China is − 0.64 in 
ERAI and − 0.61 in the combined ensemble (calculated on 
ensemble members), with both values significant at < 1%. 
The skill of the combined ensemble in predicting the MEJS 

is 0.67 (significant at < 1%), and the correlation between 
the model predicted MEJS and observed wind speed in NC 
China is − 0.46 (significant at 5%). This implies that the 
MEJS could also be used as a predictor of wind speed in NC 
China, although it does not give such high skill at the Z500-
dipole index. Furthermore, being able to skilfully predict the 
MEJS could have implications for predicting other variables 
such as temperature and precipitation.

We also tested whether wind speeds in NC China were 
related to any of the EAWM indices mentioned by Yang 
and Lu (2014). Wind speed in NC China tends to have the 
highest correlation with the east–west pressure gradient 
EAWM indices, although the correlations are only moder-
ate (six of the eight of these indices have |r| ~ 0.2–0.45, with 
the remaining two having r close to zero). Above we found 
that wind speed in NC China is related to an east–west pres-
sure gradient, although the model predicted gradient was a 
poor predictor of observed wind speed possibly due to the 
complex orography in the region. There was also reasonably 
strong correlation with the East Asian Trough index, I16 
(r = 0.59, He et al. 2013), which measured Z500 anomalies 
in a large area overlapping the Z500-N region. These mod-
erate correlations with the existing EAWM indices imply 
that these indices are also unlikely to be good predictors 
of wind speed in NC China, and instead a more specialised 
index is needed.

2.4 � Linear regression models

Here we present the results of the cross-validated linear 
regression models (see Sect. 1.2), to test whether we have 
correctly identified the sources of skill in each region. 
Furthermore, linear regression models are widely used in 
seasonal forecasting research and operational forecasts and 
can sometimes lead to an improvement of skill (e.g. Clark 
et al. 2017, Palin et al. 2016). For SE China, the predic-
tor in the regression model is ENSO, and the range of val-
ues of the ENSO coefficient is shown by the box-whisker 
symbol on the left in Fig. 7. The box shows the coefficient 
range resulting from the cross-validation procedure, and 
the whiskers give the mean 95% confidence intervals. The 
skill of the cross-validated regression model is 0.78, very 
close to the direct model skill of 0.83. Figure 2a shows the 
cross-validated regression model fit (dashed line), which 
closely resembles the output from the dynamical models. 
The regression model has been scaled to have the same mean 
and standard deviation as ERAI which accounts for the offset 
between it and the dynamical models.

For NC China, the possible covariates identified were 
Z500-N and Z500-S. In Sect. 2.3 we showed that a dipole 
index constructed by taking the difference between Z500-N 
and Z500-S had a strong correlation with the wind speed 
in NC China, but since Z500-N and Z500-S are actually 
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independent in the observations (r = 0.09), we keep them as 
separate covariates in the linear regression model. We also 
test including the AO in the model, which is significantly 
correlated with Z500-N in the observations (r = 0.65, signifi-
cant at < 1%), but not with Z500-S (r = − 0.02, statistically 
insignificant).

Values of the coefficients of the two multi-linear regres-
sion models (with and without AO) show that wind speed 
in NC China has the strongest dependence on Z500-S (mean 
coefficient values are 0.62 and 0.72 in the models with and 
without AO respectively), followed closely by Z500-N 
(mean coefficient values are − 0.51 and − 0.62 in the mod-
els with and without AO respectively). Both of these coef-
ficients are significantly different to zero with 95% confi-
dence (Fig. 7), and the skill is higher using both predictors 
(r = 0.57) compared to using Z500-S and Z500-N individu-
ally (r = 0.29 and 0.042 respectively in cross-validated single 
linear regression models). Since the Z500-N and Z500-S 
coefficients are of similar magnitude but opposite sign, the 
results are very similar if the Z500-dipole index is used as a 
single covariate (r = 0.62).

Figure 2b shows the model fit without AO (dashed line) 
(scaled to ERAI), and shows that the regression model 
closely follows the variations seen in the dynamical model, 
consistent with the hypothesis that skill in Z500-N and 
Z500-S is responsible for the wind speed skill in NC China. 
Note in particular how the regression model captures the 
well forecast period of 2008–2012 and the poorly forecast 
winters 2001 and 2004.

The dependence on AO is much weaker, with a mean 
coefficient value of 0.25. Including AO in the regression 
model also makes little difference to the skill (r = 0.57 
without AO, and 0.56 with AO). The MEJS was not 
included in the multi-linear regression models as it is a 
response to the anomalies in Z500-S (it has a very high 
correlation with Z500-S of r = − 072 in both ERAI and 
the combined ensemble members), but we tested using the 
MEJS alone as a predictor, which gave a skill of r = 0.18.

We therefore conclude that both Z500-N and Z500-S 
are required as covariates in the regression model for NC 
China, and the skill of this regression model (r = 0.57) 
is comparable to the direct skill of the dynamical model 
(r = 0.63). The results are very similar when analysing 
only the DePreSys3 ensemble over the longer time period, 
with the linear regression model using Z500-N and Z500-S 
as covariates giving the highest correlation (r = 0.47, very 
similar to the skill of DePreSys3 r = 0.43).

In theory, the linear regression (indirect) method should 
have a higher skill than using the wind speed directly from 
the model because it bypasses the noise added in the rela-
tionship between the predictors and wind speed (Palin et al. 
2016). For both SE and NC China, however, the direct model 
skill is higher than the indirect method skill. This could be 
because the correlations are calculated on only 20 years of 
data, giving large uncertainties on the values. However, the 
fact that the linear regression models do give such high skill 
gives confidence that the covariates identified are responsible 
for most, if not all, of the wind speed skill in both regions.

Fig. 7   Cross-validated linear 
regression fits to wind speed in 
SE and NC China. The ENSO 
coefficient is for the SE China 
regression model, and the 
remaining coefficients (Z500-N, 
Z500-S and AO) are for the NC 
China model. For NC China, 
the coefficients for the regres-
sion model including all three 
predictors are plotted with thin 
black lines, and the coefficients 
for the model including both 
Z500-N and Z500-S (but not 
AO) as predictors are plotted 
with thick black lines. The 
boxes show the range of coef-
ficient values resulting from the 
cross-validation procedure, and 
the whiskers give the mean 95% 
confidence intervals
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3 � Discussion and conclusions

We have shown that Met Office forecast systems have robust 
skill in forecasting DJF wind speeds over SE and NC China, 
since it is seen in two independent ensembles covering dif-
ferent time periods. These regions are of importance to the 
wind energy industry, given the large number of wind farms 
located there (https​://thewi​ndpow​er.net), and to the health 
sector given their large populations (the NC China region 
contains the large population centre Xi’an, and the SE China 
region includes the highly populated Fujian coast and north-
ern coast of Guangdong, including the major cities Fuzhou, 
Quanzhou and Xiamen).

The high skill over these regions is seen in two independ-
ent ensembles which cover different time periods. The NC 
China region suffers from a similar signal-to-noise problem 
to the NAO, where the model appears to be less predictable 
than the real world. This problem tends to be seen more in 
extra-tropical regions compared to the tropics, despite the 
tropical sources of NAO prediction skill (Scaife et al. 2017).

In SE China, the predictability of wind speeds comes from 
the model’s ability to predict ENSO. The situation is more 
complicated in NC China, where there appears to be two 
independent regions of Z500 anomalies which are in balance 
with the surface wind speeds. The regions are SW (Z500-S) 
and NE (Z500-N) of NC China, and negative anomalies in 
Z500-S appear to be associated with calm winters, whereas 
negative anomalies in Z500-N are associated with windy 
winters. Linear regression modelling shows that anomalies in 
both regions are needed to predict wind speed in NC China. 
The AO is significantly anti-correlated with wind speed in 
NC China in observations, and although the model has skill 
in AO, including the AO in linear regression models does 
not lead to an improvement in wind speed forecasts over NC 
China. The linear regression models using these covariates 
(ENSO for SE China, Z500-N and Z500-S for NC China) 
give similar skill in wind speed compared to the direct model 
output, but do not improve it as would be expected if all 
drivers have been identified. However, this could be because 
the skill is only measured on 20 years of data, leading to 
uncertainties in the exact skill values. There is not currently 
enough evidence to recommend using the linear regression 
models over the dynamical model ensemble, but this should 
be re-assessed as more years of data become available.

The Z500-S anomaly is also associated with anoma-
lies in the upper level jet streams over central Asia and 
the Middle East. The strength of the Middle Eastern jet 
stream (MEJS) is known to be linked with climate in 
China, and has been associated with temperature and pre-
cipitation anomalies in central and southern China (e.g. 
Zuo et al. 2015, Wen et al. 2009, Zhang et al. 2009). The 
combined ensemble has significant skill in predicting the 
MEJS, with r = 0.67. Bett et al. (2017) showed that winter 

temperature is poorly predicted by GloSea5 over China, 
so in the future it is worth investigating whether the skill 
in the MEJS demonstrated here could be used to improve 
predictions of winter temperature in some areas of China.

We note that throughout this paper, the variable ana-
lysed is 10 m wind speed. Since wind turbine hub heights 
tend to be 80–120 m, for relevance for wind power genera-
tion, wind speed forecasts at these heights would be more 
useful. The correlations between DJF mean wind speed at 
10 m and at model levels at 71.9 m and 124.5 m in ERAI, 
over SE and NC China, range from 0.99 to 1.00, so the 
results presented in this paper also apply at hub height.

It is also not obvious the skill results for area averaged 
seasonal mean wind speed also apply to potential wind 
power generated, which is clearly of more interest to the 
energy industry. To estimate wind power, high temporal 
(e.g. 6 hourly) wind speed data is converted to power using 
a turbine specific wind power curve (e.g. Kiss et al. 2009, 
Lydia et al. 2014, Bett et al. 2017), then the seasonal mean 
is taken. The area averaged seasonal mean wind power thus 
requires knowledge of the distribution of wind farms and 
their power curves, as well as being more computation-
ally expensive to estimate. However, the recent study of 
Bett et al. (2018) showed that over Europe, after taking the 
seasonal and country averages, the resulting wind power 
capacity factors are very highly correlated with the cor-
responding mean wind speeds. Thus, where there is sig-
nificant wind speed skill, there is also likely to be seasonal 
skill in forecasting wind power. It will, however, be neces-
sary to test whether this result holds for China where there 
may be different sub-seasonal variability of wind speeds, 
and for different turbine properties and hub heights.

In addition, if power generation data from specific 
wind farms in SE and NC China were available, it may 
be possible to generate site-specific seasonal forecasts 
using the relationship between the model wind speed (or 
climate indices) and observed wind power generated.
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Appendix 1

Definitions of climate indices used for analysis of the NC 
China region.

•	 MSLP dipole index: Difference in DJF MSLP anoma-
lies averaged over regions 108°E–130°E, 30°N–50°N 
and 78°E–100°E, 28°N–38°N.

•	 Z500-N: DJF Z500 anomaly averaged over 
90°E–135°E, 45°N–65°N.

•	 Z500-S: DJF Z500 anomaly averaged over 45°E–85°E, 
30°N–50°N.

•	 Z500-dipole: Difference between Z500-N and Z500-S.
•	 MEJS: Anomaly in DJF zonal winds at 250 hPa aver-

aged over region 35°E–70°E, 25°N–35°N.

Appendix 2

See Appendix Figs. 8, 9, 10, 11.
The following figures show the anomalies in geopoten-

tial height and U and V winds at 500 hPa for the windy 
and calm years in ERAI and DePreSys3, which make up 
the composites in Fig. 6.

Fig. 8   Anomalies in 500 hPa geopotential height and U and V winds in ERAI for the individual winters that made up the composite of calm 
winters in NC China shown in Fig. 6
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Fig. 9   As for Fig. 8. but showing DePreSys3 anomalies (ensemble mean) for the same years
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Fig. 10   As for Fig. 8, but showing ERAI anomalies in windy years
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Fig. 11   As for Fig. 10, but showing the DePreSys3 anomalies (ensemble mean) for the same years
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