
Vol.:(0123456789)1 3

Climate Dynamics (2019) 53:3361–3372 
https://doi.org/10.1007/s00382-019-04709-0

Seasonal predictability of the tropical Indian Ocean SST in the North 
American multimodel ensemble

Yanling Wu1 · Youmin Tang1,2

Received: 30 October 2018 / Accepted: 1 March 2019 / Published online: 8 March 2019 
© The Author(s) 2019

Abstract
In this study, we investigate the predictability of the tropical Indian Ocean (TIO) sea surface temperature anomalies (SSTA) 
using the recently released North American Multimodel Ensemble dataset (NMME). We place emphasis on the predictability 
of two interannual variability modes: the Indian Ocean Basin mode (IOBM) and the Indian Ocean Dipole (IOD). If defined by 
a 0.5 correlation skill, we find that the statistically skilful predictions correspond to an approximately 9- and 4-month lead for 
the two modes, respectively. We then applied a newly-developed predictability framework, i.e. Average Predictability Time 
method (APT), to explore the most potentially predictable mode (APT1) for the TIO SSTA. The derived APT1s correlate 
significantly to the IOBM and IOD, but are also characterised by several significant differences, which implies that there 
is a close link between the variability-related modes and the predictability-defined modes. Further analysis reveals that the 
predictability source of the IOBM-related APT1 originates from ENSO-induced thermocline variation over the southwest 
Indian Ocean, whereas wind-driven upwelling near Sumatra dominates IOD-related APT1. This study provides insights 
into the understanding of TIO SSTA predictability and offers a practical approach to obtain predictable targets to improve 
the TIO seasonal prediction skill.
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1  Introduction

The tropical Indian Ocean (TIO) is a major part of the larg-
est warm pool at the Earth’s surface, and its interaction with 
the atmosphere plays an important role in influencing cli-
mate on both regional and global scales. In particular, there 
are two dominant variability modes that exist over the TIO 
domain over time scales that vary from seasons to years. 
First, a basin-wide warming, known as the Indian Ocean 
Basin mode (IOBM) is the most pronounced mode and is 
often argued to be coupled with the El Nino-Southern Ocean 
(ENSO) (e.g., Weare 1979; Klein et al. 1999). The IOBM 
usually peaks in the boreal early spring and persists until 
summer following the decay of ENSO. The IOBM modifies 

local precipitation, the onset of the Indian summer monsoon 
and the Northwest Pacific anticyclone (e.g., Annamalai et al. 
2005; Yang et al. 2007). The second mode, referred to as the 
Indian Ocean dipole mode (IOD; Saji et al. 1999), is char-
acterised by an opposite sea surface temperature anomaly 
(SSTA) between the eastern and western Indian Ocean. The 
IOD can significantly modulate atmospheric and oceanic 
circulations, which induces a series of climate anomalies 
in many areas of the world, such as surroundings area in 
the Indian Ocean, southeastern Australia, eastern Africa 
and northeastern Asia (Clark et al. 2003; Saji and Yamagata 
2003; Ashok et al. 2004; Behera et al. 2005; Cai et al. 2011). 
Therefore, predicting the TIO SSTA is a crucial step toward 
predicting the seasonal climate of these regions.

A number of studies have successfully predicted the TIO 
SSTA several months in advance. For example, Kug et al. 
(2004) used the Nino-3 index to statistically predict the 
basin-averaged SSTA up to 6 months in advance. For IOD 
predictions, current coupled climate models can make useful 
predictions of up to one season in advance, although some 
strong IOD events are predictable at longer leads (Song 
et al. 2008; Zhao and Hendon 2009; Shi et al. 2012; Liu 
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et al. 2016). Some recent studies suggest that an IOD event 
may be more predictable when it co-occurs with El Nino 
event (Yang et al. 2015; Tanizaki et al. 2017; Song et al. 
2018). One main issue to degrade the IOD predictability 
is the winter predictability barrier (WPB), i.e. the lowest 
prediction skill occurs when the prediction target month 
crosses the boreal winter (December, January and February) 
(e.g., Wajsowicz 2007; Feng et al. 2014a). Several studies 
have argued that the WPB is related to the IOD seasonality, 
which often reverses its sign during the winter season due 
to monsoon effect. The prediction of SSTA phase transition 
is very difficult and has usually a large error growth (e.g., 
Wajsowicz 2004; Feng et al. 2014a, b).

Compared with ENSO, the study of TIO modes is much 
more recent. In particular for the IOD, its prediction skill at 
current climate models is much lower than that of ENSO. 
There are several possible reasons for the poor skill of IOD 
prediction, including large model errors and inadequate ini-
tialization, which can theoretically be addressed by model 
development and initialization improvement by assimilation 
(Doi et al. 2017). On the other hand, the IOD may be intrin-
sically difficult to predict, which is likely due to either weak 
air–sea coupling in the TIO or strong stochastic processes, 
e.g., the impact of the Asian and Australian monsoons.

Therefore, exploring the potential predictability of the 
TIO modes is of interest. In particular, how much the IOD 
predictability upper limit is under the scenario of a perfect 
prediction system? A second issue is if the IOBM and IOD 
modes are intrinsically difficult to predict, whether there are 
more predictable modes in the TIO and how, if they exist, 
can we identify them? Liu et al. (2016) has investigated the 
first issue finding that the IOD potential predictability is 
higher than the actual prediction skill in current climate 
models, which suggests a room of improvement existing. 
However, they also observed that the IOD potential predict-
ability is much lower than the ENSO counterpart, i.e. the 
IOD is intrinsically less predictable than the ENSO.

In this study, we focus on the second issue, i.e. we attempt 
to identify more predictable modes in the TIO. Indeed, the 
IOD and IOBM were defined based on the variance con-
tribution (variability), rather than predictability itself. One 

may expect that the extracted dominant modes based on the 
predictability contribution should be more predictable. To 
achieve this objective, DelSole and Tippett (2009) proposed 
a method to optimise predictability that is integrated over 
all lead times, which is known as the Average Predictability 
Time (APT). Using this method, Jia et al. (2015) explored 
the most predictable modes for rainfall and surface air tem-
perature over the continents at a seasonal time scale. By 
applying the APT to a comprehensive ensemble hindcast 
product, we aim to identify the most predictable modes of 
TIO SSTA and to further understand the underlying physical 
mechanisms and predictability sources.

This paper is organized as follow. We briefly introduce 
in Sect. 2 the data, including ensemble hindcast product and 
the observation data. Section 3 describes the method used to 
identify the most predictable modes. In Sect. 4, we investi-
gate the most predictable modes, assess their actual predic-
tion skills, and explore their possible mechanisms. The paper 
finishes with discussion and conclusion in Sect. 5.

2 � Model and data

In this study, we use an ensemble hindcast product composed 
of 7 coupled models from the North American Multi-model 
Ensemble (NMME) phase-I (Kirtmann et  al. 2014). The 
NMME is a multi-model forecasting system that combines 
state-of-art coupled models from the North American fore-
casting centres. All model outputs have a 1° by 1° horizontal 
resolution. We only selected the models with a lead time of 
9 months or longer. Each model performs ensemble predic-
tion for each calendar month between 1982 and 2010, with 
an ensemble size from 6 to 24 as shown in Table 1. For con-
sistency, this study uses the ensemble prediction of up to a 
9-month lead. In this study, we mainly use the multi-model 
ensemble (MME), which is obtained by combining all individ-
ual model ensemble members. The predicted SST anomalies 
are formulated with respect to the seasonal cycle of individual 
models. To remove the linear trend, all data is detrended. The 
IOBM index is defined as the SSTA averaged over the tropical 
Indian Ocean (40°E–100°E, 20°S–20°N). The IOD index is 

Table 1   Models used in the 
NMME, phase I

Model num-
ber

Model name Lead times 
(months)

Ensemble size Hindcast period

1 CCSM3 0–11 6 1982–2010
2 CCSM4 0–11 10 1982–2010
3 CanCM3 0–11 10 1981–2010
4 CanCM4 0–11 10 1981–2010
5 GFDL-CM2.5 (FLOR) 0–11 24 1982–2010
6 CESM1 0–11 10 1980–2010
7 CFSv2 0–9 24 1982–2010
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defined by the SSTA difference between the western Indian 
Ocean (10°S–10°N, 50°E–70°E) and the southeastern Indian 
Ocean (10°S–0°, 90°E–110°E).

We use the Optimum Interpolation SST version 2 (OIS-
STv2; Reynolds et al. 2002) and NCEP–DOE Reanalysis 2 
(NCEP II; Kanamitsu et al. 2002) as observation datasets, 
which include the monthly SST, the 10-m wind velocity, the 
shortwave radiation and the latent heat flux. The observed 
thermocline depth is derived from ocean temperature from 
the NCEP Global Ocean Data Assimilation System (GODAS; 
Behringer and Xue 2004).

3 � Methods

The Average Predictability Time (APT) method, proposed by 
DelSole and Tippett (2009), is used to extract the most predict-
able TIO SSTA modes.

The signal-to-total ratio is widely used to measure the 
potential predictability in the seasonal prediction field (e.g., 
Tang et al. 2008a, b; Peng et al. 2009; Kumar and Hu 2014; 
Hu et al. 2014). For an ensemble seasonal climate prediction, 
the signal, which is often dominated by an external force, is 
almost completely quantified by the variance of the ensemble 
mean, while the noise induced by small perturbations is quan-
tified with the averaged ensemble spread over all predictions 
(Shukla 1998; Peng et al. 2009). The total variance is the sum 
of the signal and noise variance, which is often referred to as 
the climatological variance. The total variance of the MME is 
the average over the total variance of each model. The poten-
tial predictability at a fixed lead time τ, is estimated with the 
following equation:

where �2

signal
(�) is the signal variance at a lead time τ, and 

�
2

total
 is the total variance. Thus, p(τ) is a function of the lead 

time and decreases monotonically from 1 to 0.
The APT is defined as the integration of p(τ) over all lead 

times:

Therefore, APT is independent of the lead times but refers 
to the system’s inherent properties. The most predictable mode 
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where Σsignal(�) is the signal covariance at a fixed lead time 
τ, Σtotal is the total covariance, and q is a projection vector. 
The eigenvalue of (3) measures the potential predictability 
of the ensemble prediction system.

By decreasingly ordering the eigenvector according to 
its eigenvalue, the first eigenvector yields the most predict-
able mode with maximum predictability (APT1), the second 
eigenvector yields the second most predictable mode with 
the second maximum predictability (APT2), which is uncor-
related with the first one, and so on. In other words, the APT 
method is similar to Principal Component Analysis (PCA), 
except that it decomposes predictability into different com-
ponents instead of decomposing the variability (variance). 
The APT is also closely connected to maximised signal-to-
noise ratio (MSN). The main difference between the two is 
that the MSN maximises the signal to noise ratio at one lead 
time, τ, whereas the APT maximises the sum of the predict-
ability over all lead times. More details on the APT can be 
found in DelSole and Tippett (2009).

In practice, the ensemble forecast is first projected onto 
the leading principal components (PCs) to reduce the spatial 
dimensions. In this study, we chose 20 PCs from the TIO 
SSTA and consider all predictions of up to a lead time of 
9 months. We tested the APT analysis sensitivity based on 
the number of PCs and maximum lead time. We find that the 
major results are not sensitive to the parameter choice. The 
significance test for the APT is based on the Monte Carlo 
method as in Yang et al. (2013).

4 � The tropical Indian SSTA prediction

We first examine the actual prediction skill of the TIO SSTA 
using the MME. Figure 1 shows the SSTA correlation coef-
ficient (ACC) for the MME predictions against the observa-
tions. As can be seen, the MME produces statistically skilful 
predictions (correlation > 0.5) over a large part of the TIO 
with up to 4–5 month lead times. Longer lead times yield 
predictions that distribute sporadically throughout the tropic 
domain. The southwest Indian Ocean region is characterised 
by high prediction skill where thermocline variability sig-
nificantly affects changes in the SST (e.g., Masumoto and 
Meyers 1998; Chambers et al. 1999; Xie et al. 2002). The 
ACC in this region is above 0.8 at a 1-month lead and then 
decrease to 0.7, 0.6 and 0.5 at 3-, 6- and 9-month lead times, 
respectively. In addition, the MME also shows large pre-
dictability from the eastern equatorial to the central Indian 
Ocean, where there are strong influences from the prevail-
ing Wyrtki Jet (Wyrtki 1973) and equatorial zonal wind. 
We observed all these features in the persistent prediction 
skill with short lead times (not shown) and they have also 
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Fig. 1   Anomaly correlation 
coefficients (ACC) between the 
observations and tropical Indian 
Ocean sea surface temperature 
anomaly (SSTA) predictions 
in the multi-model ensemble 
(MME) based on all initial 
conditions (IC) between January 
1982 and December 2010. The 
contour at 0.5 is highlighted

Fig. 2   a, b ACC and c, d root mean squared error (RMSE) for the IOBM and IOD indices for the individual models, persistence and the MME
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been found in some previous studies that used single model 
ensemble (e.g., Zhu et al. 2015).

4.1 � The actual prediction of the dominant modes

Here, we evaluate the actual prediction skill of the IOBM 
and IOD. Figure 2 shows their ACC and root mean squared 
error (RMSE) in each model and in the MME, as well as 
their persistence skills. We observe large diversity in the 
IOBM prediction skill among the models. For example, 
the ACC for the IOBM prediction remains above 0.6 at a 
9-month lead in the CFSv2 and CanCM4 but drops below 
0.6 near a 5-month lead time in the other 5 models (Fig. 2a). 
The RMSEs of individual models are less diverse, which 
suggests that phase prediction is more sensitive to model 
biases than magnitude for the IOBM. In general, all mod-
els produce statistically skilful prediction for the IOBM 
(ACC > 0.5) with at least 9-month lead.

The ACCs for the IOD predictions, however, are lower 
in these models, typically dropping below 0.5 at lead times 
of 3- to 4-month. The CCSM3 has the worst skill, yielding 
statistically skilful predictions at only 2-month lead times. 
Compared with the observed IOD index, the CCSM3 suc-
cessfully predicts several of the strongest IOD events but 
produces too many false alarms, which results in poor skill 
(not shown). Comparisons with IOBM predictions reveal 
that IOD prediction RMSE varies significantly among these 
models (Fig. 2d), similar to its correlation skill. This sug-
gests that IOD amplitude predictions are more sensitive to 
model biases than those of the IOBM.

The differences between the prediction skills in these 
models may be due to differences in model physics, the ini-
tial conditions and/or the ensemble size. To reduce model 
bias and formulation uncertainties, we use the MME, which 
is thought to holistically consider uncertainties that derive 
from both the initial conditions and the model uncertainties. 
As such, the lack of understanding about climate system 
behaviour in an individual model could possibly be offset by 
using different model framework assumptions (Palmer et al. 
2004; Yan and Tang 2012). Previous studies have found that 
the MME is able to effectively improve predictions and per-
form better than any individual model (Krishnamurti et al. 
1999; Hagedorn et al. 2005). Figure 2 shows that the MME 
does produce the best skill in this study, not only for the 
correlation but also for the RMSE. Thus, in the following 
discussion, we only focus on results from the MME unless 
otherwise indicated.

To examine seasonal variation in the IOBM and IOD 
prediction skills, Fig. 3 shows the ACC and RMSE values 
for the MME as a function of the initial month and target 
month. For the IOBM index, the MME is characterised 
by strong seasonality in both correlation and RMSE skills 
(Fig. 3a, c). The IOBM is the most predictable when the 

prediction target is in the boreal spring [i.e. March to May 
(MAM)] and summer, with an ACC as high as 0.5 at a 
9-month lead time. However, when the prediction target is 
in the boreal fall, the IOBM has the lowest prediction skill, 
with statistically skilful prediction at only 2- to 3-month 
lead times. The seasonality of the IOBM prediction skill 
is likely linked to the fact that ENSO-induced basin-scale 
warming is dominant in the spring (Schott et al. 2009).

The IOD index prediction skill also strongly depends 
on the season (Fig. 3b, d). The MME generally has high 
prediction skill when the prediction target is in the boreal 
fall [i.e. September to November (SON)], with an ACC of 
up to 0.5 at a 5-month lead time. The skilful predictions 
with the longest lead times are those initialized in June 
and July. This is likely because the development phase of 
the IOD begins usually in boreal summer, when the ini-
tial prediction conditions contain IOD precursor signals, 
such as zonal surface wind along the Indian Ocean equator 
and shallow thermoclines in the eastern Indian ocean. On 
the other hand, the forecast rapidly degrades in the fol-
lowing winter, which is known as the WPB (Wajsowicz 
2004, 2007). Predictions initialized before May are also 
characterised by poor skill, suggesting the IOD onset is 
difficult to predict before May. This is also likely due to a 
lacking precursor signal during the IOD onset phase. A key 
point for IOD prediction is the need to correctly capture 
the precursors triggering IOD event. These prediction skill 
features are consistent with IOD event evolution, which 
develop in the summer, peak in the autumn and decay in 
the winter (Saji et al. 1999).

During the SON, the IOD events are well developed with 
maximum magnitude, when the strong signals are favourable 
for high predictive skill. In the following winter, the TIO 
exhibits a weak air–sea coupling and thermocline feedback 
as well as strong weather noise, which results in small SSTA 
variability and prediction difficulties (Feng et al. 2014a, b). 
The seasonal dependence of the SSTA variability also leads 
to the largest RMSE targeted in the autumn and the lowest 
in the winter, suggesting the RMSE may not be an appropri-
ate metric to evaluate IOD predictability (Liu et al. 2016).

4.2 � The most predictable mode related to IOBM

In this section, we extract the most predictable SSTA pat-
tern by applying the APT method. By considering the strong 
seasonal variation in both the TIO variability and predict-
ability, we explore the most predictable mode (APT1) for 
the IOBM and IOD mature season, i.e. the MAM and SON, 
respectively.

Figure 4a shows the leading APT mode obtained using 
the TIO SSTA during MAM, which corresponds to the 
IOBM mature phase. The most predictable mode for the 
TIO SST during MAM depicts a basin-wide warming, with 
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maximum loading over the southwest IO (SWIO) region. 
We obtained a similar pattern using the summer and winter 
SSTA but the warming was relatively weak and narrow 
(not shown). The spatial pattern is in good agreement with 
the TIO SSTA teleconnection pattern with ENSO (i.e. the 
IOBM mode). We also conduct the same APT analysis for 
each model ensemble and all depict a basin-wide mode 
similar to Fig. 4a (not shown). A significant feature in 
Fig. 4a is that the SSTA predictability is not spatially uni-
form in the tropic domain. The SSTA has the largest pre-
dictable potential in the southwest Indian Ocean centred 
at 10°S and 60°E. The high ACC prediction skill in this 
region, as shown in Fig. 1, is reminiscent of the most pre-
dictable mode, which verifies the reliability of the APT1.

Figure 4b shows the observed IOBM index, the pre-
dicted APT1 time series at lead time 0–4 months and 5–10 
months, as well as the observed APT1 time series, where 
the observed APT1 time series is obtained by projecting 
the APT1 mode (i.e. Fig. 4a) onto the observed SSTA. 

It is indicated that the APT1 time series in the model 
and observation are consistent with the observed IOBM 
index, which suggests that there is a significant relation-
ship between the APT1 mode and the IOBM.

To examine the differences between the APT1 mode 
and the IOBM, we calculate the actual ACC skill between 
the predicted index and the observed counterpart for both 
modes. These are calculated by projecting the predicted 
SSTA and observed SSTA onto the IOBM and APT1 mode, 
respectively. The results are shown in Fig. 4c, which indicate 
that the APT1 has a clear advantage when extracting the 
predictable component.

It is interesting to investigate the possible predictability 
source of the APT1. For this purpose, we regress the MAM 
APT1 time series to surface wind, heat flux and the thermo-
cline depth of the same season, which can characterise the 
atmospheric and oceanic contributions to the APT1 (Fig. 5). 
Figure 5a shows that the SST pattern, as expected, has a 

Fig. 3   (top) ACC and (bottom) 
RMSE as a function of the 
initial month (x axis) and tar-
geted month (y axis) for a, c the 
IOBM index and b, d the IOD 
index, based on all predictions 
in the MME

(a) (b)

(c) (d)
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basin-wide warming with enhanced loadings over the south-
west Indian Ocean. The southward SST gradient anchors 
an anti-symmetrical surface wind, with anomalous north-
easterlies and northwesterlies over the north and south of 
the equator, respectively. The wind-induced latent heat flux 
and cloud-induced shortwave radiation heat flux anomalies 
are positive over most of the basin but only significant over 
the northern and southeastern Indian Ocean (Fig. 5c, d). 
The positive flux indicates the heat transfer from the atmos-
phere to ocean, which warms the SST. The SWIO warming 
is different, compared with warming in the rest of the basin, 
but originates from ocean dynamics (e.g., Klein et al. 1999; 
Alexander et al. 2002). Figure 5b shows the depth of 20 °C 
isotherms, which indicates thermocline variation. Previous 
studies have shown that there is a thermocline ridge over 

the SWIO. Thus, surface temperature there is strongly influ-
enced by thermocline variation (Schott et al. 2009). During 
the mature phase of El Nino, anomalous anticyclones form 
over the southeast TIO via a reduced Walker circulation 
(Alexander et al. 2002), which forces oceanic Rossby waves. 
The downwelling Rossby waves propagate westward and 
arrive at the SWIO after one season in the following spring 
(Xie et al. 2002). As shown in Fig. 5b, the deepened thermo-
cline warms the SST over the SWIO, strengthens the SSTA 
signal there and eventually enhances the predictability. This 
process locally accounts for more than 50% of the explained 
variance in the SST variability over the SWIO (not shown), 
which was derived from correlation analysis with the APT1 
time series. In short, the slowly varying thermocline varia-
tion, which is induced by ENSO, explains the localised SST 
pattern in the most predictable mode during MAM.

4.3 � The most predictable mode related to IOD

Similarly, we apply the APT method to the boreal autumn 
(SON) SSTA ensemble prediction, which corresponds to the 
IOD mature phase. The resultant APT1 mode is shown in 
Fig. 6a. We find that the pattern in Fig. 6 is similar to the 
IOD and features a west–east SSTA seesaw in the TIO with 
a stronger signal near Sumatra. The observed IOD index is 
also consistent with the observed and predicted APT1 time 
series, which is characterised by a good relationship between 
the APT mode and IOD, as shown in Fig. 6b.

Figure 6c is the actual ACC skills for the IOD mode and 
the APT1 mode, where the indices were obtained by project-
ing the predicted SSTA and observed SSTA onto the IOD 
and APT1 mode, respectively, similar to Fig. 4c. Obviously, 
the APT1 mode has improved prediction skill compared with 
the IOD at lead times greater than 3 months because the 
former optimises the predictability attributes. For example, 
at a 9-month lead time, the APT1 has still the ACC skill 
above 0.5, whereas the IOD ACC is approximately 0.3. By 
comparing the potential predictability and the actual predic-
tion skill, Liu et al. (2016) concluded that there is still a large 
room to improve IOD predictions. The APT1 mode may 
provide a practical approach for this purpose.

To shed light on the IOD-related APT1 mode, Fig. 7 
presents the SSTA and the anomaly field of the surface 
winds, heat flux and thermocline depth associated with 
the APT1 mode, which are obtained using the projections 
of the APT1 time series onto these anomaly fields dur-
ing the SON season. As can be seen in Fig. 7a, the SSTA 
pattern has a dipole similar to the IOD but with the most 
significant loadings in the eastern pole region. As deep 
convection is suppressed due to the negative SSTA, more 
shortwave radiation flux reaches the ocean surface and off-
sets SST cooling in this region (Fig. 7d). The wind anoma-
lies are characterised by an off-equatorial anticyclone over 

APT1 during MAM

(c)

(b)

(a)

Fig. 4   The most predictable component (APT1) for the MME SSTA 
targeted during MAM: a spatial pattern, b the corresponding time 
series of the component for observation (green), lead times of 0–4 
months (blue), lead times of 5–10 months (red) and the observed 
IOBM index (black), c the corresponding ACC of the predictable 
mode (blue) and the observed IOBM index during MAM (black) as 
a function of the initial month. The APT1 time series for observation 
(green line in b) was obtained by projecting the OISSTv2 onto the 
spatial pattern of the APT1 (a). All time series in b are normalised
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the eastern TIO, which combine with strong zonal easter-
lies along the equator (Fig. 7a). Anomalous southeasterly 
winds over the southeast TIO lead to anomalous wind 
evaporation and negative latent heat flux (Fig. 7c), which 
is favourable for SST cooling. However, the significant 
latent heat flux is somehow shifted to the west of the SST 
cooling, while the cooling occurs along the coastal area of 
Sumatra. The atmosphere heat flux influences, in a limited 
manner, SST cooling in the eastern IOD pole.

The most significant factor that results in eastern IOD 
pole cooling is probably the variation in the thermocline 
(Tanizaki et al. 2017). In general, the climatological mon-
soon winds are southeasterly off the Sumatra coast during 
the summer and autumn seasons. These forcings favour 
a shallow thermocline and upwelling in the southeastern 
IO (SEIO), which allows the upwelling of cool subsur-
face water (Saji et al. 1999). Through the Bjerknes posi-
tive feedback, the easterlies strengthen SEIO cooling by 
shoaling the thermocline there. As shown in Fig. 7b, the 
anomalous thermocline depth is characterised by a local-
ised decrease over the southeastern IO, which leads to 
SST cooling. Similar to ENSO’s influences, in response 
to an off-equator anticyclone, downwelling oceanic Rossby 
waves are generated during the IOD events and deepen the 

thermocline over the central IO (Fig. 7b, Yu et al. 2005). 
Yet due to the climatological deep thermocline, Rossby 
wave processes induce limited changes in SST varia-
tion over the central IO (Fig. 7a). We conclude that the 
localised predictability over the eastern IOD pole mainly 
originates from SEIO thermocline variations, which is a 
component of the Bjerknes feedback.

5 � Summary and discussion

The tropical Indian Ocean (TIO) plays an important role 
in modulating the global climate. In this study, we have 
investigated the seasonal predictability of the TIO SSTA 
using the North American Multimodel Ensemble (NMME) 
dataset. We first examined its actual prediction skill, in 
particular the skill of two dominant interannual variabil-
ity modes: the Indian Ocean Basin mode (IOBM) and the 
Indian Ocean Dipole (IOD). Furthermore, we identified, 
by means of Average Predictability Time (APT), the most 
predictable modes (APT1) for the TIO SSTA during the 
mature seasons of the IOBM and IOD and analysed their 
underlying physical processes.

Fig. 5   The regression patterns 
of the observed anomalous (a) 
SST (shaded, °C) and 10-m 
wind velocity (vector, m/s), b 
depth of the 20 °C isotherm 
(Z20, m), c the latent heat flux 
(W/m2) and d the shortwave 
radiation heat flux (W/m2) dur-
ing MAM onto the APT1 time 
series for observation (green 
line in Fig. 4b). Positive heat 
flux indicates ocean warming. 
The contours in c, d indicate 
the zero line of the regression. 
Areas shown in colour and vec-
tors are significant at the 95% 
confidence level

(a) (b)

(c) (d)
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The results show that MME produces statistically skil-
ful predictions up to 4–5 months for the entire tropical 
domain in these models, after which this skill quickly 
drops for many TIO regions. For the IOBM, all models 
in the NMME produce statistically skilful predictions at 
least 9 months in advance, although there is a large diver-
sity among the different models. The multimodel ensemble 
(MME), which consists of all ensemble members, outper-
forms all single models and persistence. IOBM prediction 
skill is seasonally dependent, with the prediction target 
of the boreal spring yielding the best skill. In contrast, 

IOD prediction skill is lower in these models, with most 
yielding statistically skilful predictions only at lead times 
of 3- to 4-months. IOD predictions also show pronounced 
seasonal variation, with the best skills for prediction tar-
gets occurring during SON.

The two most predicable modes, i.e. the APT1s, for the 
TIO SSTA in spring and fall are similar to the IOBM and 
IOD, respectively. However, we find several significant dif-
ferences between the predictability and variability modes. 
The APT1 in spring (MAM) shows significant signals over 
the southwest IO (SWIO) and displays higher prediction skill 
than the IOBM mode. The APT1 in MAM locally explains 
up to 50% of the SST variance. The enhanced localised pre-
dictability over the SWIO derives from ocean dynamics. The 
ENSO-induced oceanic Rossby waves slowly propagate to 
the SWIO region, influence the thermocline and SST there, 
and provide the enhanced predictability. The APT1 pattern 
in autumn (SON) concentrate in the southeastern IO, with 
limited signals over the western pole of the IOD. Although 
IOD events exhibit a dipole pattern, the contributions from 
the eastern and western pole to the IOD pattern are quite dif-
ferent (Saji and Yamagata 2003). IOD events are dominated 
by the eastern pole, where ocean upwelling is an important 
process. The APT1 during SON emphasizes the differences 
and shows large loads only in the eastern pole. Also, this 
APT1 mode locally accounts for up to 70% of the SST vari-
ance in the eastern pole region. This is probably because 
the thermocline variation in the eastern pole, by the Bjerk-
nes feedback, can result in large SSTA variability thereby 
enhancing the predictability. Relative to the IOD, the APT1 
during SON has high prediction skill, especially for predic-
tions initialized before the onset of IOD events in May. The 
possible underlying physical mechanisms responsible for the 
APT1 during MAM and SON are highlighted in a schematic 
diagram in Fig. 8.

We analysed the seasonal predictability based on the 
most predictable modes and underlying physical processes 
in the TIO. The correlations between the diagnosed pre-
dictable modes and the observations are significant for all 
initial times (Figs. 4c, 6c). Based on these strong correla-
tions, we conclude that the most predictable modes found in 
the dynamical models also exist in the observations. These 
modes identify the regions that have high predictability, 
which may provide a practical approach to improve TIO 
seasonal prediction skill. The identified regions can offer 
useful information in determining the optimal prediction 
targets, and in designing the optimal observing network in 
the TIO region.

APT1 during SON

(c)

(b)

(a)

Fig. 6   The most predictable component (APT1) for the MME SSTA 
targeted during SON: a spatial pattern, b the corresponding time 
series of the component for observation (green), lead times of 0–4 
months (blue), lead times of 5–10 months (red) and the observed 
IOD index (black), c the corresponding ACC of the predictable mode 
(blue) and the observed IOD index during SON (black) as a function 
of the initial month. The APT1 time series for observation (green line 
in b) was obtained by projecting the OISSTv2 onto the APT1 spatial 
pattern (a). All time series in b are normalised
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