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Abstract
Record-breaking hot and cold extremes have occurred in China in recent years and, therefore, it is compelling to investigate 
the long-term trend in temperature extremes at individual stations to see whether they have become more frequent. Many 
previous studies on the linear trend analysis of temperaure extremes in China have used oridinary least squares (OLS) regres-
sion, without consideration of non-Gaussian and/or serially dependent characteristics, or nonparametric methods, again not 
considering the latter, thus leaving some uncertainty in the significance testing. The present study examines in detail these 
characteristics in eight commonly used extreme temperature indices, on the basis of both station data and gridded data across 
China. The results show that 71–100% of the stations or grids cannot directly use standard OLS regression to analyze the 
statistical significance of the linear trend, because of either non-Gaussian or Gaussian but serially dependent characteristics 
in the regression residuals. Also, more than 43% of the stations and more than 54% of the grid boxes for annual indies cannot 
directly use the original Sen’s slope estimator and Mann–Kendall test because of serial dependence. Based on a nonpara-
mtric method that takes into account serial dependence, the spatial patterns of the linear trend on an annual basis, as well as 
in hot and cold extremes, are examined for the period 1960–2017. The results show that hot extremes at most stations have 
increased, more than 57% of which are statistically significant; whereas, cold extremes at almost all stations have decreased, 
more than 32% (85%) of which are statistically significant during daytime (at night).
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1  Introduction

In recent years, China has frequently witnessed record-
breaking temperature extremes. For example, in 2013, 
extreme summer heat occurred in East China (Sun et al. 
2014; Zhou et al. 2014; Qian 2016). In 2017, high extreme 
temperature in East China broke the record again; for 
instance, the maximum temperature reached 40.9 °C at Xuji-
ahui station in Shanghai on 21 July—the highest temperature 
recorded in 145 years of observations. In contrast, extreme 

low temperatures have also occurred. In January 2016, a 
record-breaking cold event occurred in eastern China, and 
Guanzhou in South China witnessed its first snowfall since 
1951 (Qian et al. 2018). In January 2018, a cold extreme 
event devastated China again, with 108 counties and cities 
reaching the standard of cold extremes in terms of mini-
mum temperature, four of which broke their low-temperature 
record. Some researchers have suggested a link between 
more cold extremes in mid-latitude Eurasia and recent 
Arctic warming amplification (e.g., Mori et al. 2014; Kug 
et al. 2015), although this is still a matter for debate (e.g., 
Barnes 2013; Francis 2017). Given the relationship between 
extreme temperatures and human mortality, local econom-
ics and public services, and crop safety, it is compelling to 
investigate the long-term trend in temperature extremes at 
individual stations in China.

To obtain a reliable long-term trend, appropriate statisti-
cal techniques are needed. Trend analysis is common prac-
tice in climate change studies; however, the misuse of a sta-
tistical technique can render the analysis meaningless, and/
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or result in wrong conclusions (Zhang and Zwiers 2004). 
Many commonly used statistical methods are based on cer-
tain assumptions, and so it is important to check whether 
these assumptions are met when applying these methods.

Ordinary least squares (OLS) regression is the most com-
monly used linear trend estimator (IPCC 2013). Many previ-
ous studies on the estimation of the linear trend in tempera-
ture extremes in China have used OLS regression to estimate 
the spatial pattern of linear trends at individual stations, and 
used the Student’s t-test or F-test to assess the corresponding 
statistical significances (e.g., Ding et al. 2010; Huang et al. 
2010, 2015; Wang et al. 2012, 2018; Du et al. 2013; Zhao 
et al. 2013; Ye et al. 2014; Ding and Ke 2015; Zhou et al. 
2016; Liu et al. 2018). Some studies have even used OLS 
regression and the Student’s t-test to estimate the spatial 
pattern of precipitation extreme indices in high-resolution 
grids (e.g., Zhou et al. 2016) or at individual stations (e.g., 
Du et al. 2013; Zhao et al. 2013; Liu et al. 2018). A prereq-
uisite of using the Student’s t-test is that the data being tested 
follow a Gaussian distribution and, under this circumstance, 
the test statistic follows Student’s t-distribution (Wilks 2011, 
p. 141). The statistical inference of OLS regression with the 
Student’s t-test assumes that the regression residuals (errors) 
are independent Gaussian random variables with a zero 
mean and constant variance (referred to as standard OLS). In 
cases where this assumption is not met—for example, if the 
regression residuals have long-tailed distributions, to which 
the confidence interval is sensitive (e.g., Hogg 1979)—the 
inference is unlikely to be reliable, and thus the confidence 
intervals as well as the associated statistical significance of 
the OLS trend will not be appropriate (von Storch and Zwi-
ers 1999; Wilks 2011). Likewise, if the Gaussian assumption 
is met but the independent assumption is not met, the statisti-
cal significance will again not be appropriate.

Some studies have combined OLS regression with the 
nonparametric Mann–Kendall test (Mann 1945; Kendall 
1955) to analyze the spatial pattern of the linear trend and 
the corresponding statistical significance for temperature 
extremes in China (e.g., Qian and Lin 2004; Zhou and Ren 
2011; Qian et al. 2011b; Jiang et al. 2012; Chen et al. 2018; 
Shi et al. 2018). Although the Mann–Kendall test does not 
make assumptions about the underlying distribution of the 
data being tested, it does assume the target data are seri-
ally independent (Kendall 1955), which is not always the 
case. In addition, although OLS provides an unbiased and 
consistent estimate for the regression coefficient as long as 
the data have finite variance, it is sensitive to outliers—espe-
cially those at the ends of the data series, which can have 
a big influence on the trend estimate, since by definition it 
minimizes the square errors (von Storch and Zwiers 1999; 
Wilks 2011). Thus, the linear trend best-estimate may lack 
robustness when using OLS regression to analyze data with 
outliers (Wilks 2011, Fig. 3.16d); for example, some of the 

record-breaking hot summer extremes in East China in 2013 
(Qian 2016).

Some studies have used nonparametric Kendall’s tau-
based Sen–Theil estimator, also known as Sen’s (1968) slope 
estimator, to estimate the spatial pattern of the linear trend 
in climate extremes in China, along with the nonparametric 
Mann–Kendall test to assess the corresponding statistical 
significances for station data (e.g., Zhai and Pan 2003; You 
et al. 2013; Chen and Zhai 2017; Lin et al. 2017) or grid-
ded data (e.g., Yin et al. 2015). Both methods do not make 
assumptions about the underlying distribution of the climate 
indices. Sen’s slope estimator is the median of all possible 
slopes, so it is a robust tool. However, both Sen’s slope esti-
mator and Mann–Kendall test assume the target data are 
serially independent (Sen 1968; Kendall 1955).

Although the probability density function of daily tem-
perature tends to be approximately Gaussian (Cubasch et al. 
2013, Fig. 1.8), indices that are used to describe extreme 
temperatures are theoretically unlikely to follow a Gaussian 
distribution. For example, percentile-based indices such as 
the annual total number of days that daily maximum tem-
perature is above its 90th percentile (TX90p) will follow 
a binomial distribution B(n, p), with n = 365 and p = 0.1, 
if independence among the days holds true. This binomial 
distribution can be approximated well by a Gaussian distri-
bution. However, daily temperatures are highly persistent 
over time, and thus it is unclear if a Gaussian distribution 
can be used to approximate a temperature percentile index. 
This is especially the case when one is interested in the sea-
sonal values of the indices, for which n = 90. The annual 
maximum (or minimum) values of daily maximum (or mini-
mum) temperatures (TXx or TNn) are also used to charac-
terize temperatures. They are unlikely to follow a Gaussian 
distribution. According to extreme value theory, these val-
ues should converge to a generalized extreme value (GEV) 
distribution if they are sampled from a sufficiently large 
data block. However, as daily temperatures often follow a 
Gaussian distribution (e.g., Cubasch et al. 2013, Fig. 1.8), 
extremes sampled from a Gaussian distribution converge to a 
GEV quite slowly. As the extreme values only occur within a 
short seasonal window (for example, annual minimum daily 
temperature only occurs in the cold season at mid-to-high 
latitudes), the proper distributional forms for these annual 
extremes are not easy to determine. At small spatial scales, 
such as a station or a grid, or for short data lengths—in 
China, typically 50–60 years of observations—the central 
limit theorem may not work either, because the sample size 
is small. In addition, the indices of extreme temperature may 
also be serially dependent. As a result, the estimate of the 
confidence interval of a trend may be too narrow if serial 
dependence is not properly addressed, resulting in possible 
false detection of a significant trend (von Storch and Zwi-
ers 1999). The studies reviewed above on the linear trend 



535Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially…

1 3

analysis of temperature extremes failed to consider either 
the non-Gaussian or serial dependent characteristics, thus 
leaving some uncertainties.

This study has two main parts. Firstly, we examine the 
distribution and serial independence throughout China of the 
linear trend residuals of the eight commonly used extreme 
temperature indices as defined by the World Meteorological 
Organization Expert Team on Climate Change Detection and 
Indices (ETCCDI) (Zhang et al. 2011). To the best of our 
knowledge, this is the first time that this has been done, and 
the findings help us to determine the appropriate method for 
estimating the linear trends, as well as testing the statistical 
significance of the trends. Accordingly, in the second part of 
the study, we then compute the spatial patterns of the linear 
trends in temperature extremes using this method for the 
data updated to 2017.

2 � Data and methods

2.1 � Station data

Homogenized data are important for climate change analysis, 
especially in China, where station relocations are frequent 
(Xu et al. 2013; Ren and Zhou 2014; Yan et al. 2014). The 
data used in this study are the daily maximum temperature 
(Tmax) and daily minimum temperature (Tmin) for the period 
1960–2017 updated from the CHTM4.0 dataset, which is 
the next version of CHTM3.0 (Li et al. 2016). The dataset 
was homogenized using the Multiple Analysis of Series for 
Homogenization method (Szentimrey 1999). There are 758 
national Reference Climatic and Basic Meteorological Sta-
tions used in this study, not including stations Shapingba 
(57516) and Changshou (57520), who have missing values 
for the entire month of April 2017.

2.2 � HadEX2 gridded data

To illustrate the potential non-Gaussian and serially 
dependent characteristics in gridded data, the commonly 
used HadEX2 (the gridded land-based dataset of indices 

of temperature and precipitation extremes) covering the 
period 1901–2010 (Donat et al. 2013) is adopted. This data-
set includes a set of temperature and precipitation indices 
calculated based on high-quality in situ station observations 
across the globe using a consistent approach recommended 
by the ETCCDI (Zhang et al. 2011). These index data are 
on 3.75° × 2.5° grids.

2.3 � Calculation of the extreme temperature indices 
for station data

A set of eight extreme temperate indices (Table 1) are ana-
lyzed. All these indices are adopted directly from the ETC-
CDI (Zhang et al. 2011; also see http://etccd​i.pacif​iccli​mate.
org/list_27_indic​es.shtml​), and have been widely used in the 
literature (e.g., Alexander et al. 2006; Zhang et al. 2011; 
Donat et al. 2013). To ensure consistency in the calculation 
of the indices with other regions, the RClimDex version 1.1 
software packages (Zhang and Yang 2004) are used. The 
percentiles, required for some of the temperature indices, are 
calculated from the base period of 1961–1990 using a boot-
strapping method to avoid possible inhomogeneities (Zhang 
et al. 2005). The same base period of 1961–1990 is used, as 
recommended by the ETCCDI, because using different base 
periods would result in different mean annual cycles and 
anomalies, thus make the results difficult to compare with 
others (Qian et al. 2011a).

2.4 � Methods for linear trend estimation 
and significance testing

The most commonly used method for linear trend estimation 
is OLS regression. The statistical inference of the confidence 
interval of the standard OLS trend assumes that the regres-
sion residuals are independent, identically Gaussian distrib-
uted random variables. We therefore test the normality of the 
residuals first. Gaussian quantile–quantile (Q–Q) plotting with 
95% confidence intervals (Fig. 1) is used to test whether the 
OLS regression residuals of the extreme temperature index at 
each station or HadEX2 grid box is Gaussian distributed. This 
testing method does not assume serial independence. If all the 

Table 1   Definitions of the eight 
extreme temperature indices 
analyzed

Abbreviation Index name Definition Units

TXx Hottest day Monthly maximum value of daily Tmax °C
TNx Warmest night Monthly maximum value of daily Tmin °C
TXn Coldest day Monthly minimum value of daily Tmax °C
TNn Coldest night Monthly minimum value of daily Tmin °C
TX90p Warm days Percentage of days when daily Tmax > 90th percentile %
TN90p Warm nights Percentage of days when daily Tmin > 90th percentile %
TX10p Cold days Percentage of days when daily Tmax < 10th percentile %
TN10p Cold nights Percentage of days when daily Tmin < 10th percentile %

http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml


536	 C. Qian et al.

1 3

points of the testing data fall within the 95% confidence inter-
vals, we consider the data as Gaussian distributed (Fig. 1a). 
Otherwise, it is non-Gaussian (Fig. 1b). It should be mentioned 
here that this type of Gaussian distribution we classified does 
not necessarily mean it is perfectly Gaussian; rather, it can be 
regarded as quasi-Gaussian. If the result is non-Gaussian, the 
standard OLS method is not appropriate. For each station or 
grid box having Gaussian distributed residuals, the first-order 
autocorrelation [hereafter AR(1)] of the OLS regression resid-
uals for the extreme temperature index is further estimated to 
see whether these residuals are independent. This is because 
the statistical significance of a standard OLS trend is estimated 
using the Student’s t-test with N − 2 degrees of freedom under 
the assumption of an independent regression residual. When 
the AR(1) of the OLS regression residual (hereafter r1 ) is 
larger than zero, this assumption is violated and the effective 
degrees of freedom is reduced to Ne − 2 (Santer et al. 2008), 
where Ne is the effective sample size for data and is expressed 
as (Hartmann et al. 2013):

The significance testing method is then modified to allow 
AR(1) in the regression residual ê(t) (Santer et al. 2008; Hart-
mann et al. 2013):

(1)Ne =

{

N
1−r1

1+r1
, r1 > 0

N, r1 ≤ 0
.

(2)𝜎̂b =

�

∑N

t=1
ê(t)2

Ne−2

�

∑N

t=1
(t − t̄)2

�
1

2

, t = 1,…N;

(3)b = b̂ ± q𝜎̂b.

Here, 𝜎̂b is the variance of the trend slope estimator; b 
is the regression coefficient, with a probability level p (for 
example, 95%) confidence interval; b̂ is the best estimate 
of the trend slope; and q is the (1 + p)/2 quantile of the 
Student’s t-distribution with Ne − 2 degrees of freedom. If 
b does not contain zero, then the OLS trend is considered 
as statistically significant at the ( 1 − p ) level. This modified 
method is referred to as OLS-M. Formula (3) indicates that 
if there is serial correlation—namely, r1 is larger than zero—
the OLS confidence intervals will be narrower than those of 
OLS-M. Therefore, an actually not-significant trend would 
potentially be mistaken as significant when using OLS.

The nonparametric Kendall’s tau-based Sen’s slope esti-
mator (Sen 1968) is an alternative to OLS regression in esti-
mating the linear trend. It is the median of the set of slopes 
Yj−Yi

j−i
 . It does not assume a distribution for the residuals and 

is much less sensitive to outliers in the time series. However, 
Sen’s (1968) slope estimator assumes the sample data to be 
serially independent. The nonparametric Mann–Kendall test 
(Mann 1945; Kendall 1955) for statistical significance test-
ing of the linear trend also assumes the sample data to be 
serially independent. If there is a positive AR(1) in the time 
series, the test rejects the null hypothesis more often than 
specified by the significance level, and thus the testing result 
is unreliable (von Storch and Navarra 1995; Yue et al. 2002; 
Zhang and Zwiers 2004). Taking into account the fact that 
the trend and autocorrelation often concur in a time series, 
we adopt an iterative method, proposed by Zhang et al. 
(2000) and later refined by Wang and Swail (2001, Appendix 
A), to properly estimate the AR(1) of a time series and elimi-
nate this effect of autocorrelation in using Sen’s slope esti-
mator and the Mann–Kendall test. This method to compute 
the trend slopes and to test their statistical significance is 

(a) (b)

Fig. 1   Examples of normality testing by Gaussian Q–Q plots: a 
Gaussian case for the OLS regression residual of the annual TN90p 
index at Beijing (54511) station; b non-Gaussian case for the OLS 
regression residual of the annual TNn index at Fangxian (57259) 
station. Red circles indicate the distribution of the target index, and 

black solid lines represent the Gaussian distribution, with the 95% 
confidence interval shown as black dashed lines. The approximate 
linearity of the circles (all within the confidence interval) suggests 
that the target data are normally distributed
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referred to as WS2001. In case there are ties (repeated values 
in the extreme index) in the sample data, the variance of the 
Mann–Kendall test statistic S is calculated by:

where g is the number of tied groups and uj is the number 
of repeated values in the jth group (Kendall 1955). In this 
study, the linear trend is regarded as statistically significant 
if it is significant at the 5% level.

3 � Results

3.1 � Normality testing and serial correlation in terms 
of the OLS regression

3.1.1 � Station data

Theoretically, indices based on absolute values (TXx etc.) 
should not be Gaussian if the block size is large enough, 
and percentile-based indices may be approximated by a 
Gaussian distribution if the daily temperature data are suf-
ficiently independent. However, a Gaussian approximation 
is not appropriate for many cases of percentile-based indices 
because of dependence in the daily data. This is more prob-
lematic for seasonal values because of smaller number sizes, 
for which there are a higher percentage of stations failing 
the Gaussian test. This is supported by Table 2 and Fig. 2.

More specifically, Fig. 2 shows that more than half of 
the stations are non-Gaussian for each of the eight annual 
extreme temperature indices. For example, most of the sta-
tions around the middle and lower reaches of the Yangtze 
River and the Huai River for TNn (Fig. 2d), many of the 

(4)
VAR(S) =

n(n − 1)(2n + 5) −
∑g

j=1
uj(uj − 1)(2uj + 5)

18
,

stations in southwestern China for TX90p (Fig. 2e), and 
many of the stations in northeastern China for TN10p 
(Fig. 2h), are non-Gaussian. The number of non-Gaussian 
stations varies among the indices. The largest percentage of 
non-Gaussian stations accounting for the overall 758 sta-
tions is 74.4% for TNn, whereas the smallest one is 58.2% 
for TNx (Table 2).

Among the Gaussian distributed stations, many are seri-
ally dependent, with the r1 value larger than zero for each 
extreme temperature index (Fig. 2). These serial correlations 
will potentially introduce incorrect significance test results 
that suggest significant trends when actually they are not, if 
using the standard Student’s t-test with N − 2 degrees of free-
dom. The largest percentage of serially dependent stations 
accounting for the overall 758 stations is 31.4% for TN90p, 
whereas the smallest one is 11.1% for TNn (Table 2). For 
TX90p (Fig. 2e) and TN90p (Fig. 2f), there are 15.7% (6.1%) 
and 19.4% (10.8%), respectively, of the 758 stations whose 
r1 is larger than 0.2 (0.3), which indicates Ne is no more than 
2/3 (half) of the data length. The maximum r1 values for the 
eight indices are 0.46, 0.46, 0.44, 0.33, 0.56, 0.63, 0.52 and 
0.55, respectively, which indicates the Ne values at these sta-
tions are only 37.0%, 37.0%, 38.9%, 50.4%, 28.2%, 22.7%, 
31.6% and 29.0%, respectively, of the data length.

If the numbers of non-Gaussian stations and Gaussian but 
serially dependent stations are added up, more than 2/3 of 
the stations cannot use standard OLS regression to estimate 
their confidence intervals as well as the statistical signifi-
cance of the linear trend in the eight indices, especially for 
TX90p and TN90p (Table 2). For these two indices, this is 
the case for more than 98% of the stations.

In terms of summer (June–July–August, JJA) indices 
(Table 2), the number of non-Gaussian stations increases 
substantially for the latter four percentile-based indices rela-
tive to the annual cases. The largest amount of non-Gaussian 

Table 2   Percentage of stations 
whose extreme temperature 
indices are non-Gaussian 
distributed or Gaussian 
distributed but serially 
dependent (AR1 > 0) in terms of 
the OLS regression residual

The sum of the non-Gaussian and Gaussian but serially dependent categories represents the percentage of 
stations that cannot use OLS and the Student’s t-test with N − 2 degrees of freedom in significance testing 
(units: %)

TXx TNx TXn TNn TX90p TN90p TX10p TN10p

Annual
 Non-Gaussian 63.3 58.2 59.5 74.4 69.4 66.8 68.6 72.2
 Dependent 22.3 26.7 16.4 11.1 28.6 31.4 22.7 20.8
 Sum 85.6 84.9 75.9 85.5 98.0 98.2 91.3 93.0

Summer
 Non-Gaussian 61.2 57.5 65.3 74.0 94.6 85.4 93.4 92.4
 Dependent 24.1 26.3 15.2 16.1 4.6 9.5 3.2 4.5
 Sum 85.3 83.8 80.5 90.1 99.2 94.9 96.6 96.9

Winter
 Non-Gaussian 61.5 64.5 65.3 74.7 90.4 74.8 99.7 96.0
 Dependent 16.1 14.4 6.1 5.2 3.2 13.7 0.0 1.9
 Sum 77.6 78.9 71.4 79.9 93.6 88.5 99.7 97.9
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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stations is from TX90p. For this index, 94.6% of the sta-
tions are non-Gaussian. For Gaussian but serially dependent 
stations, there are 15–26% for the former four indices and 
3–10% for the latter four indices. Altogether, approximately 
80–99% of the stations cannot use standard OLS regression 
to estimate their confidence intervals as well as the statisti-
cal significance of the linear trend in the eight indices, with 
the smallest amount of stations for TXn and the largest for 
TX90p.

In terms of the winter (December–January–February, 
DJF) indices (Table 2), the number of non-Gaussian stations 
substantially increases for TX90p, TX10p and TN10p, rela-
tive to the corresponding annual indices. The largest amount 
of non-Gaussian stations is from TX10p, which amounts to 
99.7%. For the former four indices, approximately 62–75% 
of the stations are non-Gaussian, and approximately 5–16% 
of the stations are Gaussian but serially dependent. For the 
latter four indices, about 75–100% of the stations are non-
Gaussian, and about 0–14% of the stations are Gaussian but 
serially dependent. Overall, 71–100% of the stations cannot 
use standard OLS regression to estimate their confidence 
intervals as well as the statistical significance of the linear 
trend in the eight indices, with the smallest amount of sta-
tions for TXn and the largest for TX10p.

It should be mentioned here that TXx (TNx) can be in 
May or September and TXn (TNn) can be in the previous 
January or February (in terms of winter) for some of the 
stations. So, there are slight differences between the annual 
TXx (TNx) and summer TXx (TNx), and between the annual 
TXn (TNn) and winter TXn (TNn), shown in Table 2.

3.1.2 � HadEX2 gridded data

For HadEX2, each of the eight annual indices has many 
non-Gaussian grid boxes within the China domain (Fig. 3; 
Table 3), although a grid box may be from the average of 
several stations and thus have a larger sample size than a sin-
gle station to meet the central limit theorem. Non-Gaussian 
grid boxes account for approximately 21–67% of the entire 
102 grid boxes within the China domain, with the least 
for TN90p and the most for TXn (Table 3). Non-Gaussian 
grid boxes exist mainly in western China for TXn (Fig. 3c); 

southern China for TNn (Fig. 3d) and TX90p (Fig. 3e); and 
northeastern China for TN90p (Fig. 3f), TX10p (Fig. 3g) and 
TN10p (Fig. 3h). For Gaussian grid boxes, serially depend-
ent grid boxes account for 20–79%, with the least for TXn 
and the most for TN90p (Table 3). Most of the grid boxes 
in China have an Ne of no more than 2/3 of the data length 
for TN90p (Fig. 3f). Altogether, approximately 81–100% of 
the grid boxes in China cannot use standard OLS regression 
to estimate the confidence intervals as well as the statistical 
significance of the linear trend in the eight annual indices, 
with the smallest amount of stations for TXx and the largest 
for TX90p and TN90p (Table 3).

Table 3 also shows that, for summer indices, approxi-
mately 28–88% of the grid boxes in China are non-Gaussian, 
with the least for TNn and the most for TX10p. Approxi-
mately 0–51% of the grid boxes are Gaussian but serially 
dependent. Altogether, approximately 79–94% of the grid 
boxes cannot use standard OLS regression to carry out 
their significance testing. For winter indices, approximately 
48–100% of the grid boxes are non-Gaussian, with the least 
for TN90p and the most for TX10p; and approximately 
0–27% of the grid boxes are Gaussian but serially dependent. 
Altogether, approximately 72–100% of the grid boxes cannot 
use standard OLS regression to carry out their significance 
testing. In short, non-Gaussian and/or serial dependent char-
acteristics should also be considered for gridded indices if 
one wants to use standard OLS to carry out the significance 
testing.

3.2 � Serial correlation in terms of Sen’s slope 
estimator and the Mann–Kendall test

3.2.1 � Station data

Figure 4 shows that many of the stations are serially depend-
ent for the eight annual indices, especially for TX90p 
(Fig. 4e) and TN90p (Fig. 4f). The maximum AR(1) values 
calculated from the WS2001 method are 0.50, 0.47, 0.43, 
0.46, 0.58, 0.68, 0.53 and 0.71, for the eight indices. Table 4 
shows that, for each of the eight annual indices, more than 
43% of the stations have positive AR(1) values and thus 
cannot directly use the original Mann–Kendall test to test 
the statistical significance of the linear trend. Nor can they 
directly use Sen’s slope estimator to calculate the linear 
trend slope. This is because Yj and Yi, which are input in all 
possible slopes ( Yj−Yi

j−i
 ) to estimate the median value, are 

assumed in Sen’s slope estimator to be independent (Sen 
1968). The differences for whether or not to take into 
account serial correlation are illustrated later, in Sect. 3.3. 
Special attention should be paid to the annual TX90p and 
TN90p indices, in which more than 88% of the stations have 
positive serial correlation (Table 4). For summer indices, the 

Fig. 2   Normality test results according to Q–Q plots and the AR(1) 
values of OLS regression residuals for eight annual extreme tempera-
ture indices at 758 stations during 1960–2017. Black circles indicate 
non-Gaussian stations; colored dots indicate Gaussian stations. The 
AR(1) values are calculated only for Gaussian stations. The AR(1) 
value of 0.2 (0.3) in the legend indicates that the Ne in formula (1) 
reduces by approximately 1/3 (50%) of the original sample size N. 
The maximum AR(1) values are also listed for each index. Only blue 
dots indicate that the regression residual at a station is serially inde-
pendent and can use the original OLS regression and Student’s t-test 
with N − 2 degrees of freedom

◂
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(a) (b)

(c) (d)

(e)

(g) (h)

(f)

Fig. 3   As in Fig. 2, but for the OLS regression residual of HadEX2 gridded data during 1961–2010. The results are not shown for some of the 
grid boxes with 1 year of missing values in a and b 
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percentage of stations having positive serial correlation falls 
within 43–59%, with the smallest for TXn and the largest for 
TXx. For winter indices, this range is 27–68%, with the 
smallest for TXn and the largest for TX10p. Therefore, serial 
correlation should be considered when using Sen’s slope 
estimator and the Mann–Kendall test to analyze the station-
based trend in temperature extremes in China.

3.2.2 � HadEX2 gridded data

For HadEX2, the numbers of serially independent grid 
boxes within the China domain are relatively small for each 
of the eight annual indices (Fig. 5). These grid boxes exist 
mostly in northeastern China and Xinjiang Autonomous 
Region for TXx (Fig. 5a), the upper reaches of the Yellow 
River and Yangtze River for both TXn (Fig. 5c) and TNn 
(Fig. 5d), Heilongjiang Province for TN90p (Fig. 5f), and 
the lower reaches of the Yellow River and Yangtze River for 
both TX10p (Fig. 5g) and TN10p (Fig. 5h). Approximately 
54–96% of the grid boxes are serially dependent, with the 
least for TN10p and the most for TX90p (Table 5). For 
TX90p (Fig. 5g) and TN90p (Fig. 5f), most of the grid boxes 
within the China domain have an AR(1) larger than 0.2. For 
summer (winter) indices, approximately 41–66% (23–79%) 
of the grid boxes are serially dependent, with the least for 
TN10p (TX90p) and the most for TX90p (TN10p). There-
fore, serial correlation should also be considered when using 
Sen’s slope estimator and the Mann–Kendall test to analyze 
the grid-based trend in temperature extremes in China.

3.3 � Comparison of the spatial pattern of linear 
trends using different methods

The annual TX90p index is taken as an example to illus-
trate the impact of non-Gaussian and/or serial dependent 
characteristics on the estimation of the linear trend slope 

and the corresponding statistical significance of the linear 
trend (Fig. 6). In order to see the results clearly, only part 
of China is shown. Figure 6a compares the two parametric 
methods and shows that the linear trend slope best-estimates 
are the same using the OLS and OLS-M method, but the 
statistical significances for the linear trends are not neces-
sarily the same. For example, the trends at many Gauss-
ian stations (Fig. 2e) in northeastern China are statistically 
significant using the OLS method, but not significant using 
the OLS-M method (Fig. 6a, with a typical example in its 
top-left corner), due to the presence of serial dependence at 
these stations (Fig. 2e). Figure 6b compares the two nonpar-
ametric methods and shows that both the linear trend slope 
best-estimates and the statistical significances for the linear 
trends obtained using the original Sen’s slope estimator and 
the Mann–Kendall test are not necessarily the same as those 
obtained using the WS2001 method, due to the presence 
of AR(1) at these stations (Fig. 4e). For example, most of 
the stations in the lower reaches of the Yellow River Basin 
have different trend slope magnitudes (Fig. 6b), and several 
stations there even have different trend signs; the trends at 
several stations in northeastern China are statistically sig-
nificant using the original Mann–Kendall test, but are not 
significant using the WS2001 method (Fig. 6b). The reason 
for different slopes has been explained earlier, in Sect. 3.2.1. 
Figure 6c compares the refined parametric method with the 
refined nonparametric method and shows that the statistical 
significances are different from each other for some of the 
non-Gaussian stations—for example, those in northeastern 
China (Figs. 2e, 6d). Some stations show a statistically sig-
nificant trend using WS2001 but not using OLS-M; whereas 
some stations are not significant using WS2001 but signifi-
cant using OLS-M (Fig. 6c, d). In particular, all the trend 
slopes are different using OLS-M and WS2001 (Fig. 6c). It 
should be mentioned here that, even if many non-Gaussian 
stations show the same significance-test results between 

Table 3   As in Table 2, but for 
HadEX2 data for the period 
1961–2010

There are 102 grid boxes within the China domain

TXx TNx TXn TNn TX90p TN90p TX10p TN10p

Annual
 Non-Gaussian 47.1 54.9 66.7 62.8 52.9 20.6 58.8 53.9
 Dependent 34.3 32.4 19.6 22.6 47.1 79.4 26.5 29.4
 Sum 81.4 87.3 86.3 85.4 100 100 85.3 83.3

Summer
 Non-Gaussian 43.1 58.8 69.6 28.4 83.3 73.5 88.2 75.5
 Dependent 36.3 33.3 13.7 51.0 10.8 19.6 0 13.7
 Sum 79.4 92.1 83.3 79.4 94.1 93.1 88.2 89.2

Winter
 Non-Gaussian 55.9 65.7 64.7 62.8 97.1 48.0 100 88.2
 Dependent 26.5 15.7 10.8 8.8 2.0 35.3 0 3.9
 Sum 82.4 81.4 75.5 71.6 99.1 83.3 100 92.1
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4   AR(1) values according to the WS2001 method for eight annual extreme temperature indices at 758 stations during 1960–2017. The 
maximum AR(1) values are also listed for each index. Only stations colored blue can use the original Mann–Kendall test
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OLS-M and WS2001 in this case (Fig. 6c), it is not always 
the case for every extreme index. Those from OLS-M just 
happened to be right for the wrong reason, because the pre-
requirements of the methods were not met.

In summary, the differences described above suggest 
that the non-Gaussian and/or serial dependent characteris-
tics should be considered when analyzing the trend of tem-
perature extremes in China, especially in the assessment 
of the statistical significance of the linear trend. Thus, the 
spatial patterns of the linear trend in temperature extremes, 
as estimated using the WS2001 method, are reported in the 
following.

3.4 � Spatial pattern of linear trends in temperature 
extremes

3.4.1 � Annual temperature extremes

Figure 7 shows that, for the majority of stations, the tem-
peratures on the hottest day, warmest night, coldest day, and 
coldest night in a year have increased (Fig. 7a–d); the annual 
occurrences of warm days and warm nights have increased 
(Fig. 7e, f), whereas those of cold days and cold nights have 
decreased (Fig. 7g, h). These characteristics reflect an over-
all warming tendency. This tendency is seen more spatially 
coherent across China in the Tmin-related indices (Fig. 7b, d, 
f, h) than in the Tmax-related indices (Fig. 7a, c, e, g). All the 
stations have increasing trends, and 99% of them are statisti-
cally significant, for TN90p (Fig. 7f). Almost all (99%) the 
stations have significant decreasing trends, and no station 
has an increasing trend, for TN10p (Fig. 7h).

However, there are also regional differences. For TXx 
(Fig. 7a) and TXn (Fig. 7c), increasing trends and decreas-
ing trends are scattered across China; fewer than one-third 
of stations have significant increasing trends (33% for TXx 
and 28% for TXn), mostly in the upper reaches of the Yel-
low River Basin and in the middle and lower reaches of 
the Yangtze River Basin, although hardly any station has 
a significant decreasing trend. For TNx (Fig. 7b) and TNn 
(Fig. 7d), more than two-thirds of the stations have signifi-
cant increasing trends, particularly in semi-arid zones and 
East China, whereas a few stations in central China have 
slightly decreasing trends. For TX90p (Fig. 7e), the major-
ity of the stations (77%) have significant increasing trends, 

whereas a few stations in central-eastern China and south-
western China have slight decreasing trends. For TX10p 
(Fig. 7g), the majority of stations have decreasing trends, 
and 64% of all stations are statistically significant, most 
prominently in northern China and the Tibetan Plateau, 
but three stations in southern China have slight increasing 
trends.

3.4.2 � Hot and cold temperature extremes

Two hot extreme (summer high temperature) indices, i.e., 
JJA TX90p and JJA TN90p, and two cold extreme (winter 
low temperature) indices, i.e., DJF TX10p and DJF TN10p, 
are analyzed in the following (Fig. 8), because they are com-
monly related to human illness or even death. As reported 
in Sect. 3.1.1, these indices have a large amount of non-
Gaussian stations. For the majority of stations, the occur-
rences of hot extremes have increased (Fig. 8a, b), whereas 
those of cold extremes have decreased (Fig. 8c, d). Like in 
the annual cases, the signs of the trends are more spatially 
coherent across China in the Tmin-related indices (Fig. 8b, d) 
than in the Tmax-related indices (Fig. 8a, c).

In more detail, for JJA TX90p (Fig. 8a), 57% of the sta-
tions have significant increasing trends, most prominently 
in western China and East China, whereas there are also 
a few stations in central-eastern China, parts of northeast-
ern China, and the western end of Xinjiang Autonomous 
Region that have slight decreasing trends. A high proportion 
(92%) of the stations have significant increasing trends for 
JJA TN90p (Fig. 8b), whereas nine stations in central China 
have slight decreasing trends and two are statistically signifi-
cant. For DJF TX10p (Fig. 8c), the majority of stations have 
decreasing trends, and 32% of the stations are statistically 
significant, mostly along the Yellow River and the Yangtze 
River; however, five stations in northeastern China and a 
few stations in southern China have a slight increasing trend. 
All except one station have decreasing trends, and 85% are 
statistically significant, for DJF TN10p (Fig. 8d).

It should be noted that the above results are based on 
the national Reference Climatic and Basic Meteorological 
Stations available for ordinary users. Due to rapid urban 
development in China, the trends of extreme temperature 
indices at these stations may have been affected to some 
extent by urbanization, as reported in previous studies 

Table 4   Percentage of stations whose extreme temperature indices are serially dependent (WS2001 AR1 > 0) when using the Sen’s slope estima-
tor and Mann–Kendall test (units: %)

TXx TNx TXn TNn TX90p TN90p TX10p TN10p

Annual 59.8 53.2 44.6 43.1 88.5 90.6 65.3 69
Summer 58.8 53.3 42.9 44.5 55.8 51.2 43.8 48.3
Winter 46.6 35.4 27.2 32.1 30.2 42.2 67.9 54.1
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(a) (b)

(d)(c)

(e) (f)

(g) (h)

Fig. 5   As in Fig. 4, but for HadEX2 gridded data during 1961–2010
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(e.g. Zhou and Ren 2011; Ren et al. 2014; Qian 2016). 
It would be helpful to further analyze trends in extreme 
indices at individual stations based on homogenized data 
from 2419 stations (Cao et al. 2016), which include more 
rural stations. Nevertheless, the large-scale pattern of 
observed changes in temperature extremes is similar over 
Asia (Dong et al. 2018).

4 � Conclusions and implications

In this paper, whether the linear trend residuals of eight 
commonly used extreme temperature indices at each sta-
tion or each HadEX2 grid box across China are Gauss-
ian and/or serial independent, is examined for the deter-
mination of appropriate linear trend analysis method for 

Table 5   As in Table 4, but for 
HadEX2 data for the period 
1961–2010 within the China 
domain

TXx TNx TXn TNn TX90p TN90p TX10p TN10p

Annual 56.9 64.7 67.7 55.9 96.1 91.2 68.6 53.9
Summer 59.8 68.6 35.3 46.1 65.7 61.8 48.0 41.2
Winter 56.9 42.2 30.4 31.4 22.6 38.2 67.7 79.4

(a) (b)

(d)(c)

Fig. 6   Comparison between the linear trends of the annual TX90p 
index for the period 1960–2017 using different methods: a between 
standard OLS regression and refined OLS regression, with consid-
eration of AR(1) in the Student’s t-test; b between the original Sen’s 
slope estimator combined with the Mann–Kendall test and Sen’s 
slope estimator combined with the Mann–Kendall test, both consider-
ing AR(1); c between refined OLS regression and WS2001; d results 
based on WS2001, in which the units are %/decade and solid triangles 
indicate the linear trends at these stations are statistically significant 

at the 5% level, whereas hollow triangles indicate the linear trends 
are not statistically significant. In a–c, green dots indicate stations 
with the same trend slope best-estimate and significance-test results 
(significant or not); red circles indicate stations with different signif-
icance-test results; blue crosses indicate stations with different trend 
slope best-estimates. In a, the confidence intervals of OLS (in blue) 
and that of OLS-M (in red) at Haerbin (50953) station are shown in 
the top-left corner to represent cases with different significances
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Fig. 7   Linear trends in eight annual extreme temperature indices at 
758 stations for the period 1960–2017 as estimated by the WS2001 
method (units: °C/decade for a–d and  %/decade  for e–h). Solid tri-
angles indicate the linear trends at these stations are statistically sig-

nificant at the 5% level, whereas hollow triangles indicate the linear 
trends are not statistically significant. The percentages of stations 
whose trends are dominant in sign and statistically significant are also 
listed, for each index. The denominator is 758
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temperature extremes. The findings provide important 
insights for other researchers working on similar or related 
problems. The spatial patterns of the linear trend in annual 
temperature extremes, as well as those in hot extremes and 
cold extremes, are further analyzed, by taking into account 
the non-Gaussian and/or serially dependent characteristics, 
on the basis of updated homogenized station data for the 
period 1960–2017. The major findings can be summarized 
as follows:

1.	 Among the 758 stations analyzed, at least 57.5–99.7% 
are non-Gaussian and 71.4–99.7% cannot directly use 
standard OLS regression to analyze the confidence inter-
vals and corresponding statistical significance of the 
linear trend in the eight annual/summer/winter extreme 
temperature indices, because of either non-Gaussian or 
Gaussian but serial dependent characteristics.

2.	 The proportion of stations unable to directly use the 
original Sen’s slope estimator and Man–Kendall test to 
analyze annual extreme temperature indices, because of 
serial dependence at these stations, ranges from 43 to 

91%. For summer (winter) indices, this proportion is 
43–59% (27–68%).

3.	 Non-Gaussian and/or serially dependent characteristics 
are also widespread in the HadEX2 gridded data. The 
percentages obtained from HadEX2 are similar to those 
obtained from the station data.

4.	 If using the original Sen’s slope estimator and Man–
Kendall test, both the trend slope and statistical signifi-
cance of temperature extremes will be potentially incor-
rect for those stations with serial dependence; plus, if 
using the refined OLS method that takes into account 
serial dependence, the statistical significance of tem-
perature extremes will potentially be wrong for stations 
having non-Gaussian residuals.

5.	 For the majority of stations during 1960–2017, the tem-
peratures on the hottest day, the warmest night, the cold-
est day, and the coldest night in a year have increased; 
the annual occurrences of warm days and warm nights 
have increased, whereas those of cold days and cold 
nights have decreased. Among them, 28–99% of the 
stations are statistically significant. The occurrences 

 

 

(a) (b)

(c) (d)

Fig. 8   As in Fig. 7, but for two hot extreme indices (a summer TX90p and b summer TN90p) and two cold extreme indices (c winter TX10p and 
d winter TN10p)
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of hot extremes have increased; whereas, those of cold 
extremes have decreased despite record-breaking cold 
extremes having occurred at some stations in recent 
years. The trends in the Tmin-related indices at the major-
ity of stations are statistically significant, whereas those 
in the Tmax-related indices are much less spatially coher-
ent.

The above results further highlight the importance of 
trend estimation and significance testing methods in the 
linear trend analysis of temperature extremes in China, as 
previously noted by Qian (2016). Many stations or grid 
boxes throughout China are found to be non-Gaussian and/
or serially dependent. These characteristics should also be 
considered in the trend estimation of other climate extremes. 
For those indices whose trends are less prominent than 
temperature, the serial dependences will likely introduce 
larger differences in the significance testing results when 
considering these characteristics than when not. Some stud-
ies have discussed P values not being as reliable as many 
scientists assume (e.g. Nuzzo 2014), and have called for a 
stricter significance level in significance testing. For exam-
ple, Benjamin et al. (2018) propose changing the default P 
value threshold for statistical significance from 0.05 to 0.005 
by Bayes’ rule for claims of new discoveries to improve 
reproducibility.
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