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Abstract
Accurate and precise forecasting of the Indian monsoon is important for the socio-economic security of India, with improve-
ments in agriculture and associated sectors from prediction of the monsoon onset. In this study we establish the skill of the 
UK Met Office coupled initialized global seasonal forecasting system, GloSea5-GC2, in forecasting Indian monsoon onset. 
We build on previous work that has demonstrated the good skill of GloSea5 at forecasting interannual variations of the 
seasonal mean Indian monsoon using measures of large-scale circulation and local precipitation. We analyze the summer 
hindcasts from a set of three springtime start-dates in late April/early May for the 20-year hindcast period (1992–2011). The 
hindcast set features at least fifteen ensemble members for each year and is analyzed using five different objective monsoon 
indices. These indices are designed to examine large and local-scale measures of the monsoon circulation, hydrological 
changes, tropospheric temperature gradient, or rainfall for single value (area-averaged) or grid-point measures of the Indian 
monsoon onset. There is significant correlation between onset dates in the model and those found in reanalysis. Indices based 
on large-scale dynamic and thermodynamic indices are better at estimating monsoon onset in the model rather than local-
scale dynamical and hydrological indices. This can be attributed to the model’s better representation of large-scale dynamics 
compared to local-scale features. GloSea5 may not be able to predict the exact date of monsoon onset over India, but this 
study shows that the model has a good ability at predicting category-wise monsoon onset, using early, normal or late tercile 
categories. Using a grid-point local rainfall onset index, we note that the forecast skill is highest over parts of central India, 
the Gangetic plains, and parts of coastal India—all zones of extensive agriculture in India. El Niño Southern Oscillation 
(ENSO) forcing in the model improves the forecast skill of monsoon onset when using a large-scale circulation index, with 
late monsoon onset coinciding with El Niño conditions and early monsoon onset more common in La Niña years. The results 
of this study suggest that GloSea5’s ensemble-mean forecast may be used for reliable Indian monsoon onset prediction a 
month in advance despite systematic model errors.
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1  Introduction

The Asian summer monsoon is a large-scale phenomenon 
directly impacting one third of the world’s population with 
further influence on the global circulation. The monsoon 
over India, during the months of June, July, August and 
September (JJAS), provides approximately 80% of annual 
precipitation for the country. The precipitation brings res-
pite from frequent heatwaves during the drier pre-monsoon 
season. Forecast of monsoon rainfall, its onset, advance and 
withdrawal are important for the rainfed agriculture sector. 
Prediction of the monsoon onset provides highly significant 
information for agricultural planning during the Kharif crop-
ping season in July (Gadgil and RupaKumar 2006). Such 
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a forecast provides an indication of future water resource 
availability, which helps in planning strategies for sowing, 
transplanting and irrigation. Providing accurate and pre-
cise prediction of the monsoon onset can be very useful for 
developing the best agricultural strategies: to optimize uti-
lization of favourable environmental conditions, the use of 
irrigation, and to mitigate severe impacts.

The months of extreme heat during the pre-monsoon lead 
to release of sensible heat flux from northern India and the 
Tibetan Plateau. This causes a large-scale reversal of the 
meridional temperature gradient at the surface and in the 
deep troposphere (Li and Yanai 1996), which is more than 
just land-ocean thermal contrast and is an important factor 
driving the deep baroclinic structure of the monsoon circula-
tion (Xavier et al. 2007). The land-sea temperature contrast 
leads to a shallow circulation and convection (Schneider and 
Lindzen 1976). The deep tropospheric meridional tempera-
ture gradient leads to a strong pressure gradient causing the 
intense low-level cross-equatorial monsoon flow (Findlater 
1969), providing the necessary moisture transport (Yanai 
et al. 1992; He et al. 2003; Xavier et al. 2007; Dai et al. 
2013) along with the associated upper-level tropical easterly 
jet which leads to convective precipitation over the region 
(Koteswaram 1958). Thus, the Asian monsoon onset begins 
with surface heating over South Asia which leads to reduced 
near-surface layer stability, enhanced south-westerlies over 
the Bay of Bengal and south-easterlies over the South China 
Sea, and the development of Somali Jet and Iranian High. 
The monsoon onset is an abrupt phenomenon over the Indian 
landmass due to the sudden increase of kinetic energy (Raju 
et al. 2005).

The climatological monsoon onset over India is tradi-
tionally considered as 1 June with a standard deviation of 7 
days, with monsoon precipitation covering whole of India by 
mid-July (Krishnamurthy and Shukla 2000). The continental 
Indian summer monsoon onset begins along the coast of 
Kerala (Ananthakrishnan and Soman 1988). After the initial 
onset, further advance of the monsoon occurs from south to 
northwest in a direction that is perpendicular to the monsoon 
flow due to the presence of mid-level north-westerly dry 
winds which are slowly overcome by low-level moist flow 
from the tropics (Parker et al. 2016). The monsoon begins 
its withdrawal in September, which is more gradual than 
the onset.

The India Meteorological Department (IMD) used to 
operationally declare the monsoon onset over Kerala (MOK) 
through estimates of rainfall over meteorological stations 
in Kerala (Ananthakrishnan and Soman 1988; Soman and 
Kumar 1993). However, due to the subjective nature of this 
method, there might be inconsistencies in the case of bogus 
onsets, as it occurred for example in 2002 (Flatau et al. 
2003). From 2006 onwards, IMD started using monsoon 
onset criteria from Joseph et al. (2006) and Pai and Rajeevan 

(2009) based on rainfall over 14 stations in Kerala, zonal 
wind over 5°–10°N and 70°–80°E, and outgoing longwave 
radiation (OLR) over 5°–10°N and 70°–75°E. IMD finally 
determines and reports reanalyzed monsoon onset dates 
based on instrumental rainfall.

Different studies have used understanding of dynamic and 
thermodynamic characteristics of the monsoon to develop 
various objective criteria to define monsoon onset indices. 
The studies have suggested indices based on: temperature 
changes (Ramesh et al. 1996; Prasad and Hayashi 2005; 
Goswami and Xavier 2005; Goswami et al. 2006; Xavier 
et al. 2007), strengthening of wind shear over Asia (Webster 
and Yang 1992; Goswami et al. 1999), enhanced low-level 
circulation (Wang and Fan 1999; Wang et al. 2009, 2001; 
Taniguchi and Koike 2006), hydrological features such as 
atmospheric moisture content (Goswami et al. 1999; Fasullo 
and Webster 2003; Zeng and Lu 2004) and combinations 
of multiple variables such as wind and OLR (Joseph et al. 
2006; Pai and Rajeevan 2009). Aside from the above indices, 
which define a single onset date in each case for the whole 
country in each year, some studies also proposed spatially 
varying local monsoon onset indices based on precipitation 
patterns (Wang and LinHo 2002; Moron and Robertson 
2014). The limitation of using large-scale indices compared 
to local indices is that they might ignore the synoptic-scale 
forcing of monsoon variability. However, Pai and Rajeevan 
(2009) showed potential predictability of the monsoon onset 
using large-scale features of the monsoon.

Interannual variability of the Indian monsoon onset might 
be affected by teleconnections from the El Niño Southern 
Oscillation (ENSO; Webster and Yang 1992; Goswami and 
Xavier 2005; Turner et al. 2005; Roy et al. 2016). Observa-
tional studies suggest that El Niño years may lead to a late 
monsoon onset over India whereas La Niña conditions may 
cause early onsets (Joseph et al. 1994; Xavier et al. 2007; 
Lau and Nath 2012; Adamson and Nash 2014). Many studies 
have detailed the influence of ENSO on different monsoon 
onset indices using observed data (Webster and Yang 1992; 
Wang and Fan 1999; Xavier et al. 2007).

Alessandri et al. (2015) show good forecasting skill of the 
monsoon onset in the Centro Euro-Mediterraneo sui Cam-
biamenti Climatici Climate (CMCC) sub-seasonal prediction 
system when the atmosphere is initialized from reanalysis. 
With only very few studies analyzing the forecast skill of 
Indian monsoon onset in different models, there is a need 
to understand the ability of initialized coupled models at 
predicting monsoon onset in greater detail, and in a wider 
range of models. Further, due to the importance of the Indian 
monsoon onset date for end-users, there is value in quantify-
ing GloSea5’s skill at forecasting the large-scale and local 
monsoon onset and its relationship with ENSO forcing.

GloSea5, similar to other contemporary initialized 
coupled models, shows modest skill at predicting Indian 
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monsoon rainfall, but has much higher skill at predicting 
large-scale circulation (Johnson et al. 2017). ENSO forcing 
is a potential source of predictability of the ISM in GloSea5 
due to its known impact on ISM rainfall, which may improve 
forecast skill during the years with ENSO forcing (Johnson 
et al. 2017). Climatological dynamic and thermodynamic 
physical processes are well represented in GloSea5 seasonal 
hindcasts during the monsoon onset (Menon et al. 2018). 
Building upon the work of these two papers, we assess and 
demonstrate the skill of the GloSea5 initialized coupled sea-
sonal prediction system in forecasting the Indian monsoon 
onset. To present a well-rounded assessment of skill, we 
use five objective onset indices based on different physical 
aspects of the monsoon onset (instead of the classical sub-
jective criterion of increased rainfall over a small region of 
Kerala) to estimate onset dates in the model and reanalysis 
data. GloSea5 onset dates are verified exhaustively against 
the reanalyses to quantify the monsoon onset forecasting 
skill in GloSea5. We further analyze the influence of ENSO 
forcing on the forecast skill. The results of this study provide 
evidence supporting the use of GloSea5 as a forecasting tool 
for operational prediction of the Indian summer monsoon 
onset.

In Sect. 2, we provide a detailed description of the fore-
cast system, data analyzed, indices used to estimate mon-
soon onset and our methodology for estimating the model’s 
forecast skill. The performance and skill of the GloSea5 
model at predicting the monsoon onset date are described 
in the next two sections; Sect. 3 discusses the model’s abil-
ity to capture the onset dates in different years and Sect. 4 
analyzes the model skill at predicting the tercile categories 
of monsoon onset and the impact of large-scale ENSO forc-
ing on onset prediction skill. We summarize and conclude 
our study in Sect. 5.

2 � Methodology

2.1 � Data

2.1.1 � Model data

In this study, we analyze the Met Office Global Seasonal 
Forecast version 5 (GloSea5) hindcast dataset. GloSea5 
in Global Coupled configuration 2 (GC2) (Williams et al. 
2015) has components as summarized in Table S1. It is a 
seamless monthly/seasonal forecast system used for opera-
tional forecasting (MacLachlan et al. 2015). For our study, 
focus is on analysis of a 20-year research hindcast set, 
which differs from the operational seasonal forecast only in 
its atmosphere initialization (see Table S1). The hindcasts 
cover the years 1992–2011, and the relevant outputs cover-
ing the Indian summer monsoon season (June–August) are 

initialized on three start-dates each year: 25 April (hereafter 
0425), 1 May (hereafter 0501) and 9 May (hereafter 0509). 
Each seasonal hindcast is integrated for 140 days, with eight 
members for each start-date for 1992–1995 and 2010–2011 
and five members each for 1996–2009. The spread in ensem-
ble initial conditions for each year ( ≈ 15 members per year) 
is generated using a stochastic physics scheme SKEB2 
(Bowler et al. 2009).

2.1.2 � Observed data

The European Centre for Medium-range Weather Forecasts 
(ECMWF) Interim Reanalysis, known as ERA-Interim (Dee 
et al. 2011) has been used for comparison with the model 
output for dynamic and thermodynamic fields. We used daily 
mean data for the zonal component of wind, specific humid-
ity and temperature at different pressure levels.

For rainfall observations we used the GPCP dataset 
(Global Precipitation Climatology Project; Adler et  al. 
2003). The various observed gridded rainfall products cover-
ing India have a range of pros and cons when assessed using 
a range of skill metrics (Prakash et al. 2015). A common 
error is their poor simulation of orographic rainfall. How-
ever, here we use GPCP due to its better representation of 
the Indian monsoon in comparison to other merged rainfall 
datasets (Prakash et al. 2015).

2.2 � Analysis methods

2.2.1 � Identifying monsoon onset

Identifying the monsoon onset in models is a challenge. IMD 
declares the Indian monsoon onset as rainfall over Kerala 
(MOK; refer to Sect. 1). This methodology cannot be used 
to determine onset using reanalysis data due to the coarse 
resolution, and cannot be used with model output since most 
models do not forecast local-scale features very well. Instead 
objective monsoon onset indices can be used, which reflect 
the key physical mechanisms associated with the monsoon. 
These provide a single onset date for the large-scale mon-
soon and its interannual variability, while being resistant 
to local processes, bogus onsets and synoptic disturbances 
(Flatau et al. 2001; Fasullo and Webster 2003). These indi-
ces are usually based on a monsoon onset trigger mechanism 
(circulation, temperature, rainfall and moisture) and must 
have a relatively large spatial scale, for which most mod-
els are able to capture the interannual variability fairly well 
(Fasullo and Webster 2003; Alessandri et al. 2015).

After reviewing a range of monsoon onset indices, we 
note that no single index is based on all physical aspects of 
the monsoon onset. Hence, in this study we compare five 
different monsoon onset indices (Table  1) to analyze the 
performance of the model. Four of the indices provide a 
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single large-scale onset date for the Indian monsoon. The 
fifth index provides local monsoon onset dates at each grid-
point as the monsoon progresses over India. The five differ-
ent indices used in the study are based on specific changes 
associated with monsoon onset: (a) meridional tropospheric 
temperature gradient, (b) zonal wind-shear change, (c) 
moisture convergence (moisture and circulation), (d) low-
level wind circulation, and (e) local rainfall increase. In our 
study, the monsoon onset date with each index is defined 
using a threshold criterion based on absolute index val-
ues. This method can be considered as a rigorous test for a 
model’s capacity to accurately represent the monsoon onset. 
Detailed descriptions of the indices are given below, start-
ing at the largest scale and working towards grid-point local 
precipitation.

(A) Tropospheric temperature gradient index (TTGI)
Xavier et al. (2007) proposed a monsoon onset index 

based on large-scale thermodynamic forcing of the mon-
soon, TTGI. Springtime warming over the Asian region and 
an elevated heat pump due to the Tibetan Plateau lead to the 
establishment of a meridional temperature gradient in the 
upper troposphere over the region. This temperature gradient 
is shown to drive the moisture-laden cross-equatorial flow 
leading to monsoon onset. TTGI is defined as the differ-
ence between vertically averaged tropospheric temperature 
over 600–200 hPa between a northern box (TN) and southern 

box (TS) demarcated in Table  1. In ERA-Interim by design, 
atmospheric hybrid pressure levels intersecting orography 
(such as over the Himalaya and Tibetan Plateau) are inter-
polated from the lowest pressure level above the surface. 
In model output, such levels are assigned missing values. 
Thus to avoid discrepancy, we overwrite ERA-Interim val-
ues at grid-points below steep orography with missing data 
as determined using the model orography.

The onset is defined using TTGI when its sign changes 
from negative to positive (Xavier et al. 2007), meaning a 
threshold of 0 K marks the onset date. When TTGI is posi-
tive, it represents the northern region being warmer than 
the south. To clearly show how the monsoon onset date is 
defined in our study from the TTGI in the model and ERA-
Interim, we show an example in Fig. 1a. Figure 1a shows 
the range of TTGI seasonal cycles in 0501 start date ensem-
ble members (red; 0501_ALL-ENS_1992-2011) and ERA-
Interim (grey; ERA_1992-2011) for all of the 20 years. The 
upper and lower terciles (for the whole inter-annual spread) 
at which the TTGI crosses the zero-threshold are marked 
as vertical dashes. We use these vertical dashes to define 
whether a given ensemble member for a particular year fea-
tures a late or early onset compared to the overall distribu-
tion for the model (and likewise for ERA-Interim).

To clarify the calculation of monsoon onset date and its 
categorization as early/normal/late onset we show (Fig. 1a) 
an example year of 1992 as solid lines for one ensemble 

Table 1   Details of monsoon onset indices used in this study
Index Methodology Onset Reference Region

Tropospheric
Temperature
Gradient Index
(TTGI)

TTGI = TN - TS
T = Vertically averaged
temperature (600 - 200 hPa)

Onset defined when TTGI
time-series for each year be-
comes positive

Xavier et
al. (2007)

TN = T(40◦-100◦E, 5◦-35◦N)
TS = T(40◦-100◦E, 15◦S-5◦N)

Webster and
Yang Index
(WYI)

WYI = U850 - U200
U = Zonal Wind at 850 or 200 hPa

Onset defined when seven-day
running average of WYI time-
series crosses threshold value
(mean ERA-Interim value on
climatological onset, 30May)

Webster
and Yang
(1992)

U = U(40◦-110◦E, 0◦-20◦N)

Hydrological
Onset and
Withdrawal
Index (HOWI)

HOWI = nVIMT(1000 - 300 hPa)
nVIMT = Vertically integrated zonal
moisture transport (300-1000hPa)
normalized over the annual cycle

Onset defined when HOWI
time-series for each year be-
comes positive

Fasullo and
Webster
(2003)

nVIMT = nVIMT(45◦-80◦E, 5◦-
20◦N)

Wang and Fan
Index (WFI)

WFI = US - UN
U = Zonal Wind at 850 hPa Onset defined when seven-day

running average of WFI time-
series becomes positive

Wang and
Fan (1999)

US = U(40◦-80◦E, 5◦-15◦N)
UN = U(70◦-90◦E, 20◦-30◦N)

Wang and
LinHo Index
(WLI)

WLI = P - Rjan Onset on pentad when the
five-pentad running average of
WLI time-series for each grid-
point for each year crosses the
threshold of 5 mm/day–1

Wang and
LinHo
(2002)

Spatial Variability
P = Pentad rainfall for different years

Rjan = Mean rainfall for Jan of
respective years
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member of 0501 (red; 0501_ONE-ENS_1992) compared 
to ERA-Interim (black; ERA_1992). The TTGI monsoon 
onset date for 1992 is defined when the solid lines cross 
the zero-threshold (Index Threshold). The TTGI monsoon 
onset date for 1992 for that ensemble member of 0501 is 
25 May or 11 Jun in ERA-Interim. As the onset date for 
ERA-Interim is later than the upper tercile of the interannual 
spread we assign this year as late onset for ERA-Interim with 
TTGI. But 1992 is assigned as a normal onset year for this 
ensemble member of 0501 in the model, as the onset date 
lies between the upper and lower tercile lines.

(B) Webster and Yang index (WYI)

Webster and Yang (1992) described the strengthening of 
the lower tropospheric westerlies and upper tropospheric 
easterlies during the monsoon period over South Asia. The 
low-level westerly flow arises from the Coriolis force acting 
on the cross-equatorial component of the monsoon Hadley 
Circulation. The upper-level tropical easterly jet over India 
originates from the thermal wind balance of the temperature 

gradient between the warm troposphere over the Tibetan 
Plateau and relatively cooler troposphere over the Indian 
Ocean. This variation in the vertical wind shear captures 
the interannual variability of the Indian summer monsoon 
quite well. Thus, the Webster and Yang circulation index 
(WYI) considers the contrast between zonal winds at lower 
levels (850 hPa) and in the upper troposphere (200 hPa) 
over the large-scale South Asian region demarcated by the 
box in Table  1. Webster and Yang (1992) did not explicitly 
define a threshold for monsoon onset using the WYI but 
show that large-scale strengthening of the vertical windshear 
starts at the monsoon onset and is associated with decreasing 
OLR, representing convective heating. Johnson et al. (2017) 
showed that GloSea5 has good skill predicting the seasonal-
mean WYI with a correlation score against ERA-Interim of 
0.6. In this study we further examine the model’s skill at 
predicting Indian monsoon onset using WYI.

The seasonal cycle of WYI is depicted in Fig. 1b for 
0501 (magenta) and ERA-Interim (black) with the interan-
nual spread (shaded) and one ensemble member for 1992 
(solid line). Due to the noisy nature of circulation time 

Fig. 1   Climatological daily evolution of monsoon onset indices in 
ERA-Interim reanalysis and the 0501 start-date ensemble-members 
of GloSea5. For illustration we also show 1992 as an example year in 
each case. Onset indices shown are a TTGI (red), b WYI (magenta), 
c HOWI (blue) and d WFI (green) as defined in Table  1. The color 
and grey shaded regions show the interannual spread of the monsoon 
onset index with all ensemble members of 0501 and ERA-Interim 
respectively from 1992–2011. The solid lines represents 1992, as an 

example year within the interannual spread, for ERA-Interim (black, 
ERA_1992) and one random ensemble member for 0501 (colored, 
0501_ONE-ENS_1992). The grey horizontal line is the chosen 
threshold for each index, where monsoon onset is defined as the date 
when the daily time series crosses the threshold. The small vertical 
dashes represent the lower and upper terciles (indicating early and 
late onset bounds) and dots represent each index’s mean monsoon 
onset for 0501 (colored) and ERA-Interim (black)
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series and to prevent assigning bogus onsets, we smooth 
the WYI time series of both model and ERA-Interim using 
a seven-day moving average (7-Av). Next, we use the cli-
matological value of ERA-Interim WYI index on 30 May 
as our threshold for WYI (as 30 May is the mean climato-
logical onset date for 1992-2001 for IMD issued monsoon 
onset dates). This is also done by Alessandri et al. (2015) 
who used this method for defining monsoon onset for 
another circulation index described by Wang et al. (2009). 
Thus, the threshold used for defining WYI onset date is 
when the 7-Av seasonal time series of WYI crosses 14.08 
m s −1 (grey horizontal line in Fig. 1b).

In Fig. 1b, the interannual spread of 7-Av WYI in ERA-
Interim (grey) and 0501 ensemble members (magenta) 
is shown together with the 1992 example year. The date 
on which the lines cross the threshold (14.08 m s −1 ), is 
defined as the onset date for the ensemble member of 0501 
(23 May) and ERA-Interim (10 Jun). Since the onset date 
for 0501 ensemble member in 1992 is before the lower 
tercile it will be categorized as an early onset, whereas it 
will be considered a late onset for ERA-Interim for 1992 
as it falls after the upper tercile date.

(C) Hydrological onset and withdrawl index (HOWI)

Fasullo and Webster (2003) argued that the monsoon is 
best identified by the hydrological processes involved. The 
horizontal moisture convergence over the Bay of Bengal and 
Southeast Asia (where precipitation exceeds evaporation) is 
in contrast with moisture source regions identified by mois-
ture divergence, such as the Arabian Sea and Southern Hem-
isphere Indian Ocean. They used vertically integrated mois-
ture transport (VIMT) as an indicator of monsoon hydrology 
and circulation. VIMT is the product of specific humidity 
and zonal wind, vertically integrated over 1000–300 hPa. 
The VIMT is normalized (nVIMT) over the annual cycle 
and calculated as in the equation below:

where max(VIMT) and min(VIMT) represent the maximum 
and minimum VIMT, respectively, over the whole time 
period of study. As described in Table  1, the HOWI index 
is averaged over a region encompassing the Arabian Sea, 
an important moisture source for the Indian monsoon (e.g. 
Levine and Turner 2012).

The annual cycle of HOWI becomes positive as the 
monsoon sets in (Fasullo and Webster 2003). Thus, zero 
is considered as the threshold for defining the onset date 
for HOWI. In Fig. 1c, the date on which the lines cross 
the threshold (0) is 13 Jun for both this example ensemble 
member of 0501 and ERA-Interim for 1992. As both these 

(1)nVIMT = 2 ×
VIMT − min(VIMT)

max(VIMT) − min(VIMT)
− 1

dates fall after the upper tercile dates for both 0501 and 
ERA-Interim, we would consider these as late onsets.

(D) Wang and Fan index (WFI)

Wang and Fan (1999); Wang et al. (2009) found that the 
850 hPa vorticity has a good correlation with the rainfall. 
But as the zonal winds dominate the vorticity rather than 
meridional winds, they used the 850 hPa zonal winds for 
their index (Wang et al. 2001). The tropical monsoon wester-
lies over the Arabian Sea are in contrast to the easterly flow 
typically experienced further north adjacent to the Himala-
yas. Thus, the Wang and Fan Index (WFI), is the difference 
between the 850 hPa zonal wind over the two regions UN and 
US demarcated in Table  1.

According to Wang et al. (2001), the temporal evolution 
of the WFI is enhanced by the strong low-level westerlies 
during the monsoon onset, the changing sign from nega-
tive to positive indicating the onset date (Syroka and Toumi 
2004). As in the case of WYI, a 7-Av WFI time series is 
considered for analysis rather than the raw time series, 
which was noisy. Figure 1d shows that the onset date on 
which the lines cross the threshold (0 m s −1 ) is 13 Jun for 
the example ensemble member of 0501 in 1992 and 2 Jun 
for ERA-Interim in 1992. Since the onset date for the 0501 
ensemble member in 1992 is before the lower tercile it will 
be categorized as an early onset. Whereas it will be consid-
ered a late onset for ERA-Interim in 1992 as it falls after the 
upper tercile date.

(E) Wang and LinHo index (WLI)

The above four monsoon onset indices provide single mon-
soon onset dates for India for each year, irrespective of 
locality. However, information on the local monsoon onset 
is invaluable for strategic planning in agriculture, for exam-
ple to decide sowing times etc. Thus, we also need a mon-
soon onset index that shows spatial variability of the ISM 
onset. In this study we use the monsoon onset index of Wang 
and LinHo (2002), hereafter WLI, which is one of the few 
indices providing variability at local spatial scales. Wang 
and LinHo (2002) proposed that monsoon onset should be 
defined in terms of rainfall characteristics relative to the 
minimum in the annual cycle. To avoid noise inherent in 
rainfall time series, the WLI spatial monsoon onset index 
is calculated using smoothed pentad rainfall time series (P). 
The climatological January-mean rainfall is subtracted from 
the pentad precipitation time series throughout the year in 
order to distinguish the monsoon regime from the winter dry 
season. We obtain the climatological January-mean rainfall 
from GloSea5 hindcasts performed for the DJF season, ini-
tialized in December. The monsoon onset pentad for each 
grid-point is determined as the time when the five-pentad 
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running average of relative rainfall exceeds 5 mm day−1 
(Table  1). Though this index has previously been used to 
assess monsoon onset in climatological data, we have used 
it here for analyzing the local monsoon onset of each indi-
vidual year and for each ensemble member. Using the five-
pentad running average for relative rainfall (Sperber et al. 
2013) on each start date ensemble member for each year 
smooths the rainfall time series sufficiently to reduce its 
sensitivity to noise.

Similarly, using the above methodology we calculate mon-
soon onset dates for each year from 1992–2011 for all four 
indices for all model ensemble members and ERA-Interim. 
Then using the onset dates for each ensemble member we 
calculate the mean onset dates for all start-date ensembles 
(denoted as 0425_MN, 0501_MN and 0509_MN) for each 
year. We also calculate the model grand ensemble onset mean 
(denoted by MOD_MN) by averaging onset dates for all 
ensemble members for all start date initializations for each 
year. Further, we also designate early/normal/late onset years 
using different indices for all years and all ensemble members, 
as in our example year of 1992.

2.2.2 � Measures of model skill

As described in the example figure (Fig. 1), each onset index 
is calculated for reanalyses (ERA-Interim) and GloSea5. For 
this study we calculate all the model ensemble members onset 
dates for each year (0425_ENS, 0501_ENS and 0509_ENS), 
the mean onset date for each start-date for each year (0425_
MN, 0501_MN and 0509_MN) and the model grand ensemble 
onset mean (MOD_MN). The model means are calculated as 
the mean onset date between all their respective model initiali-
zations’ ensemble member onsets for each year. The model 
performance in forecasting the monsoon onset date with each 
index is compared with the ERA-Interim reanalysis onset date 
using the same index.

Comparison of interannual variability between hindcast and 
observed monsoon onset dates is done using the Pearson cor-
relation coefficient. Further, the significance of the correlation 
coefficient is tested using the Student’s t test, where a p value 
of less than 0.05 shows a 95% confidence level in the correla-
tion coefficient. However, the presence of a correlation does 
not always imply predictability. We therefore also estimate the 
potential predictability in GloSea5 using the ratio of predict-
able component (RPC; Eade et al. 2014).

where r is the correlation coefficient between GloSea5 and 
reanalysis, �2

sig
 is the signal variance of the model ensemble 

mean and �2

tot
 is the variance of all ensemble members. A 

(2)
RPC =

r
√

�
2

sig
∕�2

tot

forecasting system having RPC equal to 1 reflects the maxi-
mum potential predictability.

The skill of GloSea5 at forecasting the monsoon onset 
for each of the indices has been further quantified using dif-
ferent skill-scores applied to tercile categories of monsoon 
onset (early, normal and late). GloSea5 does not capture 
the exact monsoon onset date for each year when compared 
against ERA-Interim, but it may capture the interannual 
variability of the onset dates when considering onset catego-
ries for the interannual spread divided into terciles. So the 
model skill in the study is calculated as scores on the basis 
of model onset prediction of the onset category compared 
against reanalysis. The skill-scores used in this study can be 
divided into two categories depending on whether they are 
calculated for mean onset dates (for each start-date ensemble 
mean, 0425_MN, 0501_MN, 0509_MN, and MOD_MN) 
or from the individual ensemble members of each start-date 
(0425_ENS, 0501_ENS, 0509_ENS) and the set of all model 
ensemble members (MOD_ENS), as described below. Each 
skill score’s forecast verification strengths are described on 
the basis of the attributes of Murphy (1993).

(A) Model-ensemble mean skill-scores

For a 20-year onset date time series whether start-date 
ensemble mean or MOD_MN (deterministic forecasts), 
onset forecast skill-scores are calculated using Accuracy, 
ACC, and Heidke skill-score, HSS (IRI 2013; WCRP 2015).

ACC is a score that defines the accuracy of the model 
performance.

where C is the different category of forecast (early/normal/
late), N is the total number of forecasts (years) and n(Fi,Oi) 
is the accurate number of forecasts for all the different cat-
egories over the years. It quantifies the fraction of forecasts 
predicting the correct tercile category amongst all forecasts 
and ranges from 0 (no skill) to 1 (perfect score).

HSS is defined as the accuracy of forecasts at predicting 
the category, relative to that of random chance; e.g., under 
random circumstances, we would predict the model to fore-
cast a late onset one third of the time.

where C is the number of forecast categories, N is the total 
number of forecasts, n(Fi,Oi) represents the accurate fore-
casts and n(Fi)n(Oi) is all the combinations of expected fore-
cast and observed category combinations. This score ranges 

(3)ACC =
1

N

C
∑

i=1

n(Fi,Oi)

(4)HSS =

1

N

∑C

i=1
n(Fi,Oi) −

1

N2

∑C

i=1
n(Fi)n(Oi)

1 −
1

N2

∑C

i=1
n(Fi)n(Oi)
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from −∞ to 1, with 0 meaning no skill and 1 meaning a 
perfect forecast score for the model. Negative values for HSS 
indicate that the model forecast is worse than a randomly 
generated forecast set. HSS represents forecast quality on the 
basis of discrimination, reliability and resolution.

(B) Model-ensemble skill-scores

In order to validate the performance of GloSea5 in repre-
senting monsoon onset, it is imperative that we do not just 
analyze mean monsoon onset, but we must also understand 
the performance of individual model ensemble members. 
For analysing the onset forecast skill of each member for 
each start-date, we calculate ‘probabilistic forecasts’ for the 
three onset categories (early, normal and late). For example, 
probabilistic forecasts of an early onset for each model start-
date are calculated as the number of model ensemble mem-
bers forecasting an early onset divided by the total number 
of ensemble member forecasts. Probabilistic forecasts for 
each start date for the three categories are verified against 
ERA-Interim onset tercile category using Brier Skill Score, 
BSS, and Ranked Probability Skill Score, RPSS (IRI 2013; 
WCRP 2015).

BSS defines the magnitude of the Probabilistic forecast 
errors of each category and measures the mean-squared 
forecast probability error. To account for the small ensem-
ble size of our dataset, we use discrete BSS (dBSS), using 
an extra correction term “D” (Weigel et al. 2007), which 
will be detailed at the end of this section.

where BSc is the Brier Score of a particular category which 
is calculated as follows:

where F is the forecast probability of that category, O is the 
observed category and Nc is the number of forecasts in the 
same category. O is 1 for the observed category and 0 for 
other categories.

BSclim is the reference BS climatology, calculated with 
the same formula as BSc but with climatological probabil-
ity of 1/3 for the value of F in all the cases. dBSS ranges 
from −∞ (highest possible error) to 1 (perfect score), with 
0 indicating no skill when compared to BSclim . This score 
is calculated for all three onset categories. dBSS reflects 
the mean-squared probability error, which represents reli-
ability, resolution and uncertainty in forecasts.

(5)dBSS = 1 −
BSc

BSclim + D

(6)BSc =
1

N

N
∑

i=1

(Fi − Oi)
2

RPSS measures the sum of squared probability errors, 
which is cumulative across the three forecast categories in 
order from early to normal to late onsets.

where RPS is the Ranked probability Score which is calcu-
lated as follows:

where F is the forecast probability, O is the observed cat-
egory, N is the number of forecasts and C is the number of 
forecast categories (1) early, (2) normal, (3) late; quantified 
as cumulative categorical forecast probability in the given 
order. RPSclim is the reference RPS climatology, calculated 
with the same formula as RPS, but with climatological 
probability of 1/3 for the value of F in all the cases. dRPSS 
defines how well the probabilistic forecast predicts the actual 
observed category and ranges from −∞ (highest possible 
error) to 1 (perfect score), with 0 indicating no skill when 
compared to RPSclim . dRPSS indicates the forecast errors 
due to systematic biases and represents attributes of dis-
crimination, reliability and resolution.

The correction term “D”, in both dRPSS and dBSS, is 
indirectly proportional to the ensemble members and is neg-
ligible for large ensemble sizes.

where M is the ensemble size and p is the reference forecast 
probability climatology at each forecast categories K. D is 
calculated as the mean over all years to account for the vari-
able ensemble members in our model dataset. Weigel et al. 
(2007) suggested that there should be a clear impact of the 
correction term on the skill score due to the small ensemble 
size and low differences between the probabilities of the 
forecast categories.

2.2.3 � ENSO forcing

For understanding the influence of ENSO on predictability 
of the Indian monsoon onset, we use two different methods. 
These methods analyze any influence of ENSO forcing on 
monsoon onset forecast skill and the predisposition of early 
or late monsoon onset influenced by El Niño or La Niña 
conditions.

In the first method, we consider the years which are 
either El Niño or La Niña years (known collectively as 
ENSO years) during our 20-year period of the start date 

(7)dRPSS = 1 −
RPS

RPSclim + D

(8)RPS =
1

N

N
∑

i=1

[

1

(C − 1)

(

C
∑

j=1

(Fj − Oj)
2

)]

(9)D =
1

M

K
∑

i=1

[

pi

(

1 − pi − 2 ×

K
∑

j=i+1

pj

)]
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means. The coupled hindcast model may develop ENSO 
conditions during the summer from signals of anomalous 
heat content already present above the equatorial Pacific 
thermocline in the initial state. We designate a year as 
an ENSO year using the Ocean Niño Index (ONI). If the 
model SST anomalies for June to August averaged over the 
Niño-3.4 region (5°N–5°S, 160°E–150°W) exceed 0.5 °C 
or are below − 0.5 °C then we define it as an ENSO year 
otherwise it is considered an ENSO-Neutral year. Thus, 
out of 20 years (1992–2011) we have 11 ENSO years in 
the model (1992, 1993, 1995, 1997, 1998, 1999, 2000, 
2003, 2007, 2009 and 2010), which will be referred to as 
ENSO11.

In order to understand whether the forecast skill improves 
during ENSO11 years, we will compare the skill of the 
ensemble-mean onset dates for those 11 years with the skill 
of the ensemble-mean onset dates for the full 20 year data-
set, using ACC and HSS. However, performing straightfor-
ward comparisons will not allow assessment of statistical 
significance due to the small sample size. Thus, in order to 
interpret any impact of ENSO forcing on onset forecast skill 
and rule out making erroneous findings due to chance, we 
calculate skill-scores for randomly sampled 11-year periods 
from the 20 year dataset of ensemble-mean onset dates, with 
no replacement in each sample. This random sampling is 
repeated 10,000 times to get a distribution of skill-scores 
for 11-year collections of start date means (0425_MN, 
0501_MN, 0509_MN and MOD_MN) and this distribution 
will be referred to as RANDOM11. We assume that, given 
the large number of random samples, our distribution will 
be representative of skill-score range (ACC and HSS) for 
11-year samples. By analyzing the position of the ENSO11 
collection of model ensemble means within the respective 
RANDOM11 distribution, we can diagnose the influence 
of ENSO on monsoon onset forecast skill with statistical 
confidence.

In the second method we determine El Niño, La Niña and 
ENSO-Neutral years and the onset categories for each indi-
vidual ensemble member. Instead of categorizing the ENSO 
years depending on a threshold, we determine the ENSO cat-
egories (El Niño, La Niña and neutral) based on tercile cat-
egories of the ONI index. Thus, in this case we designate a 
year as El Niño when the ONI index is greater than the upper 
tercile of the model mean ONI spread, La Niña when ONI is 
lower than the lower tercile and the remaining years are des-
ignated as neutral. Consideration of each individual ENSO 
category (El Niño, La Niña or neutral) in concurrence with 
one of the three monsoon onset categories (early, normal and 
late) leads to nine possible combinations. We calculate the 
frequency of occurrence of each of the nine combinations 
for all 20 years. Higher frequency of certain combinations 
might indicate a connection between that particular forcing 
and the occurrence of that monsoon onset category.

3 � Monsoon onset interannual variability

In this section we examine the model performance at pre-
dicting the monsoon onset using the five different indi-
ces (TTGI, WYI, HOWI, WFI and WLI as described in 
Sect. 2.2.1). Monsoon onset dates calculated with the four 
area-averaged indices are shown in Fig. 2, for all model 
ensemble members (0425_ENS, 0501_ENS, 0509_ENS, 
MOD_ENS), ensemble-means (0425_MN, 0501_MN, 
0509_MN, MOD_MN) and reanalysis, and also as a cumu-
lative distribution function in Fig. S1. In all the panels of 
Fig. 2, the box plots show the ensemble member spread of 
onset dates for each initialization (0425-blue, 0501-red and 
0509-green) for all years. The mean monsoon onset date 
and interannual standard deviation of the whole ensemble 
are presented in Table  2.

3.1 � TTGI

The mean onset date with TTGI for MOD_ENS is 28 
May and for ERA-Interim is 27 May (Table  2). The mean 
monsoon onset with TTGI in GloSea5 shows a delay by 
only one day compared to the ERA-Interim mean mon-
soon onset date. Contemporary studies (Xavier et al. 2007; 
Saha et al. 2014; Senan et al. 2016) using different obser-
vational datasets also show similar mean monsoon onset 
dates for TTGI: NCEP (1950–2003) 30 May, ERA-Interim 
(1989–2009) 28 May, NCEP (1979–2009) 1 Jun, ERA-
Interim (1980–2009) 29 May, respectively. According to 
Prodhomme et al. (2015), the SINTEX-F2 coupled model 
shows a delayed mean monsoon onset compared to ERA-
Interim using TTGI, due to atmosphere-ocean coupling 
or SST errors in the coupled version, whereas the atmos-
phere only version simulated the monsoon onset earlier 
than ERA-Interim.

The interannual variability of the TTGI monsoon onset 
in GloSea5 MOD_ENS features a similar standard devia-
tion (7 days) to that of the observational datasets in this 
or other studies (7–8 days; Xavier et al. 2007; Saha et al. 
2014; Senan et al. 2016).

The GloSea5 monsoon onset forecast skill using TTGI 
is good, as seen from the significant correlation between 
MOD_MN and ERA-Interim (0.9) for 1992–2011 
(Table   3). ECMWF System 4 seasonal hindcast set 
(1981–2010) of early April initialization, has a correlation 
of 0.77 with ERA-Interim (Senan et al. 2016). The RPC of 
GloSea5 with TTGI is close to or slightly higher than 1 for 
all start dates (Table  4), suggesting slightly underconfi-
dent forecasts. This suggests a low signal-to-noise ratio or 
a high correlation between ensemble member means with 
observations but low inter-ensemble agreement.
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3.2 � WYI

The mean onset date using the large-scale circulation (verti-
cal wind shear) index, WYI, with GloSea5 is 28 May which 
is close to ERA-Interim mean monsoon onset date (26 May) 
(Table  2). Interannual variability, measured by the stand-
ard deviation, shows that GloSea5 and ERA-Interim show 
similar variability (8 and 10 days respectively). Further, we 
note that GloSea5 performs very well in forecasting WYI 
onset dates for each year with an interannual correlation of 
0.9 with ERA-Interim (Table  3). Johnson et al. (2017) and 
Kim et al. (2008) reported similar high correlations with rea-
nalysis when considering interannual variability of the sea-
sonal-mean WYI values for GloSea5, CFSv2, and ECMWF 
System 4 (0.66, 0.74 and 0.78 respectively). The RPC in 
GloSea5 for the WYI is very close to 1 for all initializations 
(Table  4), which reflects a close-to-perfect predictability 
potential. These results suggest that in modern dynamical 

seasonal forecast models, the large-scale monsoon circula-
tion is well predicted. The large domain of WYI and the 
good representation of vertical wind shear in GloSea5 allows 
for the high correlation of WYI onset dates with reanalysis.

3.3 � HOWI

The mean monsoon onset date calculated using HOWI for 
MOD_ENS is delayed compared to ERA-Interim by 10 
days (Table  2), and the model ensemble spread for all three 
start dates is large (Fig. 2c). When considering interannual 
variability, the standard deviation of MOD_ENS and ERA-
Interim is similar (8 days, Table  2). The interannual corre-
lation between GloSea5 and ERA-Interim for HOWI (0.6, 
Table  3) is higher than that of the CMCC forecasting system 
compared to ERA-Interim (0.52) as described in Alessandri 
et al. (2015). The RPC with HOWI for GloSea5 is also lower 
than 1 for all start dates (Table  4), reflecting high signal-
to-noise ratio. This suggests lower agreement with observa-
tions for ensemble means as the model might not be able to 
capture the signal.

The vertically integrated moisture flux, which is the basis 
of HOWI, is related to the zonal wind shear and moisture, 
and acts as an indicator of monsoon rainfall. Over the region 
of HOWI (Arabian Sea and southern India), the zonal wind 
and monsoon rainfall are very well correlated as grid-point 
anomaly correlations between the GloSea5 model mean and 
ERA-Interim and GPCP outputs respectively (Johnson et al. 
2017, their Fig. 3). GloSea5 shows a climatological errone-
ous dry layer in the lower levels over the Arabian Sea and the 
Indian land surface extending to the mid-troposhere. Such 
a bias in the specific humidity, especially at the horizontal 
scale of the index, might lead to errors in the monsoon onset 
date defined using HOWI in GloSea5.

3.4 � WFI

The mean onset date using the low-level zonal wind index, 
WFI, for MOD_ENS is delayed compared to ERA-Interim 
by 10 days (Table  2). In comparison to other modelling 
studies using a similar monsoon onset index called the 
onset circulation index (OCI; Wang et al. 2009), we note 
that CFSv1 shows a delayed mean onset date in comparison 

Table 2   Mean monsoon 
onset dates and their standard 
deviation (SD) for 20 years 
(1992–2011) with model 
ensemble members and ERA-
Interim using the four different 
indices

TTGI WYI HOWI WFI

Mean SD Mean SD Mean SD Mean SD

0425_ENS 28-May 3.4 29-May 4.1 30-May 4.9 23-May 7.8
0501_ENS 27-May 5.1 29-May 6.0 31-May 5.9 24-May 9.0
0509_ENS 27-May 7.1 26-May 9.1 30-May 8.5 21-May 8.9
MOD_ENS 28-May 6.8 28-May 8.0 31-May 8.3 23-May 10.8
ERA 27-May 8.1 26-May 10.0 21-May 8.4 13-May 9.3

Table 3   Monsoon onset date correlation for 20 years (1992–2011) 
for model means with respect to ERA-Interim using the four indices 
shown

Values marked with an asterisk are statistically significant at the 95% 
confidence level

ERA

TTGI WYI HOWI WFI

0425_MN 0.8* 0.6* 0.4 0.7*
0501_MN 0.7* 0.8* 0.5* 0.6*
0509_MN 0.9* 0.9* 0.6* 0.4*
MOD_MN 0.9* 0.9* 0.6* 0.7*

Table 4   Ratio of predictable component for each GloSea5 start-date 
initialization ensembles and model grand ensemble in predicting 
Indian monsoon onset date with respect to ERA-Interim using the 
four indices shown

TTGI WYI HOWI WFI

0425_ENS 1.3 0.9 0.6 1.0
0501_ENS 1.0 1.0 0.7 0.7
0509_ENS 0.9 1.0 0.6 0.5
MOD_ENS 1.3 1.2 0.9 1.0
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with NCEP due to weak low-level winds (Saha et al. 2014). 
GloSea5 MOD_ENS and ERA-Interim onset dates stand-
ard deviations are close (10 and 9 days), similar to standard 
deviations of onset dates with NCEP and CFSv2 with the 
OCI index (Saha et al. 2014). The interannual correlation 
between ERA-Interim and GloSea5 MOD_MN with WFI 
is 0.7 (Table  3) and is similar to the correlation of OCI in 
the CMCC seasonal prediction system with ERA-Interim 
onset dates (0.65; Alessandri et al. 2015). On the other hand, 
according to Johnson et al. (2017), the correlation of sea-
sonal-mean WFI values for GloSea5 with ERA-Interim is 
low (0.36), which led them to conclude that the local-scale 
monsoon circulation is not as well simulated in the model 
as the large scale. The RPC in GloSea5 MOD_ENS for WFI 
is also close to 1 but is lower for later start date initializa-
tions (Table  4). This reflects a high signal-to-noise ratio for 
the later start date initializations due to moderate agreement 
between the model and reanalysis. Our analysis in this sec-
tion suggests that GloSea5 has high correlation with large-
scale indices of monsoon onset (TTGI and WYI) compared 
to smaller scale indices (HOWI and WFI).

The correlation for hindcasts initialised from the latest 
start date (0509_MN) is lower with WFI. Monsoon onset 
dates estimated by WFI are usually earlier than the onset 

dates by other indices (Table  2). WFI represents the low-
level shear vorticity over Indian monsoon trough (Wang 
et al. 2009), which is an early pre-cursor of the monsoon 
evolution, leading to earlier onset determination by this 
index relative to other indices. In our analysis, onset calcu-
lation defaults to day 1 if the onset index is already above the 
threshold at the start of the hindcast, but we cannot ignore 
those values. Thus, 0509_MN may not be able to accurately 
predict some early onsets dates with WFI and gives the first 
day in the time series (Figs. 2d;  S1).

3.5 � WLI

Moving on from the single-value monsoon onset indices, 
now we will discuss the WLI for local monsoon onset dates. 
We analyze mean local onset at each grid-point for each year 
(calculated from individual ensemble members onset dates) 
when compared against GPCP (Fig. 3). The mean monsoon 
onset pentad (1992–2011) in GloSea5 MOD_MN shows the 
earliest monsoon onset to occur over the Bay of Bengal and 
Arabian Sea similar to GPCP (Fig. S2), and the climato-
logical monsoon onset dates calculated by Wang and LinHo 
(2002, their Fig. 6) using CMAP rainfall (1979–1998) and 
by Sperber et al. (2013; their Fig. 6) using GPCP rainfall 

Fig. 3   Correlation of grid-
point wise WLI onset pentads 
between a 0425_MN, b 0501_
MN, c 0509_MN and d MOD_
MN with respect to GPCP for 
20 years (1992–2011). Stippling 
shows p-value less than 0.05 
(significant at the 95% confi-
dence level)
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(1979–2007). However, the GloSea5 MOD_MN local mon-
soon onset over Bay of Bengal is not as early as in other 
studies, due to the limitations of the start dates of our hind-
cast. The GloSea5 hindcasts’ overall monsoon progression, 
as understood from the spatial variation in monsoon onset 
pentads (Fig. S2), matches well with those of Wang and 
LinHo (2002, their Fig. 6). The monsoon onset over Kerala 
is between pentad 29–30 (Fig. S3a, b). The classical mon-
soon rainfall progression from south–east to north–west, 
perpendicular to the monsoon flow, starts from pentad 33 
on the west coast of India and lasts until pentad 40 in north-
western India (Fig. S3k). Some parts of the leeward side of 
the Western Ghats mountains and Sri Lanka do not have 
relative precipitation exceeding 5 mm day−1 (Figs. S2;  S3), 
similar to the observations in Wang and LinHo (2002, their 
Fig. 6), as these regions fall within the rain shadow. For 
detailed discussion on the local climatological monsoon 
onset progression in GloSea5 and associated physical mech-
anisms please refer to Menon et al. (2018).

The standard deviation of WLI monsoon onset pentads 
(1992–2011; Fig. S2) shows low interannual variation over 
central and northern-central India in observations. This 
was also found with another local agronomic monsoon 
onset index created by Moron and Robertson (2014; their 
Fig. 3b). Finally, we compared the interannual correlation 
of GloSea and ERA-Interim monsoon onset pentads calcu-
lated using WLI at each grid-point (Fig. 3). The monsoon 
onset interannual correlation over the southern Arabian Sea 
is positive in 0501_MN and 0501_MN. The 0425_MN cor-
relation of onset dates with GPCP is low and has no signifi-
cance (Fig. 3a). 0501_MN, 0509_MN and MOD_MN onsets 
have significant correlation with GPCP onset over parts of 
northern-central India (Fig. 3b–d; green stippling). From 
this discussion we note that it might be difficult to forecast 
the spatial pattern of the of the monsoon onset in any given 
year using a local-scale index such as WLI because the 
model may not be able to predict the local variations. But 
the monsoon onset forecast over regions with lower interan-
nual variability (northern-central India) is much better and 
coincides with some of the major agricultural regions of 
India (Gangetic Plains).

4 � Category‑based monsoon onset forecast 
skill

In the previous section we noted that although the GloSea5 
hindcasts are able to represent the interannual variations in 
monsoon onset with significant skill, the forecasting of the 
exact monsoon onset date is elusive. To better understand the 
predictability of the monsoon onset in GloSea5, we analyze 
the monsoon in terms of three tercile categories of early/nor-
mal/late onset (see Sect. 2.2.1 and Fig. 4). Detailed analysis 

of model skill in the remainder of this section will be based 
on monsoon onset tercile categories.

4.1 � Monsoon onset tercile forecast skill in GloSea5

Monsoon onset forecast skill for model means has been com-
pared against ERA-Interim in Fig. 5a, b for all single onset 
indices using ACC and HSS (see Sect. 2.2.2). The grand 
ensemble mean, MOD_MN, shows high accuracy at predict-
ing WYI monsoon onset with ACC and HSS.

The overall performance of the individual model ensem-
ble members (0425_ENS, 0501_ENS, 0509_ENS) in pre-
dicting early, normal or late onset is indicated by dBSS and 
dRPSS (see Sect. 2.2.2) shown in Fig. 5c–f. Higher positive 
values of these scores indicates better model skill (dRPSS 
and dBSS range from −∞ to 1). Further, considering a cli-
matological probability of occurrence of each tercile cat-
egory as 1/3, value higher than 0 for dBSS and dRPSS is 
better than climatology. Thus, dRPSS and dBSS values of 
a forecasting system for tercile category of forecasts below 
0 (demarcated in Fig. 5c–f as grey horizontal line) suggests 
a better forecast than climatology. dRPSS summarizes the 
model performance scores over the three tercile categories. 
In all cases the three start-dates have a dRPSS higher than 0, 
with model members performing best when WYI is used and 
performing worst with either WFI or HOWI. This could be 
due to fact that the model is able to simulate the large-scale 
circulation patterns well.

When considering the onset categories separately (using 
dBSS), we note that GloSea5 forecasts the late onset better 
than the early onsets. Previous studies show that late (early) 
onsets are associated with El Niño (La Niña) conditions (e.g. 
Xavier et al. 2007), as also observed in GloSea5 (detailed in 
the next section). ENSO conditions affect predictability of 
the monsoon onset, with indication of La Niña years hav-
ing lower skill compared to El Niño years (Stolbova et al. 
2016). Further, there is substantial asymmetry in the remote 
response to El Niño and La Niña conditions (Sardeshmukh 
et al. 2000), possibly leading to more skilful late onsets in 
GloSea5.

GloSea5 initialized at the longest lead times (0425 
ensemble members) performs worse for late onsets all onset 
categories compared to other initializations, where as late 
initialization (0509 ensemble members) perform better at all 
the categories. Alessandri et al. (2015) also showed that the 
later initializations perform better than early initializations 
especially for late onsets. However, the prediction skill for 
tropical rainfall can change rapidly with ensemble size for 
small ensembles (Li et al. 2016) and that there might be a 
wide range of possible skill values from few random samples 
from a larger ensemble size, as in case for North Atlantic 
oscillation (Dunstone et al. 2016). This suggests that the 
small ensemble sizes of each start date, in our study, may 
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not allow the differences in skill between the start dates to 
be significant. However, the ensemble size correction term 
in our skill scores and the larger ensemble size of the grand 
ensemble (MOD_ENS) may allow for robust analysis of the 
skill in GloSea5 for predicting monsoon onset.

Model forecast skill analysis of onset tercile categories at 
each grid-point based on the WLI is shown in Fig. 6. Over-
all, GloSea5 has good skill over the Indian region (with ACC 
> 0.5 suggesting that > 50% of the forecasts are correct), 
with better performance over parts of northern-central India, 
central India, the Arabian Sea and Bay of Bengal, as also 
seen in MOD_MN and all three initializations (with positive 
HSS suggesting that the forecast skill is better than that of 
a random forecast).

4.2 � The effect of ENSO forcing on monsoon onset 
forecast skill

To assess the possible improvement of forecasting skill 
under ENSO forcing in GloSea5 we compare forecast skill 

during the 11 identified ENSO years (ENSO11) against a 
distribution of forecast skill calculated from RANDOM11 
(see Sect. 2.2.3). The RANDOM11 distributions for MOD_
MN HSS skill-score for the four monsoon onset indices are 
shown in Fig. S4 as an example. To test the representation of 
the effect of ENSO forcing on monsoon onset forecast skill, 
we show the location of ENSO11 forecast skill-scores for 
MOD_MN (vertical lines). The position of the vertical line 
within the distribution is converted to a percentile rank score 
relative to the distribution. The higher the location (or per-
centile rank score) of the ENSO11 forecast skill-score within 
the distribution, the more confident we can be that ENSO 
is improving onset forecast prediction skill. Similarly, we 
calculate the percentile rank scores of ENSO11 derived from 
each start date ensemble mean against their RANDOM11 
distributions for each index in Table  5.

In Table  5 when the percentile rank score exceeds 
75%, then we can say with some confidence that there is 
improvement in onset forecast skill due to ENSO forcing, 
and we consider that percentiles lower than 25% show that 

(a) (b) (c) (d)

Fig. 4   Years with early, normal and late monsoon onset identified for MOD_MN and ERA-Interim with a TTGI, b WYI, c HOWI, d WFI
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skill is worse in ENSO years. We note that only in the 
case of WYI and TTGI monsoon onset with MOD_MN is 
any significant improvement observed in forecast skill for 
ENSO11 years. Whereas, forecast skill decreases in ENSO 
years when considering the HOWI monsoon onset index. 
Similar results are observed when considering individual 
start-date means. Improvement in monsoon onset forecast 
skill using large-scale circulation indices is reasonable 
considering the considerable evidence for ENSO affect-
ing the vertical wind shear over India during monsoons 
(e.g. Webster and Yang 1992; Goswami and Xavier 2005). 
Further, similar improvement in the TTGI-based forecast 
skill is also observed during ENSO years, which could be 
due to the ENSO-related heating influencing the tropo-
spheric temperature gradient over the southern Eurasia 
(Xavier et al. 2007). The decrease in HOWI onset forecast 
skill due to the inclusion of ENSO years can be explained 
by the low correlation between HOWI onsets and ENSO 
time-series as compared to other monsoon onset indices 
like TTGI (Moron and Robertson 2014). The study which 
defined this index also observed a low correlation between 
HOWI and ENSO, and suggested that there are years when 
the HOWI-ENSO relationship is not realized (Fasullo and 
Webster 2003).

With some evidence of the monsoon onset forecast 
skill improving in ENSO years, we move on to analyze the 
relationship between the tercile category of ENSO condi-
tions (El Niño, ENSO-neutral and La Niña) and monsoon 
onset categories (early, normal and late). The frequency of 
occurrence of the nine different ENSO-onset combinations 
in GloSea5 are presented in Table  6. For this analysis we 
consider individual ENSO categories, with their respective 
three onset categories percentage frequencies as a probabil-
ity distribution function (PDF). La Niña category has higher 
frequency of early onsets (except with WYI). However, the 
PDF is skewed away from late onset for all indices. Con-
versely, El Niño shows a strong shift in the PDF towards 
the late onsets with all indices. Neutral ENSO conditions 
have more frequent normal onsets, except with HOWI. This 
analysis shows that, similar to observational studies (Joseph 
et al. 1994; Xavier et al. 2007; Lau and Nath 2012; Adam-
son and Nash 2014), late monsoon onset in GloSea5 might 
be predisposed by developing El Niño conditions; neutral 
ENSO conditions tend to lead to normal onset and La Niña 
conditions predispose the monsoon to early onset in Glo-
Sea5. The results of Table  6 suggest that El Niño condi-
tions increase the likelihood of late onsets, while La Niña 
conditions increase the likelihood of early onsets. Similar 

(a) (b) (c)

(d) (e) (f)

Fig. 5   Model skill-scores compared against ERA-Interim shown as a 
ACC, b HSS, c dRPSS, and dBSS of model for predicting d early 
onsets, e normal onsets and f late onsets. The colored circles show the 

skill calculated for model onset with the four different indices: WYI 
(magenta), WFI (green), TTGI (red), HOWI (blue). The grey hori-
zontal line demarcates 0 threshold in c–f 
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to GloSea5, El Niño-like conditions influencing a delayed 
Indian monsoon onset is also seen in some CMIP3 mod-
els (Zhang et al. 2012) and the SINTEX-F2 coupled model 
(Prodhomme et al. 2015).

5 � Summary and conclusions

We demonstrate the skill of the Met Office seasonal forecast-
ing system, GloSea5-GC2, in predicting the interannual vari-
ability of the Indian monsoon onset using five different mon-
soon onset indices. GloSea5 simulates the climatological 
monsoon onset dynamics and thermodynamics well (Menon 
et al. 2018). In this study, using correlation analysis (with 
statistical significance testing) and various skill-scores, we 

show that GloSea5 can be used for forecasting Indian mon-
soon onset with modest-to-high skill one month in advance. 
When judged against indices computed from ERA-Interim 
reanalysis data, the monsoon onset prediction skill in Glo-
Sea5 is comparable or better than that shown in other con-
temporary coupled model forecast systems, despite similar 
or worse systematic biases. In GloSea5, large-scale monsoon 
features are better predicted than the local circulation and 
rainfall. Thus, when testing indices at small scales, GloSea5 
shows only modest skill, but there is higher forecast skill 
with large-scale indices.

Despite modest skill in predicting the exact date of 
monsoon onset, GloSea5 has much better skill at forecast-
ing the monsoon onset category based on terciles (early, 
normal or late). It represents early as well as late onsets 

Fig. 6   ACC calculated at each 
grid-point for WLI onset pen-
tads based on tercile categories 
for a 0425_MN, b 0501_MN, 
c 0509_MN and d MOD_MN 
with respect to GPCP for 20 
years (1992–2011). The stip-
pling shows regions of positive 
HSS

Table 5   Percentile rank score 
of the skill-score metrics (ACC 
and HSS) of GloSea5 ensemble 
means during ENSO11 for 
different monsoon onset indices 
skill-score distributions of 
RANDOM11

ACC​ HSS

0425_MN 0501_MN 0509_MN MOD_MN 0425_MN 0501_MN 0509_MN MOD_MN

TTGI 81.4 91.0 91.0 86.3 72.3 81.0 81.0 77.5
WYI 80.9 89.7 100.0 90.4 86.2 80.4 99.6 90.4
HOWI 34.4 27.8 5.8 8.2 20.5 20.7 2.3 5.8
WFI 35.2 90.9 100.0 69.4 23.8 82.2 99.2 53.2
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better than a climatological forecast. The results of this 
hindcast study can be translated directly to the operational 
seasonal forecasting system. This study further suggests 
that GloSea5 will be able to predict early and late onsets 
well for operational forecasts with initializations of around 
one month lead time using these indices.

When considering the local grid-point onset pentads, 
GloSea5 perform well over parts of the core monsoon 
region (central India), the Gangetic plains (northern-
central India) and coastal southern India. Better local 
monsoon onset forecasts over these regions are especially 
important for end-users due to the extensive agriculture 
practised there. The high skill of GloSea5 in forecasting 
interannual variations in monsoon onset is appreciable 
since the GloSea5 hindcast climatology shows only mod-
est skill at simulating the interannual variations of sum-
mer mean (JJA) monsoon rainfall amount over India when 
compared against observed rainfall (Johnson et al. 2017).

While the assessment of Johnson et al. (2017) shows 
that Indian monsoon rainfall and circulation in GloSea5 
may respond to ENSO forcing, our study suggests that 
only modest improvement is seen in monsoon onset pre-
dictability for years with ENSO forcing, and with WYI 
and TTGI indices for the grand ensemble mean. This 
may suggest that in GloSea5 both the major pathways of 
ENSO-Indian monsoon teleconnection (the changes in the 
vertical wind shear and the changes to the tropospheric 
temperature gradient over India) lead to ENSO forcing on 
the monsoon onset. Further, in GloSea5 different ENSO 
conditions are associated with a shift in the distribution 
of onset dates towards a tercile category. Results show El 
Niño years having a higher probability of a late monsoon 
onset and La Niña years have higher frequency of early 
monsoon onsets in GloSea5. A limitation of our study is 

the small number of study-years to significantly represent 
the ENSO-onset relationship.

In summary, this study presents GloSea5’s suitability at 
predicting Indian monsoon onset dates using single-value 
large-scale indices. Its appreciable skill in predicting the 
local monsoon onset, over some agricultural regions of 
India, may be beneficial for using GloSea5 as a forecast-
ing tool for end users such as farmers. There is very good 
skill in GloSea5 when predicting the tercile onset categories. 
Further analysis should address the link between dynami-
cal, thermodynamical and hydrological monsoon indices and 
their impact on the interannual variability of monsoon onset 
prediction and its teleconnections, which may potentially 
improve seasonal forecasting of the Indian monsoon onset.
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