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Abstract
It has been well recognized that, for most climatic records, their current states are influenced by both past conditions and 
current dynamical excitations. However, how to properly use this idea to improve the climate predictive skills, is still an 
open question. In this study, we evaluated the decadal hindcast experiments of 11 models (participating in phase 5 of the 
Coupled Model Intercomparison Project, CMIP5) in simulating the effects of past conditions (memory part, M(t)) and the 
current dynamical excitations (non-memory part, �(t) ). Poor skills in simulating the memory part of surface air temperatures 
(SAT) are found in all the considered models. Over most regions of China, the CMIP5 models significantly overestimated 
the long-term memory (LTM) of SAT. While in the southwest, the LTM was significantly underestimated. After removing 
the biased memory part from the simulations using fractional integral statistical model (FISM), the remaining non-memory 
part, however, was found reasonably simulated in the multi-model means. On annual scale, there were high correlations 
between the simulated and the observed �(t) over most regions of the country, and for most cases they had the same sign. 
These findings indicated that the current errors of dynamical models may be partly due to the unrealistic simulations of the 
impacts from the past. To improve predictive skills, a new strategy was thus suggested. As FISM is capable of extracting M(t) 
quantitatively, by combining FISM with dynamical models (which may produce reasonable estimations of �(t) ), improved 
climate predictions with the effects of past conditions properly considered may become possible.
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1  Introduction

Recently, long-term memory (LTM) has become a well-
known concept in climate community. With the develop-
ment of many advanced approaches such as the structure 
function method (Lovejoy and Schertzer 2012), the wavelet 
analysis (Arneodo et al. 1995; Abry and Veitch 1998), as 
well as the detrended fluctuation analysis (Peng et al. 1994; 
Kantelhardt et al. 2001), etc., a number of studies have been 
stimulated and many climate variables (e.g. temperatures, 
relative humidity, wind, atmospheric general circulations, 
etc.) were found to be characterized by LTM (Koscielny-
Bunde et al. 1998; Eichner et al. 2003; Monetti et al. 2003; 
Kantelhardt et al. 2006; Chen et al. 2007; Rybski et al. 2008; 
Vyushin and Kushner 2009; Feng et al. 2009; Franzke 2010; 
Dangendorf et al. 2014; Massah and Kantz 2016). As the 
name implies, LTM measures the connections of climate 
states observed at different time points. But different from 
short-term persistence that exists in weather systems with 
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time scales of several days to weeks, LTM describes the 
scaling behavior of climate variables on time scales rang-
ing from months to decades (Fraedrich and Blender 2003; 
Yuan et al. 2010; Luo et al. 2015; Jiang et al. 2017). Accord-
ingly, for a system with LTM, its current climate conditions 
can have long-lasting influences on the conditions in future 
(Kantelhardt et al. 2001). Therefore, this phenomenon is 
considered as a kind of “climate inertia”, and the ocean in 
climate system, with huge heat capacity, may be a main con-
tributor (Yuan et al. 2013).

During the past years, besides detecting LTM in differ-
ent climate variables, there are growing efforts focusing on 
the applications of LTM, such as (1) developing new theo-
ries for trend evaluation (Lennartz and Bunde 2009; Fran-
zke 2012; Kumar et al. 2013; Ludescher and Bunde 2016; 
Yuan et al. 2017; (2) designing early warning systems for 
extreme events (Bunde et al. 2005; Bogachev and Bunde 
2011); as well as (3) evaluating model simulations and rea-
nalysis/proxy datasets using LTM as a test bed (Govindan 
et al. 2002; Vyushin et al. 2004; Bunde et al. 2013; Zhao 
et al. 2018). However, among all the potential applications of 
LTM, climate prediction is the most appealing one that has 
not been studied systematically (Zhu et al. 2010). Can we 
improve the climate predictive skill by properly considering 
the effects of long-term climate memory? How to integrate 
this concept into current climate prediction models? These 
are important questions that deserves further studies.

As LTM is ubiquitous in climate system, it has been rec-
ognized that the current climate state is influenced by (1) 
the past conditions and (2) the current dynamical excitations 
(Yuan et al. 2013, 2014). For variables with strong LTM, the 
influences from past can explain a high variance of the total 
climate variability (Yuan et al. 2014), which, in most cases, 
are non-negligible in climate predictions. Using a recently 
developed fractional integral statistical model (FISM), it has 
become possible to extract the influences from past quan-
titatively, and further decompose the current climate state 
into two parts:

where x(t) represent the current climate state, M(t) stands 
for the influences from past (the memory part) and �(t) the 
current dynamical excitations (the non-memory part) (Yuan 
et al. 2014). Accordingly, a new way for climate prediction 
is suggested. That is, one may focus on the memory part 
M(t) and the non-memory part �(t) separately, to implement 
climate prediction (Yuan et al. 2018).

In this study, we follow this research idea and evaluate the 
performance of state-of-the-art models in simulating the mem-
ory and non-memory part of surface air temperatures (SAT) 
over China. With the development of climate science and the 
improvement of computing resources, current dynamical mod-
els have been improved considerably during the past years. 

(1)x(t) = M(t) + �(t),

However, due to the lack of perfect initial conditions and the 
inability to perfectly model the climate system, there are una-
voidable uncertainty and inadequacy in the model simulations 
(Palmer 2000; Slingo and Palmer 2011), and even the internal 
variability is so far not fully captured by current models (Dob-
las-Reyes et al. 2013; Meehl et al. 2014). In this situation, are 
current models able to reproduce the LTM that was detected 
from observational data, and further capture the memory part 
M(t)? After removing M(t) using statistical models (such as 
FISM), are the remaining non-memory part �(t) comparable 
with the observed �(t) ? Which part is more responsible for the 
biases of model simulations? To improve the current climate 
predictive skills, these are relevant questions that need to be 
addressed.

In this work, we employed the detrended fluctuation analy-
sis of the second-order (DFA2) (Kantelhardt et al. 2001) and 
the fractional integral statistical model (FISM) (Yuan et al. 
2014) to evaluate the memory and non-memory parts simu-
lated from the decadal hindcast experiments (1981–2010) in 
11 CMIP5 models (Taylor et al. 2012). Using DFA2, the abil-
ity of the CMIP5 models in reproducing the observed LTM 
was studied. While using FISM, the memory part was removed 
and the remaining non-memory part was further assessed. It is 
worth noting that, discussing the month-to-month simulations 
in a decadal hindcast experiment makes little sense. Therefore, 
we mainly focus on the simulations on annual scale and evalu-
ated the year by year variations of the non-memory part. But 
to ensure the accuracy of the DFA2 study, monthly data were 
used and the strength of LTM was determined on time scales 
from a few months to a few years (inter-annual time scale). 
We found poor skills of the CMIP5 models in simulating the 
observed LTM, but regarding of the non-memory part, the 
CMIP5 models seem to have better performance. Based on 
these findings, a new strategy for climate prediction was sug-
gested, which may improve the predictive skills by properly 
considering the impacts of the past.

The rest of this paper is organized as follows. In Sect. 2, we 
will make a brief introduction of the data and the methods we 
use for analysis. Model simulated LTM is estimated in Sect. 3, 
and the results are compared with those obtained from obser-
vational data. After decomposing the surface air temperatures 
into the memory and non-memory parts, we further evaluated 
the models’ capacity in capturing the non-memory part. In 
Sect. 5, we discuss the results and conclude this work with a 
further outlook.



4517On memory and non‑memory parts of surface air temperatures over China: can they be simulated…

1 3

2 � Data and methods

2.1 � Data

2.1.1 � Observational data

In this study, observational grid dataset of Chinese 
monthly surface air temperature is used for analysis. It is 
downloaded from the China Meteorological Data Service 
Center (CMDC) (http://data.cma.cn/data/cdcde​tail/dataC​
ode/SURF_CLI_CHN_TEM_MON_GRID_0.5.html). 
The spatial resolution of the observational grid data is 
0.5◦ × 0.5◦ , and the data from 1981 to 2010 are analyzed. 
Besides the grid dataset, four in-situ surface air tempera-
ture records observed in Beijing ( 116.28◦ E, 39.48◦N), Har-
bin ( 126.34◦ E, 45.56◦N), Kunming ( 102.39◦ E, 25◦ N) and 
Nanchang ( 115.55◦ E, 28.36◦ N) are also analyzed. They 
are downloaded from CMDC at the address http://data.
cma.cn/data/cdcde​tail/dataC​ode/SURF_CLI_CHN_MUL_
MON_CES.html. The length of the in-situ data is also 30 

years, from 1981 to 2010. Before analysis, seasonal trend 
is removed by subtracting annual cycle from the observed 
data, as x(t) = �(t) − ⟨�(t)⟩ , where �(t) is the observed data, 
⟨�(t)⟩ is the long-time climatological average for each cal-
endar, and x(t) is the anomalies we use for analysis.

2.1.2 � CMIP5 decadal hindcast simulations

Monthly surface air temperatures simulated from the Dec-
adal hindcast experiments in 11 CMIP5 models are used 
in this study (Taylor et al. 2012). The data are downloaded 
from the Earth System Grid Federation (ESGF) at the 
address https​://esgf-data.dkrz.de/proje​cts/esgf-dkrz/. Infor-
mation about the 11 models are summarized in Tables 1 and 
2, and more details can be found in (Meehl et al. 2014). 
To ensure the accuracy of the LTM detection, we use the 
long lead time series at 30 years. That is, each model have 
been initialized by the end of 1980 and the lead time is 30 
years from Jan 1981 to Dec 2010. Only data from the region 
72◦N–136◦ N, 18◦E–54◦ E (China) are extracted for analysis. 
To keep consistent with the observational grid dataset, the 

Table 1   Detailed information of 
the 11 CMIP5 models used in 
this study

No. Models Resolution Ensemble member Initialization method Lead time

1 CCSM4 1.25◦ × 0.9◦ r1i2p1 Full field 1981–2010
2 CMCC-CM 0.75◦ × 0.75◦ r1i1p1
3 CanCM4 1.875◦ × 1.875◦

4 FGOALS-g2 2.8125◦ × 2.8125◦

5 HadCM3 3.75◦ × 2.5◦ r1i2p1 Anomaly
6 IPSL-CM5A-LR 3.75◦ × 1.9◦ r1i1p1
7 MIROC4h 0.5625◦ × 0.5625◦

8 MIROC5 1.40625◦ × 1.40625◦

9 MPI-ESM-LR 1.875◦ × 1.875◦

10 MRI-CGCM3 1.125◦ × 1.125◦

11 bcc-csm1-1 1.875◦ × 1.875◦ Full field

Table 2   Skill scores of the 11 CMIP5 models (model name expansions included) in simulating the LTM of surface air temperatures

Model Expansion Skill score

CCSM4 Community Climate System Model, version 4.0 0.54
CMCC-CM The Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate Model 0.35
CanCM4 The Canadian fourth generation coupled Climate Model 0.43
FGOALS-g2 Flexible Global Ocean–Atmosphere–Land System Model: Grid-point Version 2 0.65
HadCM3 Hadley Centre Coupled Model, version 3 0.41
IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO (low resolution) 0.45
MIROC4h Model for Interdisciplinary Research on Climate, version 4 (high resolution) 0.40
MIROC5 Model for Interdisciplinary Research on Climate, version 5 0.29
MPI-ESM-LR Max Planck Institute Earth System Model, low resolution 0.39
MRI-CGCM3 Meteorological Research Institute Coupled Atmosphere–Ocean General Circulation Model, version 3 0.54
bcc-csm1-1 Beijing Climate Center Climate System Model, version 1 0.57
Multi-Model Multiple Models Mean 0.43

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_TEM_MON_GRID_0.5.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_TEM_MON_GRID_0.5.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON_CES.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON_CES.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON_CES.html
https://esgf-data.dkrz.de/projects/esgf-dkrz/
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simulated surface air temperatures are bi-linearly interpo-
lated to the spatial resolution of 0.5◦ × 0.5◦ . That is, linear 
interpolation is first performed in the zonal direction, and 
then again in the meridional direction [for more informa-
tion about the bi-linear interpolation, we refer to Press et al. 
(1992)]. Only the anomalies with annual cycle removed (see 
Sect. 2.1.1) are analyzed. Besides analyzing the simulations 
from the 11 CMIP5 models, we also compute the Multi-
Model Means (MMM) over the 11 models, and compare 
the results with those obtained from observational dataset.

2.2 � Methods

2.2.1 � Detrended fluctuation analysis

In this study, we employed the detrended fluctuation analy-
sis of the second-order (DFA2) to detect the LTM (Kan-
telhardt et al. 2001). Suppose we have a time series {xi} , 
i = 1,… ,N . In DFA2, one mainly considers the cumulated 
sum Yk =

∑k

i=1
{xi − ⟨x⟩} and divides it into non-overlapping 

windows of size s. In each window, one determines the vari-
ance F2

s
(j) of the Yk around the best polynomial fit of order 

2, where j points to the jth window. By averaging over all 
windows and taking the square root, the desired fluctua-
tion function F(s) is obtained. If F(s) increases with s as 
F(s) ∼ s� , and the scaling exponent � is larger than 0.5, we 
say the time series {xi} is characterized by LTM. The big-
ger � is, the stronger the LTM will be. While if the scaling 
exponent � equals 0.5, the time series {xi} is considered as 
white noise with no memory.

In this work, we analyzed the LTM in SAT. It has been 
shown by previous works that the scaling range of SAT nor-
mally spans multiple scales from months to decades (Love-
joy 2015; Yuan et al. 2018). Accordingly, as long as the 
� values are measured in this scaling range, the estimated 
LTM should stay unchanged and is independent of the data 
resolution (e.g. monthly, annually, etc.) (see also Fig. S1 
in the supporting information, SI). Therefore, although we 
mainly focus on the model simulations on annual scale, to 
reduce the uncertainties of the estimated � values, we used 
the monthly data for the DFA2 calculations.

2.2.2 � Fractional integral statistical model

To decompose the time series {xi} and obtain the non-
memory part, we employed the fractional integral statisti-
cal model (FISM) (Yuan et al. 2014). Previous studies have 
pointed out that, for processes with LTM, climate state at 
present time may have long-lasting influences on the climate 
states in future, and the decay of the influences (with time) 
can be simulated using fractional integral (Yuan et al. 2013). 
Accordingly, FISM was designed using Riemann-Lioville 

Fractional integral formula, as shown below (Yuan et al. 
2014),

where �(u) denotes the historical dynamical excitation, Γ is 
the gamma function, q is the integral order, t − u represents 
the distance between historical time point u and the present 
time t, and � is the sampling time interval. In FISM, the cur-
rent climate state x(t) consist of two parts. On the right side 
of Eq. (2), the first part represents the influences of the past 
accumulated till the present time, while the second part is the 
current dynamical excitations. Since the integral order q can 
be calculated from the DFA exponent � as q = � − 0.5 , sup-
pose the historical observations x(u) = x(0), x(�),… , x(t − �) 
are known, one can derive reversely the historical �(u) , with 
which the memory part at present time t can be calculated 
as following,

If x(t) is known, from Eq. (1) one can easily calculate the 
non-memory part �(t) at the present time t. Therefore, using 
FISM, both memory part M(t) and the non-memory part �(t) 
can be extracted.

3 � Evaluation of the simulated memory part

In order to evaluate the simulated memory part of the sur-
face air temperatures over China, we employed the DFA2 to 
check whether the decadal hindcast simulations can repro-
duce the observed LTM. It has been well recognized that 
nearly all the SAT records over different regions of China 
are characterized by LTM (Yuan et al. 2010). As shown 
in Fig. 1, we applied DFA2 to four randomly selected in-
situ SAT records. In this log-log plot, straight lines ranging 
from 9 to 90 months are observed, which means power-law 
increase of the fluctuation function F(s) with the time scale 
s. The slope of the straight line is the DFA2 exponent � . For 
Kunming (red), Harbin (orange), and Beijing (green), the � 
values are all larger than 0.5, while for Nanchang (blue), the 
DFA2 exponent � = 0.5.

To better show the LTM of observed SAT records over 
China, we further analyzed the observational grid dataset, 
and the distribution of � values are shown in Fig. 2. As one 
can see, higher � values are found in the northeast and south-
west of China. But in the south of the Yangtze River, the 
SAT records have much lower � values. In some regions, 
the � values are even close to 0.5. Considering that only 
360 months were used for the DFA calculations, there are 

(2)x(t) =
1

Γ(q) ∫
t−�

u=0

�(u)

(t − u)1−q
du + �(t),

(3)M(t) =
1

Γ(q) ∫
t−�

u=0

�(u)

(t − u)1−q
du,
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unavoidable uncertainties in the estimation of � . To rule out 
that the observed � value is an artifact of this uncertainty, 
it is necessary to estimate how � varies when a large num-
ber of white noises (with the same length l = 360 ) are ana-
lyzed. By (1) generating two long white noises (i.e. length 
L = 2,000,000 ), (2) dividing the two long white noises into 
10,000 short data of length 360, and (3) applying DFA2 to 

these 10,000 short data, we found that the standard deviation 
of the 10,000 � values is sd = 0.058. Accordingly, the � val-
ues larger than 0.616 (0.5 + 2sd) indicates the existence of 
significant LTM (see the dotted area in Fig. 2). For regions 
with 0.558 < 𝛼 < 0.616 (see the slash area in Fig. 2), one 
can only roughly consider the SATs have weak LTM. For 
the very small area with 𝛼 < 0.558 , one cannot rule out the 
possibility that the SATs behave as white noises. This dis-
tribution is in line with many previous reports, even though 
different datasets are analyzed (Yuan et al. 2010).

However, if we apply DFA2 to the model simulations, 
quite different results are obtained. Figure 3 shows the dis-
tributions of � for the 11 CMIP5 models. There is no identi-
cal pattern among the models. The surface air temperatures 
simulated by some models (such as CanCM4, HadCM3) 
have stronger LTM in the south of China, while the simu-
lated LTM by some other models (such as IPSL-CM5A-
LR, MIROC4h, MIROC5) is stronger in the northwest. Most 
models except FGOALS-g2 and MIROC4h simulated the 
strong LTM in the northeast of China, but nearly no model 
reproduced the strong LTM in the southwest of China. By 
calculating the differences between the observed � values 
(Fig. 2) and the simulated � values (Fig. 3), very poor skills 
of the 11 models in reproducing LTM are found. As shown 
in Fig. 4, after taking the uncertainties of the � values into 
account (see Fig. S2 in the SI), the LTM in the southwest of 
China are found significantly underestimated in all the mod-
els, while in the northeast and the northwest, most models 
significantly overestimated the LTM. The simulations are 
slightly better in the south of the Yangtze River, but there are 
still unexpected strong LTM simulated in 4 of the 11 models.

Besides comparing the observed LTM with individual 
models, we also computed Multi-Model Means (MMM) 
over the 11 CMIP5 models. But the simulated LTM does not 
improve much. As shown in Figs. 3 and 4 (the sub-figure no. 
12), the LTMs in the northeast and the northwest of China 
are significantly overestimated, while over the southwest of 
China, the LTMs are significantly underestimated. Only in 
the south of the Yangtze River, slightly better LTMs of the 
surface air temperatures are simulated.

To better evaluate the capability of the CMIP5 models in 
simulating LTM, we further presented the Taylor diagram 
in Fig. 5 (Taylor 2001). At first glance, one can find very 
poor spatial correlation coefficients (SCC) for all the models. 
Except FGOALS-g2, the SCCs of all the other 10 models 
are smaller than 0.3, and some models (6 out of 11) even 
have negative SCCs. This indicates poor similarity between 
the observed and the simulated LTM pattern (Figs. 2, 3). 
Regarding of the normalized standard deviations (NSD), 
only two models (FGOALS-g2 and IPSL-CM5A-LR) have 
similar standard deviations as that obtained from the obser-
vational dataset. All the other models including the MMM 
overestimated the spatial variability of the LTM in surface 

Fig. 1   DFA results of surface air temperatures (SAT) observed from 
the four randomly selected stations. From top to bottom, they are 
Kunming (red), Haerbin (orange), Beijing (green), and Nanchang 
(blue). In this double-logarithmic plot, the slope of each line repre-
sents the DFA exponent � . Since only 30 years (1981–2010) data are 
analyzed, � was measured using the scaling range of 9–90 months. 
As one can see, the SAT in Kunming, Haerbin, and Beijing are all 
characterized by LTM ( 𝛼 > 0.5 ), while in Nanchang, the SAT is not 
long-term correlated

Fig. 2   Geographical distribution of the DFA exponent � calculated 
from the observational grid SAT dataset. Higher � values are found 
in the northeast and southwest of China, while in the south of Yang-
tze River, the � values are much lower. The dotted area represent the 
regions with 𝛼 > 0.616 , while the slash area show the regions with 
0.558 < 𝛼 < 0.616 . The four stars shown in the map are the locations 
of the four stations analyzed in Fig. 1
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Fig. 3   Geographical distribution of the DFA exponent � calculated from the decadal hindcast simulations of the 11 CMIP5 models, as well as 
the multi-model means (MMM). As one can see, no model reproduced the observed LTM as shown in Fig. 2

Fig. 4   Differences between the observed � in Fig. 2 and the simulated 
� in Fig. 3. The values shown in this figure are obtained by subtract-
ing the simulated � from the observed � . The hatching area repre-
sents significantly different � values at 95% confidence level, and the 
bounds of the 95% confidence intervals are estimated as follows: for 
each grid point in Fig. 2, we (1) generated two long ( L = 2,000,000 ) 

artificial data with the � value the same as the observed � (at this grid 
point), by using Fourier Filtering technique (Turcotte 1997). After (2) 
dividing the two long artificial data into 10,000 short data of length 
l = 360 , we (3) applied DFA2 to these short data. From the 10,000 
� values, the bounds of the 95% confidence interval were determined 
(see Fig. S2 in the SI)
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air temperatures. Due to the small SCCs and the large NSDs, 
all the models have big root mean square errors (RMSE). 
As shown in Fig. 5, there are long distances from the model 
simulations to the Reference (REF).

To quantify the model performance in simulating LTM 
of surface air temperatures, we further calculate the skill 
score, which is defined as below (Taylor 2001),

where R is the spatial correlation coefficient, 𝜎f  is the spatial 
standard deviation of the simulated LTM divided by that 
of the observed LTM, and R0 is the maximum correlation 
attainable (Kusunoki and Arakawa 2015). Here we assumed 
that R0 = 1 . As shown in Table 2, the scores are low for all 
the models. Many models (7 of 11) even have skill scores 
that are smaller than 0.5. Among the 11 models, FGOALS-
g2 has the highest skill score, which is only 0.65. While 
MIROC5 has the lowest skill score, which is 0.29. These low 
skill scores again indicate that the decadal hindcast experi-
ment in CMIP5 models cannot reproduce the observed LTM 
in surface air temperatures over China. In other words, the 
memory part M(t) cannot be properly simulated from the 
decadal hindcast experiments in the CMIP5 models.

(4)S =
4(1 + R)

(𝜎f + 1∕𝜎f )
2(1 + R0)

,

4 � Evaluation of the simulated non‑memory 
part

Although the 11 CMIP5 models are not capable of repro-
ducing the observed LTM of surface air temperatures in 
the decadal hindcast experiments, one can remove the 
biased memory part M(t) and only focus on the non-mem-
ory part �(t) . In this section, we applied FISM to both 
the observational grid dataset and the model simulated 
surface air temperatures. As described in Sect. 2.2, using 
the � values of each time series, the corresponding non-
memory part �(t) can be calculated quantitatively. Then we 
evaluated the simulated �(t) for each model. Since it makes 
little sense to discuss the month-to-month simulations in 
a decadal hindcast experiment, we calculated annual �(t) 
from both observational dataset and model simulations. 
By studying their similarity, the performance of CMIP5 
models in simulating �(t) was evaluated on annual scale.

Figure 6 shows the correlations of the simulated �(t) 
with that obtained from observational dataset. As one 
can see, most models (e.g. CMCC-CM, FGOALS-g2, 
HadCM3, IPSL-CM5A-LR, MIROC4h, MIROC5, MRI-
CGCM3, and bcc-csm1-1) failed in simulating proper �(t) . 
For these models, low correlations are found over most 
regions of the country. In some regions (e.g. the northeast 
of China), there are even negative correlations. Only a few 
models show some skills, such as in CCMS4, CanCM4, 
and MPI-ESM-LR, there are significant correlations 
between the simulated and observed �(t) in the middle and 
eastern part of China (except the northeast). However, if 
we consider the multi-model means (MMM), considerable 
regions with significant correlations are found. As shown 
in the sub-figure no. 12, the simulated �(t) is highly cor-
related with the observed �(t) in most regions. In some 
specific regions, the correlations are even higher than 
0.5, indicating reasonable simulations of �(t) for the time 
period of being studied (1981–2010).

Different from the past influences M(t), since �(t) deter-
mines the further changing directions of the climate states 
(Yuan et al. 2014), it is important that the simulated �(t) 
has the same sign as the observed �(t) . Therefore, besides 
studying the correlations, we also calculated the percent-
age of the simulated �(t) that has the same sign as the 
observed �(t) . Figure 7 shows the geographical distribution 
of the percentage for each model. Better than Fig. 6, most 
models except CMCC-CM and FGOALS-g2 more or less 
have some regions where the percentage is higher than 
60% . In some models such as the CCSM4 and the MPI-
ESM-LR, the percentage is higher than 60% over most 
regions of the country. In some specific regions, it can 
be even higher than 80% . Under this situation, if we con-
sider multi-model means (the sub-figure no. 12 in Fig. 7), 

Fig. 5   Taylor diagram of � values over China between observations 
(Fig. 3) and model simulations (Fig. 4). The azimuthal positions rep-
resent the spatial correlation coefficients between the observed � and 
simulated � . The radial distances from origin to the dots stand for the 
standard deviations, which are normalized according to that of the 
observed � values. With the observed � values serving as a reference, 
the radial distances from “REF” to the dots are the root mean square 
errors (RMSE). The blue and red dots represent negative and positive 
correlations, respectively. Each dot represents a model (incl. multi-
model mean), which is identified by its number on the right
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Fig. 6   Correlation coefficients (r) between the observed and the 
simulated non-memory part �(t) . Annual �(t) from 1981 to 2010 
are used for the calculation of correlation. After obtaining the criti-
cal value from the student’s t test [df (degrees of freedom) = 28, 
t
0.05∕2,28 = 2.048 , r

0.05∕2,28 = 0.361], areas with statistically significant 

correlations are marked by small dots. Besides the results for indi-
vidual models, correlations between the observed �(t) and the simu-
lated �(t) from multi-model means (MMM) are also shown (see the 
sub-figure no. 12), and significant correlations are found over most 
regions

Fig. 7   Percentage of the simulated �(t) that has the same sign as the 
observed �(t) . The small dots in the map mark the areas where per-
centages are higher than 60% . As in Fig. 6, besides individual models, 

the results of the multi-model means (MMM) are also shown as the 
sub-figure no. 12



4523On memory and non‑memory parts of surface air temperatures over China: can they be simulated…

1 3

large areas (except the northeast of China and the Inner 
Mongolia) with high percentage can be identified, which 
again indicates potential predictability of �(t) in the dec-
adal hindcast experiments.

5 � Discussion and conclusion

In this study, the memory and non-memory parts of the sim-
ulated surface air temperatures (SAT) over China are evalu-
ated. In the decadal hindcast experiments of 11 CMIP5 mod-
els, we find significantly overestimated long-term memory 
(LTM) over most regions of China (e.g., northeast and north-
west). While in the southwest, the LTMs are significantly 
underestimated. The poor skills in the LTM simulation indi-
cate that current state-of-the-art models have difficulties in 
simulating the memory part M(t). In other words, it is still 
challenging for current dynamical models to fully capture 
the influences from past on the current climate states.

However, after removing the biased M(t) from the simu-
lated SAT, the remaining non-memory part �(t) is found 
reasonably modeled in the multi-model means. Over most 
regions, the simulated annual �(t) are significantly correlated 
with the observed annual �(t) . In some specific regions, the 
correlations can be larger than 0.5. Considering the per-
centage of the simulated �(t) that has the same sign as the 
observed �(t) , high percentages are widely found over the 
country. In some regions, the percentages are even as high 
as 80% . Therefore, it is evident to say that the current state-
of-the-art models have a certain ability in simulating the 
non-memory part �(t) on annual scale.

Since nearly all the SAT records observed over differ-
ent regions of China are characterized by LTM, their cur-
rent states depend on (1) the influences from past (M(t)) 
and (2) the current dynamical excitations ( �(t) ) (Yuan et al. 
2013, 2014). From our findings, obviously the biased simu-
lations of M(t) are responsible for the errors of dynamical 
models. Therefore, to improve the model simulations, one 
needs to better capture the memory part of the surface air 
temperatures.

In fact, using fractional integral statistical model (FISM), 
the memory part M(t) at the present time can be extracted 
quantitatively as long as the past non-memory part �(u) 
are known. As shown in Fig. 8a, we took the observational 
SAT (black curve) of one grid point from central China as 
an example (see the black point in the sub-figure no. 12 of 
Fig. 6). Using FISM, the memory part M(t) (red curve) were 
calculated. However, these M(t) values are not predictions 
as they are calculated using the past non-memory part �(u) . 
To continue the calculation of M(t) till future, one needs 
to first predict the future non-memory part �(t) , which is 
beyond the ability of FISM. In this study, we found current 
state-of-the-art models have a certain ability in simulating 
annual �(t) . As shown in Fig. 8b, the simulated �(t) s (dashed 
histogram) are quite close to the true �(t) s. Accordingly, a 
new strategy for climate prediction comes out. That is, one 
may combine FISM with dynamical models. Using the simu-
lated �(t) from dynamical models, we are able to drive FISM, 
which in turn provides more reliable estimations of M(t). By 
coupling the simulated �(t) from dynamical models and the 
estimated M(t) from FISM, improved climate predictions 
(e.g. on annual scale) with the effects of LTM properly con-
sidered may become possible.

Fig. 8   Taking the surface air 
temperature of a randomly 
selected grid point (the bigger 
black points shown in the sub-
figure no. 12 of Fig. 6) as an 
example, a the annual tempera-
ture anomalies (black) and the 
M(t) (red) extracted by FISM; 
b the observed �(t) and the 
simulated �(t) from multi-model 
means (MMM)

(a)

(b)
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