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Since June 2013, GEOS-5 forecasts of the Arctic sea-ice dis-
tribution were provided to the Sea-Ice Outlook project. The 
seasonal forecast output data includes surface fields, atmos-
pheric and ocean fields, as well as sea ice thickness and area, 
and soil moisture variables. The current paper aims to docu-
ment the characteristics of the GEOS-5 seasonal forecast 
system and to highlight forecast biases and skills of selected 
variables (sea surface temperature, air temperature at 2 m, 
precipitation and sea ice extent) to be used as a benchmark 
for the future GMAO seasonal forecast systems and to facili-
tate comparison with other global seasonal forecast systems.
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Abstract  Ensembles of numerical forecasts based on per-
turbed initial conditions have long been used to improve 
estimates of both weather and climate forecasts. The God-
dard Earth Observing System (GEOS) Atmosphere–Ocean 
General Circulation Model, Version 5 (GEOS-5 AOGCM) 
Seasonal-to-Interannual Forecast System has been used rou-
tinely by the GMAO since 2008, the current version since 
2012. A coupled reanalysis starting in 1980 provides the 
initial conditions for the 9-month experimental forecasts. 
Once a month, sea surface temperature from a suite of 11 
ensemble forecasts is contributed to the North American 
Multi-Model Ensemble (NMME) consensus project, which 
compares and distributes seasonal forecasts of ENSO events. 
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CMAP	� CPC merged analysis of precipitation
CMIP5	� Coupled model intercomparison project 
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CPC	� Climate Prediction Center
CTD	� Conductivity-temperature-depth
DMSP	� Defense Meteorological Satellite 

Program
EnKF	� Ensemble Kalman filter
EnOI	� Ensemble optimal interpolation
ENSO	� El Niño/Southern oscillation
ESMF	� Earth System Modeling Framework
GDAC	� Argo Global Data Assembly Center
GEOS-5	� Goddard earth observing system model, 

version 5
GEOS-iODAS	� Goddard earth observing system inte-

grated ocean data assimilation system
GEWEX	� Global energy and water cycle exchanges 

project
GMAO	� NASA Global Modeling and Assimila-

tion Office
GPCP	� Global Precipitation Climatology Project
IDM	� Indian Ocean Dipole Mode SST index
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NSIDC	� National Snow and Ice Data Center
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SAFE	� Spatial approximation of forecast errors
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Index
SMMR	� Scanning multi-channel microwave 

radiometer
SSM/I	� Special scanning microwave imager
SSMIS	� Special scanning microwave imager/
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SST	� Sea surface temperature
T2M	� 2-m air temperature
TA	� Tropical Atlantic index
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TASI	� Tropical Atlantic SST Index

WTIO	� Western Tropical Indian Ocean SST 
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1  Introduction

Deterministic numerical weather prediction forecasts have 
a forecasting window that is limited to about 15 days (e.g., 
Lorenz 1963, 1993). As noted by Palmer and Anderson 
(1993, 1994) and others, useful predictability is possible 
beyond this limit in part because boundary forcing such as 
sea surface temperatures or soil moisture (Koster and Suarez 
2001) may vary slowly and reliably, and may then influ-
ence statistics of the atmosphere. In 2010, the US National 
Academies reported on the state of seasonal-to-interannual 
predictability, and suggested avenues for progress (Weller 
et al. 2010). Among the recommendations was the need to 
establish and evaluate a multi-model ensemble, which was 
recognized as a viable strategy for resolving forecast uncer-
tainty (e.g., Kirtman et al. 2014). The NASA Global Mode-
ling and Assimilation Office (GMAO) has participated in the 
North American Multimodel Ensemble (NMME; Kirtman 
et al. 2014) since its inception. The purpose of the NMME 
is to advance the capabilities of the climate prediction mod-
els, and utilize the system in a near-operational mode to 
demonstrate feasibility. The GMAO system is based on its 
use and experience with data assimilation methods that have 
been developed for mission support and to enhance NASA’s 
program of earth observations. The development and use of 
the seasonal forecasting system enhances the use of NASA 
data and contributes to observing system science by improv-
ing assimilation systems and atmosphere and ocean mod-
eling tools. Evaluation of the GMAO system has previously 
been conducted with a focus on the predictability of the El 
Niño/Southern Oscillation phenomenon (ENSO; Ham et al. 
2014a, b; Vernieres et al. 2012). In this paper, we provide a 
more comprehensive assessment of current forecasting sys-
tem as it reaches the end of its life cycle. As the system has 
now progressed through several years within the NMME 
near-operational mode, this paper critically examines recent 
performance.

The layout of the paper is as follows. Section 2 provides 
an overview of the GMAO Goddard Earth Observing 
System (GEOS) Atmosphere–Ocean General Circulation 
Model, version 5 (GEOS-5 AOGCM) Seasonal Forecast 
System. Section 3 details the initialization procedure for 
each system component, and the means of ensemble gen-
eration through field perturbations and sampling in time. 
Section 4 presents an assessment of the forecast sea sur-
face temperature (SST). Section 5 presents the bias and 
skills of the relevant atmospheric fields, including 2-m air 
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temperature (T2M) and precipitation. Section 6 examines 
the prognostic sea ice cover. Conclusions are presented in 
Sect. 7.

2 � Overview of the GEOS‑5 seasonal forecast 
system: model components

The GEOS-5 AOGCM has been developed to simulate 
climate variability on a wide range of time scales, from 
synoptic time scales to multi-century climate change, and 
has been tested in coupled simulations and in data assimi-
lation mode. The ocean and atmosphere exchange fluxes 
of momentum, heat and freshwater through a “skin layer” 
interface which includes parameterization of the diurnal 
cycle and a sea ice model. All components are coupled 
together using the Earth System Modeling Framework 
(ESMF, Hill et al. 2004). The goal in having a multi-scale 
modeling system with its different components commu-
nicating through a unified interface (ESMF) is to be able 
to propagate improvements made to a physical process in 
one component to the other components smoothly and effi-
ciently. The GEOS-5 AOGCM was configured to partici-
pate in the Coupled Model Intercomparison Project phase 
5 (CMIP5), which provides a standard protocol for evalu-
ation of coupled GCMs. To evaluate the model’s ability to 
simulate the Earth’s climate, it was validated against obser-
vational data and reanalysis products.

2.1 � Atmospheric component

The atmospheric component of the GEOS-5 AOGCM is 
Fortuna-2.5, the same that was used for the Modern-Era 
Retrospective Analysis for Research and Applications 
(MERRA; Rienecker et al. 2011), but with adjusted param-
eterization of moist processes and turbulence (Molod et al. 
2012). The model has a finite volume dynamical core (Lin 
2004), which is integrated with various physical packages 
through the ESMF.

The physics package includes parameterization of moist 
processes, radiation, turbulent mixing and surface fluxes. 
The moist component contains parameterization of convec-
tion using the Relaxed Arakawa-Schubert scheme (Moor-
thi and Suarez 1992), and the large-scale precipitation and 
cloud cover model as described in Bacmeister et al. (2006). 
The radiation component includes parameterization for long 
wave (Chou 1990, 1992) and short wave radiation processes 
(Chou et al. 1994). The turbulence component consists of 
parameterization for vertical diffusivity, the planetary 
boundary layer and gravity wave drag. The free atmospheric 
turbulent diffusivities are based on the gradient Richardson 
number. The parameterization of the boundary layer is based 
on Lock et al. (2000) scheme, acting together with scheme 

of Louis and Geleyn (1982). The Lock et al. (2000) scheme 
includes a representation of non-local mixing (driven by 
both surface fluxes and cloud-top processes) in unstable 
layers, either coupled to or decoupled from the surface, 
and an explicit entrainment parameterization. The original 
scheme was extended in GEOS-5 to include moist heating 
and entrainment in the unstable surface parcel calculations. 
GEOS-5 incorporates two gravity wave drag parameteriza-
tions, an orographic gravity wave drag formulation based 
on McFarlane (1987), and a formulation for non-orographic 
waves based on Garcia and Boville (1994). The surface 
exchange of heat, moisture and momentum between the 
atmosphere and land, ocean or sea ice surfaces are treated 
with a bulk exchange formulation based on Monin–Obukhov 
similarity theory.

The atmospheric model uses a Cartesian grid with a 
1° × 1.25° horizontal resolution and 72 hybrid vertical lev-
els with the upper most level at 0.01 hPa.

2.2 � Ocean component

The ocean component of the GEOS-5 AOGCM is the Mod-
ular Ocean Model version 4 (MOM4) developed at Geo-
physical Fluid Dynamics Laboratory (Griffies 2012). It is 
a non-Boussinesq, hydrostatic, primitive equations model 
with a staggered Arakawa B-grid or C-grid and general-
ized level (vertical) coordinate based on depth or pressure. 
A tripolar grid is used to resolve the Arctic Ocean without 
polar filtering (Murray 1996). The nominal resolution of the 
ocean grid is ½°, with a meridional equatorial refinement to 
¼°. It is a regular Cartesian grid south of 65°N, and curvi-
linear north of 65°N, with two poles located on land to elim-
inate the problem of vanishing cell area at the geographic 
North Pole. The resulting tripolar grid has a minimum and 
maximum resolution of 15 and 52 km, respectively. The 
ocean topography is derived from the ETOPO5 data set 
(Smith and Sandwell 1997). The topography is represented 
as a partial bottom step to better simulate topographically 
influenced advective and wave processes. Vertical mixing 
follows non-local K-profile parameterization of Large et al. 
(1994) and includes parameterizations of tidal mixing on 
continental shelves (Lee et al. 2006) as well as breaking 
internal gravity waves (Simmons et al. 2004). Mesoscale 
eddy transport uses the method developed by Ferrari et al. 
(2010), modifying the isoneutral method developed by 
Gent and McWilliams (1990). The restratification effect 
of submesoscale eddies uses the theory developed by Fox-
Kemper et al. (2008) and implementation by Fox-Kemper 
et al. (2011). The horizontal viscosity uses the anisotropic 
scheme of Large et al. (2001) for better representation of 
equatorial currents. The exchange with marginal sea is 
parameterized under coarse resolution as discussed in Grif-
fies et al. (2004).



7338	 A. Borovikov et al.

1 3

2.3 � Sea ice component

The sea ice component of the GEOS-5 AOGCM is the 
Community Ice CodE, version 4 (CICE; Bailey et al. 2010; 
Hunke 2008) developed at Los Alamos National Labora-
tory. The model includes several interacting components to 
allow for semi-implicit coupling between the atmosphere 
and ice surface: a thermodynamic model that computes 
local growth rates of snow and ice due to vertical conduc-
tive, radiative and turbulent fluxes, along with snowfall; a 
model of ice dynamics, which predicts the velocity field of 
the ice pack based on a model of the material strength of the 
ice; a transport model that describes advection of the area 
concentration, ice volumes and other state variables; and a 
ridging parameterization that transfers ice among thickness 
categories based on energetic balances and rates of strain. 
A skin layer interface is used for the exchange of basal heat, 
salt, and freshwater fluxes with the underlying MOM4 ocean 
model; ice pressure is not exerted on the ocean. The CICE 
model is configured with standard settings but without the 
use of melt ponds.

2.4 � Land component

The land surface model in the GEOS-5 AOGCM is a catch-
ment-based hydrological model described in Koster et al. 
(2000). In this model, subgrid heterogeneity in surface mois-
ture state is treated statistically. The applied subgrid scale 
distributions are related to the topography, which exerts 
a major control over much of the subgrid variability. The 
catchment model is coupled to the multi-layer snow model 
described in Stieglitz et al. (2001).

3 � Overview of the GEOS‑5 seasonal forecast 
system: initial state generation

3.1 � Atmosphere initialization

In the coupled model initialization, selected atmospheric 
variables are constrained with the Modern-Era Retrospec-
tive Analysis for Research and Application (MERRA; 
Rienecker et al. 2011). These variables include surface 
pressure, pressure thickness, zonal and meridional winds, 
specific humidity, ozone concentration, and potential 
temperature.

3.2 � Ocean and sea‑ice initialization

The Goddard Earth Observing System integrated Ocean 
Data Assimilation System (GEOS-iODAS) is used for both 
ocean state and sea ice initialization for the production of 
analysis products (MERRA-Ocean). The ocean and sea-ice 

initialization methodology is described in detail in Vernieres 
et al. (2012). An overview of the initialization procedure 
relevant to the hindcasts is presented here.

The assimilated observing system consists of:

•	 sea surface temperature observations from CMIP5 (Hur-
rell et al. 2008) prior to 1982 and Reynolds et al. (2007) 
from 1982 to present;

•	 temperature and salinity profiles from eXpendable Bath-
ythermographs (XBTs) and Conductivity Temperature 
Depth (CTD) sensors extracted from the EN3 data base 
(Ingleby and Huddleston 2007) with time-varying XBT 
corrections applied according to Levitus et al. (2009), the 
tropical moored buoy array (McPhaden et al. 2010)—
TAO/TRITON, PIRATA, and RAMA arrays and Argo 
floats, with profiles from the Argo Global Data Assembly 
Center (GDAC);

•	 sea ice concentration from the National Snow and Ice 
Data Center (NSIDC).

The NSIDC sea-ice concentrations product is based on 
passive microwave observations of ice concentration from 
the Nimbus-7 Scanning Multi-channel Microwave Radiom-
eter (SMMR) and the Defense Meteorological Satellite Pro-
gram (DMSP) Special Scanning Microwave Imager (SSM/I) 
and Special Scanning Microwave Imager/Sounder (SSMIS). 
It has a 25 km spatial resolution for both the north and south 
polar regions. Temporal resolution is every other day from 
October 1978 to July 1987 (SMMR), then daily from August 
1987 to present (SSM/I, SSMIS). Ice concentrations from 
CMIP5 and Reynolds are used in areas that are not measured 
due to orbit inclination (poleward of 87.2° for SSM/I and 
84.5° for SMMR).

The above observations are assimilated using an ensem-
ble optimal interpolation technique (Oke et al. 2010; Wan 
et al. 2010) with 5-day window from 1979 to present. The 
model is also weakly constrained to the World Ocean Atlas 
2009 (WOA09) gridded climatology (Antonov et al. 2010; 
Locarnini et al. 2010) of T(z) and S(z) at 1° resolution and 
from 0 to 4500 m and of Sea surface salinity (SSS) to cor-
rect some of the model’s biases, particularly prior to the 
Argo era.

The resulting analysis (MERRA-Ocean) has been exten-
sively diagnosed through The Ocean Reanalyses Intercom-
parison Project (Balmaseda et al. 2015) in terms of various 
parameters such as mixed-layer depth, thermocline depth, 
heat and salinity content, overturning circulation, etc.

3.3 � Land

An important aspect of the GEOS-5 initialization con-
cerns the treatment of the land. Observed precipitation 
data are used to construct a corrected version of the hourly 
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MERRA (or GEOS-5 forward processing) precipitation 
fields, which are then used to force the land surface and 
generate enhanced soil moisture initial conditions for ini-
tializing the GEOS-5 seasonal forecasts. The corrections to 
the precipitation are obtained using the Global Precipita-
tion Climatology Project version 2.1 (GPCPv2.1, provided 
by the NASA/Goddard Space Flight Center’s Laboratory 
for Atmospheres, which develops and computes the data-
set as a contribution to the GEWEX Global Precipitation 
Climatology Project) and Climate Prediction Center (CPC) 
Merged Analysis of Precipitation (CMAP, provided by the 
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from 
their web site at http://www.esrl.noaa.gov/psd/) pentad 
precipitation data following Reichle et al. (2011). As the 
first step, the CMAP dataset is rescaled to match the (sea-
sonally variable) long-term climatology of the GPCP. Dur-
ing the second step, hourly MERRA total precipitation is 
time averaged and re-gridded to the scale of the correcting 
CMAP dataset (i.e., to pentad and 2.5° resolution). Next, 
separately for each pentad of each year and for each 2.5° 
grid cell, a scaling factor is computed by determining the 
ratio of the (climatologically adjusted) CMAP estimate to 
the MERRA data (i.e., on the grid and at the time scale of 

the correcting observations). Finally, these scaling factors 
are re-gridded back to the MERRA grid and a scaling factor 
derived for a given grid cell and year/pentad is applied to 
the MERRA precipitation rates (large-scale precipitation, 
convective precipitation, and snowfall separately) in each 
of the 120 h time steps within that pentad. By construction, 
the corrected MERRA precipitation is nearly identical to 
the CMAP estimates at the pentad and 2.5° resolution. The 
diurnal cycle, the frequency and relative intensity of rainfall 
events at the sub-pentad scale, and the sub-2.5° spatial vari-
ations are entirely based on MERRA estimates.

3.4 � Sampling in time

Each month, the GMAO produces an ensemble of 12 (13 
in November) real-time GEOS-5 coupled model forecasts. 
The ensemble is produced by initializing the model every 
5 days (Table 1) prior to the start of the month, except for 
the date closest to the start of the month when additional 
GEOS-5 forecasts are generated by various perturbation 
methods (Tables 2, 3). The perturbations are produced 
using a breeding approach (perturbing the atmosphere 
and/or ocean), and a simple scaled differencing approach 

Table 1   Seasonal forecast schedule

Jan Feb Mar Apr May Jun

12 12 1 11 2 10 3 12 4 11 5 11
12 17 1 16 2 15 3 17 4 16 5 16
12 22 1 21 2 20 3 22 4 21 5 21
12 27 1 26 2 25 3 27 4 26 5 26
1 1 1 31 3 2 4 1 5 1 5 31
1 6 2 5 3 7 4 6 5 6 6 5

Jul Aug Sep Oct Nov Dec

6 10 7 10 8 9 9 8 10 8 11 12
6 15 7 15 8 14 9 13 10 13 11 17
6 20 7 20 8 19 9 18 10 18 11 22
6 25 7 25 8 24 9 23 10 23 11 27
6 30 7 30 8 29 9 28 10 28 12 2
7 5 8 4 9 3 10 3 11 2 12 7

11 7

Table 2   Ensemble members’ 
perturbation combinations

Initial conditions (IC) perturbations

Ensemble member 1 2 3 4 5 6 7

IC type
 Ocean O O B− O B+ O I− O I+ O O B+
 Atmosphere A A B− A B+ A I− A I+ A I− A

http://www.esrl.noaa.gov/psd/
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involving nearby (in time) atmosphere and ocean states. We 
note that due to time constraints only 11 ensemble mem-
bers are delivered to the North American Multi-Model 
Ensemble (NMME) project (forecasts are due by the 8th 
of the month).

In addition to the forecasts, the GMAO produced a suite 
of hindcasts (1982–2012) used to calibrate/bias correct the 
forecasts and assess forecast skill. The ensemble members 
for the hindcasts are produced in the same way as for the 
forecasts and span the period 1982–2012.

Table 1 shows the start dates for the ensemble members 
of the GMAO Seasonal forecasts and hindcasts. The bold 
shaded values denote the closest dates to the start of the 
month for which additional ensemble members are generated 
using various perturbation methods.

3.5 � Perturbations

Ensembles of numerical forecasts based on perturbed ini-
tial conditions have long been used to improve estimates of 
both weather and climate forecasts. The GEOS-5 seasonal 
forecast is arranged so that it uses a set of 7 members for 
the forecast initialized on the day closest to the beginning 
of the month, and one member otherwise for a combined 
ensemble of 11 members. Initial perturbation method, that 
adds small perturbation to analysis initial conditions, is 
used to generate the ensemble forecast. Since one goal 
has been the use of the ensemble spread as an indicator 
of expected forecast skill, bred vectors (Toth and Kalnay 
1993) have been used as perturbations to capture the fast-
est growing modes on weather time scales. More recently, 
the coupled breeding method was developed for coupled 
atmosphere ocean systems to capture the dominant mode 

of coupled instabilities associated with the El Niño/South-
ern Oscillation (ENSO) (Cai et al. 2003; Yang et al. 2006, 
2008; Ham et al. 2012).

The breeding is applied from 1980 with the aim of 
capturing the fastest-growing errors in the seasonal fore-
casts. Two-sided breeding is applied, which means posi-
tive and negative bred runs are restarted every month by 
adding and subtracting the bred vector to the initial condi-
tions generated from the Ensemble Optimal Interpolation 
(EnOI) option of the GEOS ocean data assimilation system, 
forced with NASA’s Modern-Era Retrospective analysis 
for Research and Applications (MERRA) (Rienecker et al. 
2011).

The rescaling interval chosen for the breeding is 30 
days. The rescaling norm is the RMS difference of the 
instantaneous sea surface temperatures (SSTs) from the 
positive and negative bred runs; the region for defining the 
norm is the tropical Pacific domain over 120°E–90°W, and 
10°S–10°N. At every re-initialization during the breeding 
cycle, perturbations are re-scaled so that the magnitude 
of the norm is reduced to 10% of the natural variability of 
SST over the norm region (i.e. 0.48° C). Another method 
to perturb initial conditions is based on the GEOS-5 analy-
sis on two different days. Similar to breeding, the pertur-
bations are re-scaled and the magnitude of the norm is 
reduced to 10% of the natural variability of SST over the 
norm region (i.e. 0.48° C). A combination of these two 
methods is used in generating the ensemble members for 
the seasonal forecast.

Tables 2, 3 and 4 illustrate the perturbations of the initial 
conditions for all ensemble members generated at the begin-
ning of the month that are submitted to NMME. Additional 
ensemble members utilize satellite altimetry data, which do 
not cover the full NMME hindcast period.

Table 3   Format of IC perturbations

Ensemble member Perturbation type

1 Ocean and atmosphere IC are not perturbed
2 Ocean and atmosphere IC are perturbed using 

negative bred vectors
3 Ocean and atmosphere IC are perturbed using 

positive bred vectors
4 Ocean and atmosphere IC are perturbed using 

negative rescaled difference between two 
analyses

5 Ocean and atmosphere IC are perturbed using 
positive rescaled difference between two 
analyses

6 Atmosphere IC are perturbed using negative 
rescaled difference between two analyses

7 Ocean IC are perturbed using positive bred 
vectors

Table 4   List of perturbed variables

Perturbed variables

Ocean model grid Temperature and salinity
Ocean velocities
Surface temperature, salinity and velocities
Sea level and frazil
Ice velocity and strain rate components
Ice strength, extent and stress tensor 

components
Atmosphere model grid Wind components

Potential temperature
Surface pressure
Specific humidity

Skin layer tiles Skin temperature, salinity and depth
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4 � Forecast skill: SST

The forecast accuracy of the coupled model forecasts is 
assessed by the amplitude and phase of SST anomaly meas-
ured for specified regions and by the global patterns of SST. 
The forecast accuracy of the atmosphere-land forecasts will 
be assessed by the patterns and amplitude of the precipita-
tion and surface temperature anomalies. For the arctic sea 
ice forecasts evaluation, the sea ice extent is compared with 
observations and against other similar systems participating 
in the Ice Outlook project.

Figure 1 depicts the regions that are used to compute the 
SST indices routinely used to assess the forecast skills. Other 
regions of interest, used for the case studies of the 2 m air 
temperature and precipitation, are also shown.

In the equatorial Pacific Ocean the easternmost Niño 
1 + 2 region boundaries are 0°–10°S, 90°W–80°W, 
the eastern Niño 3 region boundaries are 5°N–5°S, 
150°W–90°W, the central Niño 3.4 region boundaries 
are 5°N–5°S, 170°W–120°W and the western Niño 4 
region boundaries are 5°N–5°S, 160°E–150°W. In the 
Indian Ocean the Western Tropical Indian Ocean (WTIO) 
SST anomaly index is calculated in the box 50°E–70°E, 
10°S–10°N, the Southeastern Tropical Indian Ocean 
(SETIO) SST anomaly index is calculated in the 
box 90°E–110°E, 10°S–0°; the Dipole Mode Index (DMI) 
is calculated as the difference of the WTIO and SETIO 
indices (Saji et al. 1999). The Tropical Atlantic SST Index 
(TASI) is defined as the difference between the North 
Atlantic Tropical (NAT) and the South Atlantic Tropical 
(SAT) SST indices, computed in the boxes 40°W–20°W, 
5°N–20°N and 15°W–5°E, 20°S–5°S respectively (Chang 
et al. 1997).

4.1 � Forecast drift

Forecast drift is an artifact of the imperfect models. For the 
seasonal forecast it is necessary to properly account for the 
drift and calibrate the forecast accordingly. A continuous 
coupled analysis and a complete set of retrospective fore-
casts for the entire training period are required to consist-
ently de-trend the forecast. In GEOS-5 system the drift is 
calculated as the average of these hindcasts from 1981 to 
2010 for every ensemble member. It is subsequently sub-
tracted from the production forecasts. This method of drift 
removal follows the convention established by Stockdale 
(1997) and others. The forecast bias characteristics are also 
important to understand for evaluating the performance of 
the current and the future seasonal-to-interannual forecast 
systems. Comparison of the retrospective forecasts to the 
observations is helpful in determining the model’s skill.

4.1.1 � Global bias

Figure 2 shows the global forecast drift from Reynolds 
SST Climatology for December. Nine panels (top to 
bottom, left to right) correspond to initial conditions 1 
month prior to December, 2 months prior and so on, the 
last panel shows the forecast for December initialized in 
April. This is the average drift of all the ensemble mem-
bers. Immediately one can see from the first panel the 
cold bias appearing during the first month of the forecast 
in the northwestern Atlantic ocean where subpolar sur-
face water displaces the warm, salty water of the North 
Atlantic Current (Large and Danabasoglu 2006) and off 
the east coast of South America at the confluence of the 
Brazil current and the Antarctic Circumpolar Current 
exiting Drake Passage. Just as quickly the warm biases 

Fig. 1   Regions used in SST forecast skill assessment are shown by the colored, blue and green, annotated rectangles, Niño 3.4 region is 
hatched. The three regions shown by pink rectangles are used in the 2 m air temperature and precipitation evaluation
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develop in the coastal areas off the west coasts of South 
America and southern Africa and off the east coasts of 
Asia and North America. The biases described above are 
present in all the forecast regardless of the initialization 
time. The coupled model exhibits a cooling trend in the 
equatorial Pacific Ocean and in the Southern Ocean, but it 
takes about 4 to 5 months for the large scale SST biases in 
these regions to reach their maximum value of about 3 °C 
(see panels in the middle row of Fig. 2, the December 
forecasts initialized in August and July). There is a cold 
bias in the southeastern tropical part of every of the three 
major ocean basins (Indian, Pacific, Atlantic) developing 
over the same time period.

Figure 3 shows the model drift for the last (lead 9) target 
month for each remaining forecast. The top left panel on 
this figure would contain the lead 9 drift of the December 
forecast (initialized in April, shown on the bottom-right 
panel of the Fig. 2, thus omitted here). The order of pan-
els is schematically listed in its place: predicted (target) 
month first and next to it in parenthesis the initialization 

month. Thus the top row shows the model bias for winter 
(initialized in Apr–Jun), the second row shows the bias 
for spring (initialized in Jul–Sep), etc. The model clima-
tology is colder than Reynolds along the equator in the 
Pacific Ocean during all seasons, but especially so in the 
fall and winter (initialized in Jan–Mar). The southeastern 
tropical Pacific and southeastern tropical Atlantic cold 
biases are also present throughout the year, but more pro-
nounced in the boreal winter (Dec–Mar) season (initialized 
in Mar–Jul). In the Indian Ocean, the cold bias in the tropi-
cal southeastern part and along the equator and concurrent 
warm bias off the western Australia coast is present only 
during Dec–Mar (initialized in Apr–Jul).

The SST bias in the northern Pacific Ocean has the 
strongest seasonality: there is a dipole structure with 
warm mid latitudes and cold tropics in Jul–Sep (initial-
ized in Nov–Jan) with the differences between the model 
and observed climatologies as large as +3 and −2 °C. At 
the same time a similar pattern of warm mid latitudes/
cold tropics bias appears in the Atlantic ocean, but the 

Fig. 2   Monthly mean SST forecast drift with respect to Reynolds climatology for December for every forecast lead time, i.e. December forecast 
initialized at the beginning of December (lead 1), at the beginning of November (lead 2), up to the December forecast initialized in April (lead 9)
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magnitude of the bias is smaller, with warm bias about 
1 °C and cold about 2 °C.

4.1.2 � ENSO, IDM and TASI SST indices

Figure 4 shows the mean ensemble bias for the Pacific Ocean 
Niño 3, Niño 4, Niño 3.4 and Niño 1 + 2 indices, WTIO, 
SETIO, IDM and TASI computed with respect to Reynolds 
SST. In the western and central equatorial Pacific Ocean 
(Niño 4, Niño 3.4) the model has an exaggerated seasonal 
cycle with a cold bias of up to 2 °C in the boreal fall and 

winter for all forecasts targeting this time period. The fastest 
drift away from the observations appears in the forecasts ini-
tialized in summer (July, August). The forecasts initialized 
in winter and early spring (Jan–Mar) tend to stay close to 
the observations until the onset of summer. In the eastern-
most Pacific Ocean (Niño 1 + 2 region) the model is biased 
warm up to 2 °C throughout the year with the exception of 
winter target months, when all forecasts return close to the 
observations. The Niño 3 region has the smallest bias and 
the most accurate seasonal cycle represented by the model. 
In the Indian Ocean the model in general is less biased: the 

Fig. 3   Lead 9 monthly mean Forecast SST forecast bias with respect 
to Reynolds climatology for Jan–Nov predicted months; the month 
when the forecast was initialized is shown in parenthesis; lead 9 

shown [the order of panels is shown in the place of Dec (Apr) pre-
dicted (initialized) month]



7344	 A. Borovikov et al.

1 3

warm bias is slightly larger in the east than in the west, thus 
the IDM (Indian Ocean dipole mode index) is slightly biased 
towards negative values during the summer and fall. The 

Tropical Atlantic SST Index (TASI)—the difference between 
the northern and the southern Atlantic ocean control regions 
(refer to Fig. 1 for their definition)—is negatively biased by 
approximately 1 °C throughout the year, underestimating 
the absolute value of the gradient between the north and the 
south index poles in the summer and fall, and overestimating 
it in the spring.

4.2 � Forecast skill

Similarly to the forecast drift discussion, the SST global 
skill maps are presented first, followed by the analysis of the 
regional indices. Anomaly Correlation Coefficient (ACC) is 
used as a measure of potential skill and Mean Square Skill 
Score (MSSS) as a measure of actual skill. MSSS is com-
puted with respect to climatology, i.e. zero anomaly case, 
as follows,

here Tfcst(i) is the temperature anomaly of the ith hindcast 
and Tclim(i) ≡ 0.

4.2.1 � Global anomaly correlation skill

Figure 5 shows the global SST ACC computed for all fore-
cast from all initializations months combined, with each 
panel representing the leadmonths. Leadmonth 1 has high 
correlation (above 0.8) with Reynolds SST in all the ocean 
basins. By leadmonths 2 and 3, the high correlation remains 
only in the tropical Pacific and Atlantic oceans. The Atlan-
tic Ocean skill drops below 0.6 by leadmonth 6, but still 
remains high in the north Atlantic Iceland Basin region. 
Only in a portion of the Equatorial Pacific (Niño 3.4 region) 
ACC remains above 0.6 by leadmonth 9. From the signifi-
cance point of view, the skill across equatorial regions in 
all oceans and in the north Atlantic Iceland Basin region 
remains viable until the final months of the forecast.

4.2.2 � Oceanic indices skill

Figures 6 and 7 show the Hovmöller diagrams of SST ACC 
and MSSS vs. the forecast initialization month for various 
SST indices. These illustrate the seasonal variability of the 
forecast skill. The drift period computed for the anomalies 
is 1993–2010 and the period used for the skill computa-
tion is 1993–2014. This period overlaps with the ensemble 

MSSSclim =
MSEclim −MSEfcst
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Fig. 4   Monthly mean SST forecast drift with respect to Reynolds for 
equatorial Pacific, Indian and Atlantic Ocean indices. The forecasts 
are color-coded by their initialization month
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members that use the altimeter data. For the ACC, a Pearson 
correlation significance test with p-value at 0.01 is applied.

Top left panels in Fig.  6 show ACC of the western 
(Niño 4) the eastern (Niño 3) equatorial Pacific indices. 
Overall, albeit significant, the ACC is lower in the Niño 4 
region for most of the spring and especially summer start 
months. In the Niño 3 region the ACC is very high (>0.8) 
for Jun–Sep start months, which coincides with the ampli-
tude growth phase of El Niño/La Niña. In the Niño 4 region 
the highest ACC is attained during the late fall and winter 
forecasts, i.e. when an El Niño/La Niña is at its peak and 
begins to wind down. In the central Pacific Ocean (Niño 
3.4 region, top row second from the right panel in Fig. 6), 
the anomaly correlation skill is robustly high (>0.7) for 
February to September start months throughout the 9 
month forecast. ACC drops sharply beyond May in Niño 3 
and Niño 3.4 regions for most forecast started in Septem-
ber–January, which is an indication of the spring predict-
ability barrier. In the Niño 4 region the spring barrier is 

not as pronounced, with the significant anomaly correlation 
skill retained through June for all forecasts initialized in 
late autumn and winter months (Oct–Feb). The relatively 
abrupt drop in ACC for forecasts starting in Jun–Aug may 
be related to the rapid model drift during the first lead 
months for these forecasts. In the Niño 1 + 2 region (top 
right most panel in Fig. 6), ACC spring predictability bar-
rier occurs earlier than in the equatorial regions, in March, 
with the skill dropping below significance level after two 
months in January and December, and 3 months in Novem-
ber forecast. The best seasons in forecasting this area are 
late spring and early summer.

SST forecast skill in the Indian Ocean is characterized 
by the presence of its own predictability barrier. This drop 
in the prediction skill occurs at the onset of the boreal sum-
mer monsoon and is found at both IDM poles (Waisowicz 
2007). ACC skill is high beyond the first month only for the 
WTIO forecasts initialized in Jan–Feb and SETIO forecasts 
initialized in Jul–Aug. In the SETIO ACC there is a second 

Fig. 5   Global monthly SST ACC for all forecast initial months combined together; Reynolds monthly SST is used as observations; nine lead 
months are shown top-to-bottom, left-to-right. Pearson correlation significance test is applied with p-value at 0.01 (Pearson 1896)
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Fig. 6   SST ACC for all ocean regions. The Pearson correlation significance test with p-value at 0.01 is applied. Forecast start months are along 
the y-axis and lead months are along the x-axis

Fig. 7   SST MSSS for all ocean regions. Forecast start months are along the y-axis and forecast lead months are along the x-axis
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predictability barrier is December, but the skill apparently 
returns later for the forecasts starting in Jul–Sep (left bot-
tom panels in Fig. 6). The IDM index defined as the differ-
ence between WTIO and SETIO indices. Forecasting the 
relative variability of the two regions in each of which the 
skill is not very robust proves to be a difficult task, although 
some significant skill beyond the first month is observed in 
the forecasts initialized in May–Nov. Here the December 
predictability barrier hinted at by the SETIO ACC values 
is strongly evident.

The TASI SST anomaly index is an indicator of the 
meridional surface temperature gradient in the tropical 
Atlantic Ocean. It was defined by Chang et al. (1997), where 
it was associated with a potential decadal ‘dipole’ mode of 
coupled variability in the tropical Atlantic. The GEOS-5 
ability to predict the TASI values is robust but short lived: 
for all initialization months except Aug–Oct (and Feb–Mar), 
the ACC drops below the significance level after 2–3 months 
(bottom right panel in Fig. 6). The higher skill for these fore-
casts may be associated with the strength of the TASI signal: 
the amplitude of the index is peaking during these phases 
of the seasonal cycle (see the bottom right panel of Fig. 4).

MSSS is a characteristic of how well the anomaly ampli-
tude is forecasted. Even when correlation skill is high, the 
systematic over/under-prediction of the anomaly would lead 
to a lower MSSS. In equatorial Pacific Ocean indices MSSS 
becomes negative across the spring barrier. In the Niño 4 
region this can be related to an overextension of the warm 
pool to the west, and thus a consistent overestimation of 
the warm SST anomalies. Figure 1 of the Online Resource, 
showing the historic performance of the GEOS-5 Niño 4 
index, illustrates this point: the El Niño amplitude was over-
estimated in 1982/83, 1991/92, 1997/98, 2002/03, 2006/07 
and 2015/16 cases. Additionally, and this is evident in all 
three equatorial indices, the system tends to falsely predict 
a warming trend (as opposed to the neutral condition in real-
ity) for the following spring/summer for forecasts starting 
in boreal winter. This contributes to the drop in anomaly 
correlation skill (spring barrier) and the low amplitude skill.

For the Indian Ocean, while ACC/MSSS skills for the 
Western and Southeastern indices appear to be significant/
positive for most of the forecasts, both skills for the IDM 
index are low except for the May–November starts, and even 
for these, the predictable lead time is 2–5 months. This is 
comparable to other dynamic models (Shi et al. 2012). The 
Tropical Atlantic Ocean index skill shows forecast outper-
forming climatology in terms of error absolute value, as well 
as anomaly correlation, for the short term predictions (2–4 
months).

4.2.3 � Case study: major El Niño event of 15/16

Figure  8 shows spaghetti plots of the ensemble mean 
forecasts for each start month for 2015–2016 (in color). 
Observations from Reynolds SST are shown by a solid 
black line, ocean analysis is shown by a dashed black line. 
The color scale represents the ratio between the forecast 
absolute departure from the observations and the stand-
ard deviation of the ensemble at that particular lead time. 
High values of this measure may be indicative of ensem-
ble under dispersion. The 2015/2016 El Niño was con-
sidered a Central Pacific event so of all the indices, the 
Niño 4 index in the Western Pacific exhibited the smallest 
observed anomaly compared to other Pacific Ocean indices 
and Niño 3.4 had the highest observed anomaly. GEOS-5 
overpredicted the magnitude of the SST anomaly at the 
peak of the El Niño in the western central Pacific (Niño 4 
index) by as much as 1.5 °C. The timing was also missed 
by summer and fall (Jun–Nov, 2015) forecasts, they all 
showed the maximum in January 2016, while it occurred 
in Nov 2015. So great was the forecasts departure from the 
observations, that the latter barely fit within the ensem-
ble envelope in October, 2015 through January, 2016, the 
ensemble mean being as far from the observations as 4 
standard deviations of the ensemble. The maximum of 
the cooling phase was also overpredicted by more than 
1 °C, and the timing was too early: the winter and spring 
(Jan–Jun, 2016) forecasts showed the lowest temperature 
in August 2016, while in reality, the cooling gradually 
took place over the course of 2016.

GEOS-5 accurately predicted surface warming in the 
Niño 3 region as early as March 2015. The following fore-
casts, starting in boreal summer (Jun–Aug, 2015), showed 
the warming being too early by about 2 months, however the 
timing of the peak SST anomaly in November 2015–January 
2016 was predicted well by all spring and summer forecasts 
except August 2015, which showed the peak in February 
2016. This was also the warmest of all the predictions; the 
rest of the forecasts were within 0.5 °C of observations, 
which corresponds to roughly one standard deviation of 
the ensemble. The amplitude of the cooling following the 
El Niño peak in this region was overpredicted by the fore-
casts initialized in April and May 2016 (they called for a 
moderate La Niña), while the rest of the forecasts, earlier 
(Jan–Mar, 2016) and later (June, 2016 onwards) predicted 
neutral conditions.

Note the peak of the 2015/2016 El Niño event that 
occurred in the NDJ season for the equatorial indices. The 
GEOS-5 model predicted the correct timing and magnitude 
of this peak for the Niño 3.4 index starting in February 
2015. This index is the one most widely used for ENSO 
forecasting, thus intercomparison between various models 
is readily available. GEOS-5 model performs similarly to 
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most other models involved in NMME, although more often 
than not, it tends to have stronger ENSO events than other 
models.

The Niño 1 + 2 region reached its peak anomaly in July 
2015. The GMAO model predicted the timing of this event 
starting in March but underestimated the magnitude by 
0.5 °C. The June forecast was very close to the observations 
in timing and magnitude. In all regions, the forecast of the 
cooling phase of the ENSO starting in May, 2016 was exag-
gerated for all four indices. By July, 2016, start time, the 
equatorial indices forecasts picked up the transition to the 
neutral conditions.

Figure 9 shows the evolution of the SST and the next fig-
ure (Fig. 10) shows the equatorial subsurface temperature 
during the onset of the 2015/2016 El Niño. The overexten-
sion of the warm water anomaly to the west of the date line 
clearly shows the forecast difficulty in the Niño 4 region. 
It is consistent with lower skills in this area, as noted in 
Ham et al. (2014b). The GEOS-5 system exhibited simi-
lar behavior during the previous ENSO events (1997/98 

El Niño and 1982/83 El Niño, see Online Resource 1–6 
illustrating the historic SST indices values in the GEOS-5 
forecasts).

5 � Forecast bias and skill: T2M and precipitation

Similarly to the SST, but for temperature at 2 m (T2M) and 
precipitation, we first present the global forecast bias maps 
and then discuss the regional skills and case studies of two 
extreme events.

5.1 � Global bias

The bias shown in Figs. 11 and 12 is the systematic depar-
ture in predicted and observed climatology during the 
30 year (1982–2011) period. For both T2M and precipi-
tation, MERRA-2 (Bosilovich et al. 2016; Molod et al. 
2015) data was used as the observational validation refer-
ence. The first lead month and the third lead month bias 

Fig. 8   Niño 4, Niño 3, Niño 3.4 and Niño 1 + 2 monthly mean SST 
forecasts; the solid color lines show the ensemble mean, the black 
line is observations (Reynolds SST), the dashed black line is the 
ocean analysis from which the initial conditions for the forecasts were 

generated. The color scale represents the ratio between the forecast 
absolute departure from the observations and the standard deviation 
of the ensemble at that particular lead time



7349GEOS-5 seasonal forecast system﻿	

1 3

Fig. 9   Evolution of the equatorial Pacific Ocean SST during the onset of the 2015–2016 El Niño. Left panel is the monthly mean forecast SST 
from May 2015 initial conditions. Right panel is the concurrent MERRA ocean analysis



7350	 A. Borovikov et al.

1 3

Fig. 10   Evolution of the subsurface equatorial Pacific Ocean temperature during the onset of the 2015–2016 El Niño. Left panel is the forecast 
monthly mean T from May 2015 initial conditions. Right panel is the concurrent MERRA-ocean analysis
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for winter and summer are showed. The largest bias for 
T2M is over the winter Arctic Ocean and it increases with 
lead time. GEOS-5 underestimates the sea ice temperature 
in winter. For the northern hemisphere summer, GEOS-5 
tends to overestimate T2M over land, especially in Asia and 
the west coast of North America. Overall the bias for T2M 
remains small over the tropical oceans in all seasons over 
the full length of the forecast. The bias for precipitation 
varies slightly with lead time for both winter and summer. 
Larger bias is found in the summer than in the winter over 
land in the northern hemisphere. This is possibly due to the 
fact that summer precipitation over land is more likely to 
be affected by regional and local factors, thus uncertainty in 
model parameterization as vegetation cover, cloud physics 
etc. could play larger roles in the precipitation bias.

5.2 � Forecast skill

Seasonal skills of T2M (Fig. 13) and precipitation (Fig. 14) 
are calculated as anomaly correlations between GEOS-5 
forecast and observations. GEOS-5 performs well for T2M 

for the first lead month for all seasons, especially over the 
tropical oceans. Although the T2M skills over the tropical 
oceans remains high even after 6 months, the skills over 
land diminish quickly after the first lead month. Precipita-
tion skills are generally lower than those of T2M, and there 
is hardly any skill after the first month for the extratropics. 
However, over the East Pacific Ocean, where ENSO has a 
dominant influence on precipitation, the anomaly correlation 
remains high until the sixth lead month.

5.2.1 � Regional average skills and case studies

For the discussion in this section we consider special 
regions of particular socio-economic interest: the Amazon 
basin bounded by 80°W–50°W, 20°S–10°N, the Great Plain 
between 30°N–50°N, 110°W–100°W and Southern India 
between 10°N–15°N, 77°E–80°E. These areas are shown 
by pink rectangles in Fig. 1 and labeled Amazon, GP and 
SI respectively.

A closer look (Fig. 15, top row) at the broad region 
encompassing the Amazon River basin reveals a good 

Fig. 11   An example of 2 m air temperature seasonal forecast bias for 1 and 3 months lead times. Winter and summer observed and predicted 
fields are shown in the two top rows. The bottom row shows the differences between the model and the observations
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overall skill in terms of anomaly correlation for both T2M 
and precipitation throughout the seasonal forecast. For the 
initialization months Jan–May, it stays above 0.4 up to lead-
month 9 and for Jun–Jul it starts above 0.6 for the first month 
and drops below 0.4 only after month 6.

Seasonal forecasts serve as an important prediction tool 
for extreme events. At the current stage, there are uncer-
tainties and difficulties in seasonal forecasts to accurately 
capture certain events. However, it is intriguing to see how 
GOES-5 performs in various extreme events. Two exam-
ples of such extreme events will be discussed next: drought 
over the Great Plains in 2012 and flood over the southern 
India coast in 2015. Figure 15 (middle and bottom panels) 
shows the T2M and precipitation anomaly correlation skill 
in these regions. One can see that there is little correlation 
between the observations and the predicted precipitation, 
yet the strong signal during the extreme events may give an 
opportunity for the forecast to capture its characteristics.

In the scatter plots in Fig. 16, one to four month lead 
forecasts of T2M and precipitation are plotted against 
the observations for the two events. The anomalies are 

standardized using the corresponding standard deviation. 
In the case of the Great Plain drought, GEOS-5 underesti-
mates the deficit in both temperature and precipitation for 
all lead months. The underestimations are most obvious 
in the spring initialized forecasts and gradually decrease 
closer to summer. By May and June, GEOS-5 clearly pre-
dicts hotter and drier conditions for that summer, although 
the magnitude of the drought is less than in observations. 
The Great Plain is a region where the local water cycle is 
sensitive to the land surface representations and therefore 
is sensitive to land initializations. This characteristic of the 
region is also presented in this scatter plot. For the case 
of the southern India flood, GEOS-5 shows a much larger 
model spread for every initialization month. However, the 
large model spread highlights the low predictability of 
the seasonal forecast. The southern India flood is highly 
related to the location and strength of the Indian winter 
monsoon. The winter monsoon predictability therefore 
highly restrains the performance of the GEOS-5 seasonal 
forecast for floods.

Fig. 12   An example of precipitation seasonal forecast bias for 1 and 3 months lead times. Winter and summer observed and predicted field are 
shown in the two top rows. The bottom row shows the differences between the model and the observations



7353GEOS-5 seasonal forecast system﻿	

1 3

6 � Sea ice outlook

Seasonal forecasting systems focus on the ability of cou-
pled atmosphere/ocean models to predict variability in the 
tropical Pacific Ocean and it’s associated higher latitude 
teleconnections (Kirtman et al. 2014). For middle and high 
latitudes, predictability derived from local oceanic sources 
has been thought to be limited (e.g., Barsugli and Battisti 
1998). But Arctic sea-ice cover has a decorrelation time 
scale of up to 5 months (Blanchard-Wrigglesworth et al. 
2011). Moreover, model experiments have indicated sea-
ice predictability on seasonal time scales and longer, with 
indications of signal re-emergence beyond 1 year (Holland 
et al. 2010; Tietsche et al. 2014; Guemas et al. 2016). The 
prospect of a predictability reservoir has received consider-
able interest (Richter-Mengeet al. 2012; Stroeve et al. 2014; 
Hamilton and Stroeve 2016). Potentially, seasonal forecasts 
of sea ice have utility for a variety of human endeavors 
including commerce, mineral exploration, and indigenous 
activities (Stroeve et al. 2015). Arctic sea-ice extent is 
also considered a climate variable. Mechanisms control-
ling its variability and trend are the subject of extensive 
observational and modeling studies (e.g., Perovich and 
Richter-Menge 2009; Vaughan et al. 2013). The presence of 

floating ice on the ocean radically alters surface properties; 
it has immediate influence on the exchange of energy and 
moisture between the ocean and the overlying atmosphere. 
Model experiments have demonstrated the impact of ice 
cover on regional Arctic climate, including air temperature 
and precipitation (Deser et al. 2010; Alexander et al. 2004), 
and studies have also suggested an influence on large-scale 
conditions extending beyond the immediate Arctic Basin 
(Thomas et al. 2014). In 2008, a challenge was formulated 
for comparing and evaluating experimental seasonal pre-
dictions of the September Arctic sea-ice extent (ARCUS 
2008), which became known as the Sea Ice Outlook. Many 
of the seasonal forecasting systems involved with NMME 
have participated, including the GMAO. Results have been 
mixed. Assessments have shown that predictions have 
reduced skill in years where the observed ice cover departs 
significantly from the long-term trend (Hamilton and Stro-
eve 2016). Subsequent evaluation of models participat-
ing in the Sea Ice Outlook has shown that forecasts have 
difficulty surpassing the skill of damped persistence, and 
difficulty predicting each other (Blanchard-Wrigglesworth 
et al. 2015).

Forecasts submitted to the Sea Ice Outlook were com-
posed of the ensemble members initialized at every 5 days 

Fig. 13   Monthly mean 2 m air temperature anomaly correlation for seasonal forecast and observations (MERRA-2)
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of the prior month, along with ten members initialized at 
the beginning of the month. Unlike the ENSO forecasts and 
the ensemble members submitted to NMME, the sea ice 
forecasts made use of three experimental members, which 
were produced in hindcast mode beginning in 1993. These 
experimental members featured the inclusion of altimeter 
data, which was obtained from the Archiving, Validation 
and Interpretation of Satellite Oceanographic data project 
(AVISO; http://www.aviso.altimetry.fr/) and used in the 
ocean assimilation.

As shown in Fig. 17, the GMAO system has performed 
well in comparison to other models over the period in 
which it has participated in the Sea Ice Outlook. For 
the previous three Outlooks, the average extent error is 
0.32 ± 0.22 × 106 km2 for the GMAO system as compared 
to 0.57 ± 0.42 × 106 km2 for the average of all dynamical 
predictions. The uncertainty denotes the standard devia-
tion of the forecast errors. Figure 18 also indicates that 
the spatial patterns for the September 2014 forecast were 
similar to the observed pattern. Over the hindcast period 
of 1998 to 2015, the June forecast explains 49 percent of 
the observed September ice extent variance, which may 
be considered of marginal skill. But this belies several 
critical issues with the forecast system, which are largely 

associated with initial conditions. As previously noted, 
the MERRA atmospheric reanalysis is used in the ocean 
assimilation. Cullather and Bosilovich (2012) found near-
surface air temperatures in MERRA are as much as 10 °C 
too warm in the late Arctic spring, owing to an errone-
ously low, fixed sea-ice albedo used in the uncoupled 
atmospheric reanalysis. The surface temperature bias and 
its effects on the GEOS-iODAS oceanic temperatures led 
to an anomalous reduction in forecast ice cover initial-
ized during early summer months. Figure 20 indicates the 
increase in forecast error in summer months, such that fore-
cast skill actually becomes reduced with decreasing lead 
time. This inhibits contributions to the Sea Ice Outlook for 
one- and two-month lead times to the September Arctic 
ice minimum. The June Outlook contributions are based 
on the prior month’s initialization. Analysis of hindcasts 
also finds low ice cover for spring forecasts initialized dur-
ing the first ODAS data stream covering the period until 
1993, as shown in Fig. 19. Low ice volume associated with 
this stream and the interaction with the erroneously warm 
atmospheric forcing in the analysis results in poor ice fore-
casts over the time period. Hindcast skill improves in the 
later GEOS-iODAS stream and with the introduction of 
altimetry-based forecast ensemble members after 1993; as 

Fig. 14   Monthly mean precipitation anomaly correlation for seasonal forecast and observations (MERRA-2)

http://www.aviso.altimetry.fr/
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seen in Fig. 19, variability in the ensemble mean forecast is 
comparable to observed values after 1998. The period from 
1998 to the present is used for a simple bias correction 
in the forecast to account for differences with the NSIDC 
Sea Ice Outlook. This is a common practice among Sea 
Ice Outlook participants. Over the full period, forecast ice 
cover for the Southern Ocean is patchy and not comparable 
to observation.

The lessons learned from this initial seasonal forecast-
ing system exercise are useful in the construction of new 

forecast systems. First, the contrast in the competitiveness 
of the system shown in Figs. 17 and 18 with the difficulties 
indicated in Figs. 19 and 20 suggest the continued exper-
imental nature of sea-ice forecasts on these time scales, 
but also that some significant improvement is relatively 
straightforward—for example, with improved atmospheric 
temperature forcing of the ocean analysis in the melt season 
such as in MERRA-2 (Bosilovich et al. 2016). The util-
ity of hindcasts for the general characterization of the sea-
ice forecast system suggests that the anomaly forecasting 

Fig. 15   The anomaly correlation for T2M (left) and precipitation 
(right) between the forecast and MERRA-2 for Amazon River basin 
(top), Great Plain (middle) and Southern India (bottom) regions. Tar-
get month (x-axis) represents the date of the forecast, and the lead 

month (y-axis) represents how long that forecast was in months, i.e. 
target month May with lead 4 means May forecast initialized in Feb-
ruary
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approach of NMME is also advantageous for the Arctic. 
But the simple bias correction approach that has been here-
tofore used is likely problematic. Bias correction of the 

hemisphere-summed ice extent is a means of addressing 
an inadequate representation of seasonality in the model, 
but it is mostly used here to address the mismatch of the 
land-sea mask between various models and observing sys-
tem grids (see for example, Blanchard-Wrigglesworth et al. 
2016). A better methodology for sea-ice intercomparison 
between models and observations is required. The issues 
shown here emphasize the role of initial climate conditions 
for improved forecasts. This includes an investigation for 
improving the representation of sea-ice characteristics in 
the analysis state.

7 � Conclusions

In this study we provide the details of the GEOS-5 seasonal 
forecast system setup, which is used in particular to pro-
vide monthly contributions to the NMME project. The SST, 
T2M, precipitation and sea ice extent skills are documented 
for the comparison with other systems and to track the dif-
ferences, hopefully, improvements, with the future system 
currently under development. Notable problems in the cur-
rent system are the large SST drift in the northern Atlantic 
Ocean (strongest for the forecasts initialized in winter and 
spring), in the equatorial Pacific Ocean (strongest for the 
forecasts initialized in winter and spring), in the northern 
Pacific Ocean (for the forecasts initialized in late fall and 
winter) and in the Southern Ocean (for the forecasts initial-
ized in austral winter). Anomaly correlation SST skill is 
poor in the western Pacific Ocean (Niño 4 index) relative 
to the central and eastern equatorial regions (Niño 3 and 
Niño 3.4 indices). This is related to the overextension of 
the warm water anomaly to the west during the El Niño 

Fig. 16   Case studies of the drought over the Great Plains in 2012 and 
the flood over the Southern India coast in 2015. One to four month 
lead forecasts of T2M and precipitation are plotted against the obser-
vations (MERRA-2). For the Great Plain the target month is July 

2012, for the South India region the target month is November 2015. 
The anomalies are standardized using the corresponding standard 
deviation

Fig. 17   Comparison of forecast September Arctic ice extent error 
from submitted June Sea Ice Outlook models for the period 2014–
2016. Yellow dashed line indicates the average error over the 3 years. 
Error is computed as the difference of the forecast value minus the 
extent from passive microwave data (Cavalieri et al. 1996)
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events. Ham et al. (2014b) attributes this to the weak ther-
mal damping and the erroneous zonal advective feedback 
as a response of the wind-driven current to the wind forc-
ing. The strong ocean sensitivity to the wind forcing may 
be mitigated in the future by coupling the ocean with the 
new improved atmospheric analysis (MERRA-2), in which 
the surface winds are significantly improved compared to 
MERRA (Bosilovich et al. 2016), in particular, over the 
western equatorial Pacific Ocean.

The largest (negative) bias for T2M is over the winter 
Arctic Ocean related to the fact that GEOS-5 underestimates 

the sea ice temperature in winter. The largest positive T2M 
bias occurs during the northern hemisphere summer over 
land, especially in Asia and the west coast of North Amer-
ica. T2M is not significantly biased over the tropical oceans. 
The largest precipitation bias is found in the summer over 
land in the northern hemisphere, likely related to the uncer-
tainty in model parameterization of vegetation cover, cloud 
physics etc. Anomaly correlation T2M skill is high for at 
least 6 lead months for all seasons over the tropical oceans, 
but drops quickly (after 1 month) over land. Significant pre-
cipitation skills in terms of anomaly correlation are found 
only over the equatorial eastern Pacific Ocean, where ENSO 
has a dominant influence on precipitation. Everywhere else 
the anomaly correlation drops to near zero after the first 
month of the forecast.

The experimental sea ice forecast provides a benchmark 
for the future system evaluation. The current GEOS-5 sys-
tem is on par with other comparable models based on the 
3 year comparison within the Sea Ice outlook project. Yet 
there are known shortcomings in the sea ice initialization 
and ocean and atmospheric feedbacks. In addition to pro-
viding better forcing to the ocean model via MERRA-2 
analysis, the sea ice forecast has a potential to benefit from 
assimilating new types of observations during the ocean and 
sea ice initialization procedure, such as sea surface height 
and ice thickness.

The GEOS-5 seasonal forecast system has been in service 
since early 2012. Since its inception, new versions of the 
models have become available, and the new ensemble ocean 
and sea ice assimilation system that is capable of processing 

Fig. 18   September 2014 forecast and the observed spatial pattern of Arctic sea ice

Fig. 19   September mean sea ice extent from NSIDC Sea Ice Index 
(solid black line; Fetterer et  al. 2016), and from ensemble members 
of the June forecast (grey lines). The ensemble mean is indicated with 
a black dashed line, and a bias-correction is indicated with a dotted 
line, in 106 km2
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new data types has been put in place. As the next system is 
being developed, this paper will be among those providing 
reference for evaluating its performance.
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