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moisture settings in regard to land cover types contribute 
to the variations among simulations. These results indi-
cate that formal land cover uncertainty analysis should be 
included in MCD12Q1-fed climate modeling as a routine 
procedure.
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1  Introduction

Many global land cover datasets have been used by 
research communities exploring land surface processes and 
land–atmosphere interactions at regional to global scales 
(Sterling and Ducharne 2008). In the 1990s, global land 
cover datasets derived from the Advanced Very High Reso-
lution Radiometer (AVHRR) became available (DeFries 
et  al. 1995; Hansen et  al. 2000; Loveland et  al. 2000). 
Later, Moderate-Resolution Imaging Spectroradiometer 
(MODIS), on board the Terra (1999) and Aqua (2002) 
satellites, with improved spectral, spatial, geometric, and 
radiometric characteristics, provided new opportunities for 
remote sensing-based global land cover mapping research. 
The MODIS Land Cover Type (MCD12Q1) dataset was 
first produced (Friedl et  al. 2002) soon after data from 
the sensors became available and continue to be updated 
(Friedl et al. 2010). Unlike other similar moderate resolu-
tion datasets that were produced for limited time periods, 
such as GLC2000 (Bartholome and Belward 2005) from 
SPOT VEGETATION and GlobCover (Arino et  al. 2008) 
from MEdium Resolution Imaging Spectrometer (MERIS), 
MCD12Q1 provides yearly products from 2001. They are 
widely used in studies of atmospheric science, hydrology, 
ecology, and land change science (Guenther et  al. 2006; 
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Gerten et  al. 2004; Reichstein et  al. 2007; Turner et  al. 
2007).

In regional climate modeling, land cover is a key com-
ponent (Cotton and Pielke 2007; Pielke et al. 2007). Vari-
ous models, including the Regional Atmospheric Modeling 
System (RAMS) and the Weather Research and Forecast-
ing (WRF) model, were found to be sensitive to input land 
cover data. Stohlgren et  al. (1998) successfully simulated 
the phenomena of lower summer temperature in Colorado 
mountains as a result of agriculture and urban land cover 
change in the plains, using the RAMS model. Ge et  al. 
(2007) reported that input land cover data with accura-
cies lower than 80% would have strong impacts on RAMS 
precipitation simulation in East Africa. Sertel et al. (2010) 
replaced the default Global Land Cover Characteristics 
dataset in the WRF model with a newly developed land 
cover map from recent Landsat ETM+ and achieved better 
temperature simulations for Northwest Turkey. MCD12Q1 
products are used widely as input for climate models, but 
data quality is rarely fully considered. Although the overall 
classification accuracy of MCD12Q1 products is assessed 
at 74.8% (MODIS Land Team 2014), it can be much lower 
for certain classes or in certain regions. Zeng et al. (2015) 
reported an overall accuracy of MCD12Q1 Version 5.1 at 
64.62% for China, varying between 36.11 and 76.52% in 
different provinces and between 3.74% (shrublands) and 
82.92% (water bodies) in different land cover classes. Con-
fidence assessment maps (McIver and Friedl 2001) are pro-
vided with the products, but they do little to help in under-
standing the impact of data quality on climate modeling 
outputs.

Inaccuracies in land cover products arise in every step of 
data production (Congalton et al. 2014) and are described 
in different terms (Messina et  al. 2008). In this study, we 
focus on “uncertainty” as the degree of data fidelity open to 
question, instead of “error” as discrepancies between data 
and reference. Land cover errors are typically recognized 
via disagreement between one land cover dataset and a ref-
erence map, e.g. ground control or other land cover datasets 
(Cohen et al. 2003; Giri et al. 2005; Ran et al. 2010; Fritz 
et  al. 2011). Land cover error propagation is then studied 
by comparing modeled outputs obtained using different 
land cover inputs (Yin et al. 2007; Ge et al. 2009; DeVis-
ser and Messina 2009; Gao and Jia 2013). However, land 
cover comparisons are often problematic, since data were 
usually collected in different years, different spatial scales, 
and coded in inconsistent classification schemes. In this 
paper we explore MCD12Q1 uncertainties routinely intro-
duced by classification processes through the use of the 
time series of MCD12Q1 products themselves. A simi-
lar approach to assess the quality of MCD12Q1 at global 
scales was introduced by Liang and Gong (2010), which 
hypothesized that locations with highly unstable land cover 

classes over time are more likely to be suffering from clas-
sification process inaccuracy rather than experiencing 
actual land cover changes. Thus, we propose to be able to 
quantify the uncertainty of land cover data from unstable 
locations and develop models to propagate this uncertainty.

Using a large region around Urumqi as the case study 
area, we explored the levels of land cover uncertainty 
embedded within the time series of MCD12Q1 products for 
this area and explored the impacts of uncertainty propaga-
tion through RAMS. We answered two specific research 
questions. (1) How should uncertainty within the time 
series of MCD12Q1 products be characterized? (2) What 
are the propagation impacts of MCD12Q1 uncertainties on 
regional climate simulations?

2 � Study area and data

Our study site, Urumqi, is an oasis metropolis in semi-arid 
northwest China (Fig. 1a). The average yearly temperature 
is 6.9 °C, and average yearly precipitation is 286.3  mm, 
with summers slightly wetter than winters. The city sits on 
the northern foot of Tianshan Mountains and southern edge 
of the Dzungaria Basin. The area for analysis was selected 
to cover a mountainous region within 42.5°N–45°N, 
86°E–88.5°E, roughly 5.6 × 104  km2 (Fig.  1b). Elevation 
ranges from below sea level at Turpan Depression to over 
5000  m on nearby mountain peaks. Vegetation is most 
abundant along the northern slope of the mountains and 
declines to desert both north and south.

Urumqi was selected as a target city for its rapid growth 
and hypothesized sensitivity to climate change. When pre-
paring land cover inputs for regional climate simulations, 
we discovered the spatially extensive class-flipping prob-
lem in the MCD12Q1 product: pixels frequently alternat-
ing between pairs of land cover classes over time. Due to 
the particular political environment, collection of ground 
reference data by foreign institutes is prohibited, preclud-
ing the production of a typical error assessment. Therefore, 
we could not assess single time period classification errors 
with  regard to ground control. However, as we discov-
ered that class flipping was largely limited to classes with 
acknowledged significant impacts in climate simulations 
(e.g., Stohlgren et al. 1998), we sought to characterize these 
propagation impacts.

MCD12Q1 is a yearly product available from 2001 
to the present. The base algorithm is a C4.5 (Quinlan 
1993) decision-tree and ensemble classifications are esti-
mated using boosting. Classification inputs 12 sets of 
32-day average nadir BRDF-adjusted reflectance (Schaaf 
et  al. 2002) for MODIS band 1–7, enhanced vegetation 
index (Huete et  al. 2002) and land surface temperature 
(Wan et  al. 2002) together with their annual minimum, 
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maximum and mean. The high temporal resolution of 
these datasets made it possible to utilize phenological 
and other temporally variable information to facilitate 
classification. Outputs then go through a 3-year moving-
window stabilization procedure to reduce the amount of 
spurious inter-annual changes from 30 to 10% (see Friedl 
et  al. 2010 for more details on MCD12Q1 production). 
However, the producer suggested that this rate is still well 
above the actual global land cover change rate, leaving a 
large model output space to data uncertainty. Urban areas 
were produced separately from other land cover types 
using MODIS data from 2001 to 2002 (Schneider et  al. 
2009), and have not been updated.

In this paper, subsets of MCD12Q1 products are used 
to study uncertainty in the Urumqi region of northwest-
ern China (Fig.  1a). The study area covers a semi-arid 
mountainous region within 42.5°N–45°N, 86°E–88.5°E, 
roughly 5.6 × 104  km2 (Fig.  1b). Version 5.1 MCD12Q1 
products with a spatial resolution of 500 m were acquired 
from 2001 to 2012 using the IGBP class layer (e.g. 
Fig.  1c). Most years show unrealistically high (above 
10%) inter-annual change rates as compared to previ-
ous years (Fig. 1d), suggesting that something other than 
actual land cover change is occurring (Zhang et al. 2007).
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Fig. 1   An overview of the study area and MCD12Q1 dataset: a location of the study area in China, shown in the red box (Map data: Google), b 
elevation map, c MCD12Q1 of year 2011, and d annual change percentage of the MCD12Q1 for the study area
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3 � Methods

3.1 � Land cover uncertainty

Since stability is the dominant characteristic of land cover, 
uncertainty can be disentangled through a systematic evalu-
ation of changes. A change trajectory from 2001 to 2012 
was generated for each pixel. Two variables were com-
puted to characterize trajectories: the number of changes 
(C, Fig. 2a) and different varieties (V, Fig. 2b) of types that 
occupied the pixel. Pixels were further divided into groups 
based on the distributions of these two variables (Fig. 2c).

Stable pixels (C34) were those consistently classified 
throughout the period. Unstable (C  >  4) pixels were fur-
ther divided into two groups depending on V with a cutoff 
at 3. For the group with both high C and V, it is difficult 

to retrieve meaningful categorical uncertainty while the 
other group (high C low V, Fig. 2d) contains pixels flipping 
among a small set of land cover types. The latter indicates 
that the automated MCD12Q1 classification model may 
have difficulty in distinguishing between particular land 
cover types, especially for this study area or ecotone.

In order to find inter-category uncertainties, we subdi-
vided the 12-year trajectories of those flipping pixels into 
separate changes from one  year to the next. Table 1 shows 
the most frequent change directions. The first four direc-
tions account for over 85% of the total changes, and they 
perfectly cover two pairs of land cover types. For example, 
in 2011 over 9% of the entire landscape fell into these four 
spurious directions compared to 2010.

Figure  3a shows that the uncertain areas present 
some spatial structure across the entire landscape, with 
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Fig. 2   Temporal characteristics of MCD12Q1: a number of changes (C), b variety (V) of land cover types, c frequency distribution of C and V, 
and d flipping pixels
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concentrations in the northern and southeastern parts. 
Opposite directions tend to be spatially intermingled with 
each other, which suggest inherent spatial patterns with 
our discovered uncertainty. However, it could be argued 
that the spurious (or uncertain) inter-annual changes might 
result from particular farming practice or natural vegetation 
dynamics, thus not necessarily from data uncertainty.

To lend support to our findings, a set of Landsat 5 TM 
data were collected for our study area in August of respec-
tive years (Fig. 3b), along with those years of 16-day aver-
age Enhanced Vegetation Index (EVI) from MOD13A1 
Version 6 (Didan 2015) for 100 random sample locations of 
each spurious change direction (Fig. 3c). The August TM 
images were chosen for their low cloud cover and strong 
vegetation signal. In this semi-arid environment, croplands 
are heavily dependent on irrigation therefore showing vig-
orous green color in the pseudo-color TM images com-
pared to nearby natural grasslands. No large-scale shifts 
between grasslands and croplands were found in the TM 
images, as opposed to the spurious changes detected from 
MCD12Q1 (see Fig. 3a). Not surprisingly, the grasslands/
barren uncertainty is much harder to elucidate. The IGBP 
scheme defines barren as no more than 10% vegetation at 
any time of the year. It requires a reference dataset of high 
temporal resolution to distinguish between grasslands and 

Table 1   Spurious change directions

Rank From To Overall 
frequency 
(%)

2010 to 2011 (km2)

1 Grasslands Croplands 21.74 1366.00
2 Barren Grasslands 21.66 1696.75
3 Grasslands Barren 21.54 1064.00
4 Croplands Grasslands 20.87 988.00

grasslands−>croplands croplands−>grasslands barren−>grasslands grasslands−>barren
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Fig. 3   MCD12Q1 uncertainty vs. reference. a Spurious changes from 2010 to 2011. See Table 1 for spurious change ids; 0 refers to no spurious 
change. b Landsat 5 TM pseudo-color images (5, 4, 3), c Vegetation phenology at sample locations of each spurious change
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barren. The time series of EVI does not reveal much dif-
ference between year 2010 and 2011 for any sample groups 
(spurious directions). Year 2011 may have slightly higher 
averaged EVIs during the growing season but  this is the 
case in all samples. Therefore we consider the identified 
changes more likely to result from data uncertainty rather 
than actual land cover changes.

3.2 � RAMS

RAMS v6.0 (Cotton et al. 2003) is a state-of-the-art limited 
area model that numerically integrates the fully compress-
ible non-hydrostatic equations of motion, and it solves the 
equations of radiative transfer; water, heat and momentum 
exchange between the surface and air, turbulent bound-
ary layer transport, convection; and cloud microphysics. 
Boundary conditions from large-scale datasets allow the 
model to be nudged towards the large-scale data. Land 
surface conditions, including vegetation, soil, water and 
snow, interact with the atmosphere through the LEAF-3 
sub-model (Walko et  al. 2000), which can and should be 
customized to represent regional characteristics (Table 2). 
The IGBP classification system used in MCD12Q1 covers 
a broad swath of vegetation types for a large domain, trans-
lating to variabilities in these biophysical characteristics.

The main simulation domain has a 32 km spatial resolu-
tion and the nested domain has 8 km (Fig. 4). No finer grids 
were added due to their potentially massive computation 
demand and the fact that 8  km resolution is sufficient for 
the scale of this study. The 8 km grid was selected to span 
at least 6 grid points outside the landscape so that boundary 
nudging was not included in the domain. The 32 km grid 
was selected again to keep nudged pixels away from the 
inner grid and to give enough space for wave information 
to propagate across without creating large inhomogeneities 
at the boundaries. Given that prevailing winds are from the 
west we needed to make sure that the domain center was to 
the west of Urumqi. From this basic approach, we tested 
multiple configurations (slightly more north, slightly more 

west, etc) until we arrived at a grid configuration that vali-
dated well against historical data.

The land cover inputs were aggregated into coarser 
grids to match the nested domain resolution. The LEAF-3 
model examines the 500 m land cover lattices falling into 
each 8  km grid and calculates the fraction of area each 
land cover type occupies. Water fraction is always stored 
regardless of value. The other land cover types are sorted 
by abundance and stored into the 8 km grid for up to four 
types (e.g. Fig.  5). Therefore, sub-grid information was 
preserved to some degree.

A set of variables were selected as major outputs from 
RAMS, including sensible heat flux (SHF), latent heat 
flux (LHF), vertical motion (VM) at the top of bound-
ary layer, 2-m temperature (TEMP) and 10-m horizontal 
wind speed (WS) above land surface, and hourly precipita-
tion (HP). Although it is possible to retrieve all variables 
used in calculating atmospheric conditions, these six are 
key ones that describe climate and underlying energy and 
moisture exchange. Land cover classes with less vegeta-
tion should produce lower LHF and (depending on albedo) 
lower SHF. Lower SHF should be connected to lower 2 m 
air temperatures in smooth terrain. The changes in the vari-
ables we examined in detail depend sensitively on which 
specific biophysical parameters are involved. It is difficult 
to hypothesize about vertical motion, WS, and convection 
given that these variables are connected to spatial hetero-
geneity, thus dependent on the specific situation, which is 
what we are here to test. Of course, convection is linked 
to precipitation, so part of the reason for looking at these 
simulations is to estimate if coarse-scale, cohesive circula-
tions can develop solely from land cover uncertainty.

Table 2   Key biophysical parameters in LEAF-3 for uncertain land 
cover types

Land cover type Grassland Cropland Barren

Green vegetation albedo 0.22 0.18 0.00
Brown vegetation albedo 0.40 0.40 0.00
Emissivity 0.95 0.75 0.00
Max. total area index 5.00 5.00 0.00
Vegetation fraction 0.85 0.80 0.00
Vegetation height 1.00 1.10 0.00
Root depth 1.00 1.00 0.00
Min. stomatal resistance 100.00 500.00 0.00

Fig. 4   Simulation domains (Map data: Google, TerraMetrics)



4053MODIS land cover uncertainty in regional climate simulations﻿	

1 3

The RAMS model simulations were run and out-
put hourly from March 21 to June 25, 2011, but the first 
30-days were discarded for model spin-up. This time period 
was selected as the most recent non-drought, non-snow-
covered growing season onset period available for simulat-
ing a non-dormant vegetation signal.

3.3 � Uncertainty propagation

A range of uncertainty analysis methods are available for 
propagating input uncertainty through relatively simple 
applications (Wang and Gertner 2013). However, in com-
plex spatio-temporal system models like RAMS, uncer-
tainty effects on the results cannot be analytically esti-
mated, and may manifest in unknown spatial and temporal 
segments. Monte Carlo simulation is a widely applicable 
approach to study uncertainty propagation in complex non-
linear system modeling (Heuvelink 1998). The basic idea is 
to generate a set of statistically equivalent realizations for 
the uncertain input variable and then run the model using 
those realizations, thus producing a set of model outputs. 
Uncertainty propagation can be studied based on the distri-
butions of those outputs.

However in this case, defining a proper distribution 
for land cover is challenging, so we made a few assump-
tions. Let the two land cover types in an arbitrary spurious 
direction be A and B. (1) For a single pixel that changed 
in a spurious direction as shown in Table  1, it has equal 
probabilities of being either A or B. (2) The classification 
uncertainties between two consecutive years are system-
atic, which means all pixels that fell into a specific spuri-
ous direction were either all A or all B. (3) The spurious 
directions are independent from each other. We made such 
assumptions under the circumstance that: (1) real land 

cover changes are rare when compared to classification 
errors, (2) given the limited size of the study area, locations 
changed in the same spurious directions are more likely to 
have similar ground conditions, and (3) lack of any refer-
ence that helps determine error structure within pixels with 
spurious changes, e.g. false rates and spatial patterns.

Given the above assumptions, a binary control model 
(see e.g., Li et  al. 2014) was developed based on combi-
nations of spurious change directions. A simple on–off 
rule was used to generate possible land cover realizations 
within our defined uncertainty space. For example, from 
maps 2010 to 2011, if the direction grasslands-to-barren is 
turned off, all pixels that fell in this direction needed to be 
modified from barren to grasslands in the 2011 map. Since 
we discovered 4 spurious directions, the on–off perturba-
tion can be set to all these directions, thus yielding, in total, 
16 equally possible land cover realizations. All were later 
passed into RAMS, including the original 2011 land cover 
(the all-on realization) as reference, and the variations 
among their outputs were examined.

3.4 � Variation analysis

The variation among spatial–temporal outputs of RAMS is 
complex, and the temporal profiles and spatial patterns can 
be illustrated separately by aggregating data along differ-
ent dimensions. More specifically, for a temporal profile, 
domain-averaged daily series for a limited set of variables 
from the modeled outputs were calculated for each simula-
tion and presented together using box plots. For the same 
set of variables, pixel-based data ranges among simulations 
at every hour were calculated and then averaged over the 
entire analysis period to show spatial patterns.

Fig. 5   An example of land 
cover aggregation in LEAF-3
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Furthermore, we tested the effects of particular land 
cover perturbations by comparing each simulation with the 
reference. Mean and variance over the simulation period 
were selected to describe variabilities in climate, with t 
test and f test (von Storch and Zwiers 2001) performed at 
the pixel-level to examine whether the differences between 
simulation and reference are statistically significant. Due 
to the fact that climate variables are highly autocorrelated 
temporally, equivalent sample sizes (Zwiers and Storch 
1995) were calculated and used to adjust calculations for 
significance tests. In addition, all simulations were com-
bined into a whole population and compared with the refer-
ence. All these post-analysis of RAMS outputs were imple-
mented using NCAR Command Language (NCL) 6.2.0.

4 � Results

4.1 � Overall uncertainty propagation

As illustrated in Fig.  6, for the entire study area, land 
cover uncertainties affected LHF substantially, with 

daily ranges among simulations at 4.32  W/m2 in aver-
age, accounting for 14.64% of its overall data range. 
SHF (2.44  W/m2, 1.57%), WS (0.08  m/s, 1.24%) 
responded slightly, while TEMP (0.08 °C, 0.67%), HP 
(3.29 × 10− 5  mm/h, 0.65%) and VM (6.88 × 10− 4  m/s, 
0.33%) revealed little impact. The range of differences 
appeared to diminish over time.

Unlike domain-averaged results, substantial differ-
ences were found in most variables with great spatial het-
erogeneity (Fig. 7). At roughly 44°N, 87°E, a hot spot was 
evident in SHF, LHF, TEMP and WS, which corresponds 
to the areas with high grasslands/croplands uncertainty. 
The associated northeast down-wind area also manifests 
impacts in SHF, VM and WS, likely demonstrating a spa-
tial propagation effect. Additionally, the hourly anima-
tion (see supplementary file) presents a daily east–west 
movement within this down-wind area. Another hot spot 
(~43°N, 87.5°E) emerged with high VM and moderately 
high TEMP and WS variations. It is collocated in an area 
with grasslands-barren uncertainty on mountain slopes. 
As for HP, greater impact was found along the western 
border where most of the resolved precipitation occurs.

Fig. 6   Box plots of daily domain averages
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4.2 � Comparison among simulations

Figure  8 shows the percentage of pixels identified as sig-
nificantly different from the reference in mean or variance. 
Different means suggest changes in their distribution base-
line while different variances suggest changes in the mag-
nitude of their fluctuations. In general, two variables stand 
out in the significance tests, LHF and HP. For LHF, similar 
amounts of pixels were identified to have different means or 
variances, but HP differs only in variances and more pixels 
were affected comparing to other variables. SHF, VM and 
WS emerged, while TEMP was found not significant in any 
case.

For simulations with only one direction turned off, 
manipulations on direction 1 and 4, which are grasslands 
to/from croplands, had the greatest impacts. Direction 2 
and 3, barren to/from grasslands, caused smaller changes. 
When more directions were altered together, the patterns 
of significant pixels become complicated. Direction 1 and 
4 slightly mitigated each other, and did more so on HP 
than on LHF, while direction 2 and 3 seems added up on 
each other. Combinations on three or more directions even 
resulted in significant pixels in VM and/or WS.

Finally, the combined experiment shows that the aggre-
gated results exhibited different distributions for only LHF 
and HP, variables that are strongly connected to the pres-
ence of water. For LHF, pixels with significantly different 
means or variances were both around 3%; and for HP, there 

were no significant differences in mean, but over 12% of 
the pixels showed significantly different variances. Figure 9 
further illustrated the area and magnitude of such differ-
ences. The statistical significant pixels for LHF in both t 
test (Fig. 9a) and f test (Fig. 9b) seem connect to locations 
with high land cover uncertainty. All the significant pixels 
in Fig. 9b have values over 1, suggesting greater variabil-
ity comparing to the reference. Variability in precipitation 
(Fig. 9c) exhibit a more complex pattern.

5 � Discussion

Grasslands/croplands and grasslands/barren were the major 
categorical uncertainties identified in the study area. These 
three land cover types were also the most prevalent types 
in this area. The specific reasons for these uncertainties to 
occur is buried in the particular classification model and 
model inputs used to produce the MCD12Q1 products. 
However more broadly speaking, such uncertainties may 
be the product of ambiguous class definitions or thresholds 
for classification that happen to fall near the natural break 
point in any particular ecoregion. For example, any sin-
gle class may describe an overly broad feature space, e.g. 
grasslands in lush or sparse form. Alternatively, different 
classes may overlap in feature space, e.g. lush grasslands 
vs. croplands and sparse grasslands vs. barren. These types 
of problems are hard to wholly avoid, therefore assessing 

Fig. 7   Average ranges over the analysis period, from April 20 to June 25, 2011



4056	 X. Li et al.

1 3

effects on applications might be a better error assessment 
strategy.

In our experiments, the grasslands/croplands uncertainty 
is the biggest contributor to the propagated impacts through 
climate simulation. Although the grasslands/barren uncer-
tainty are more different biophysically and more extensive 
in space, their propagated effects were considerably lower. 
This outcome was not what we expected. However, the 
underlying factor, as it turns out, is how soil moisture is 
modeled in RAMS with very different parameter settings 
for natural landscapes vs. irrigated croplands. In this appli-
cation, irrigated croplands always have the soil set at the 
saturation level, which obviously affects the evapotranspi-
ration and propagates further to energy and moisture fluxes 
in atmosphere. LHF is directly related to this matter thus 
emerging as the most impacted variable overall. Interesting 
impacts on HP emerged as well. Although most of the pre-
cipitation in this semi-arid region resolved along the west-
ern border, where the greatest ranges among simulations 
occur, statistically significant changes were only found in 
locations related to landcover uncertainty.

There were discrepancies between the areas identified 
in range maps and significance tests. The range maps sug-
gested that greater spatial extents, even beyond the uncer-
tain locations, were affected to varying degrees. While 
many of these spatially extensive disturbed regions were 

not statistically significant for impacts, it does not at all 
mean that these insignificant disturbances are irrelevant. 
For systems focusing on aspects other than overall means 
and variances, such as critical values or certain space–time 
subsets, areas identified in the range analyses become criti-
cal for decision making.

6 � Conclusion

Our study found that MCD12Q1 products for the Urumqi 
area have substantial categorical uncertainties introduc-
ing significant and complex propagation impacts on cli-
mate simulation results. The MCD12Q1 classification 
algorithm struggles to discriminate between two pairs of 
locally relevant land cover types, grasslands vs. croplands 
and grasslands vs. barren. In a 66-day RAMS experiment, 
such categorical uncertainties significantly affected latent 
heat flux with overall average ranges at 4.32 W/m2. Sensi-
ble heat flux, vertical motion, temperature, wind speed and 
hourly precipitation were not significantly affected across 
the domain average, but were locally significant in diverse 
regions. Impacted areas were most frequently connected to 
the locations with land cover uncertainty but these impacts 
also propagated spatially. It is evident that differences in 
both biophysical characteristics, as indicated by MCD12Q1 

Fig. 8   Percentage of signifi-
cant pixels in t tests and f tests 
against reference-run at 0.05 
level. The 4-digit simulation ids 
correspond to the four spurious 
directions in Table 1, where 0 
means off and 1 means on
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and soil moisture levels, embedded as parameters in 
RAMS, are implicated in variations among the simulation 
results.

We believe that uncertainty space is an underestimation 
of the total uncertainty budget in regional climate models 
due to a lack of fidelity in the land cover data. We only 
considered regular variability within MCD12Q1 without 
accounting for irregular uncertainty and systematic biases. 
Some places may be classified chaotically or consistently 
wrong. As mentioned earlier, the urban class was produced 
once from data over a decade ago. For areas with rapid 
urban expansion, such as the Urumqi area, the classification 
bias on urban land escalates over time. Another example in 
this study area is that wetland/riparian areas are often mis-
classified as irrigated croplands, as they are spectrally simi-
lar and spatially co-located along river valley and lowlands. 
Despite these well-known production issues, MCD12Q1 
is still the most efficient choice for models requiring large 
spatial extents and a time-series.

Our experiments covering the semi-arid region around 
Urumqi offer direct reference to areas with similar semi-
arid environments, particularly other parts of Central Asia 
and the Western United States. The type of MCD12Q1 cat-
egorical uncertainties we observed and the magnitudes of 
their propagation impacts are most likely similar in these 
environments. Different environments (e.g. semi-humid) 
and/or different climate models (e.g. WRF) and model set-
ups (e.g. soil moisture) will experience different propaga-
tion impact from MCD12Q1 uncertainty. Our work estab-
lishes a framework to characterize MCD12Q1 uncertainties 
and test for their propagation impacts not only for climate 
simulations under any environment but also any application 
model using MCD12Q1 as a primary land use and cover 
input.
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