Skip to main content
Log in

Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP–CFSR reanalysis. On average, we found that NCEP–CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (−0.5 °C) in SST, 6 W/m2 (−4 W/m2) in SHF and 12 W/m2 (−9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil–Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barreiro M, Chang P, Saravanan R (2002) Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J Clim 15(7):745–763

    Article  Google Scholar 

  • Barros V, Gonzalez M, Liebmann B, Camilloni I (2000) Influence of the South Atlantic convergence zone and SouthAtlantic Sea surface temperature on interannual summerrainfall variability in Southeastern South America. Theor Appl Climatol 67(3–4):123–133

    Article  Google Scholar 

  • Byrne D, Papritz L, Frenger I, Münnich M, Gruber N (2015) Atmospheric response to mesoscale sea surface temperature anomalies: assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic*. J Atmos Sci 72(5):1872–1890

    Article  Google Scholar 

  • Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22(8):859–881

    Article  Google Scholar 

  • Chelton DB (2005) The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J Clim 18:530–550. doi:10.1175/JCLI-3275.1

    Article  Google Scholar 

  • Chelton DB (2013) Ocean-atmosphere coupling: mesoscale eddy effects. Nat Geosci 6:594–595. doi:10.1038/ngeo1906

    Article  Google Scholar 

  • Chelton DB, Xie S (2010) Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 23(4):52–69. doi:10.5670/oceanog.2010.05

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Witter DL, Richman JG (1990) Geosat altimeter observations of the surface circulation of the Southern ocean. J Geophys Res 95(C10):17877–17903

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34(15):L15606. doi:10.1029/2007GL030812

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91(2):167–216

    Article  Google Scholar 

  • de Souza RB, Mata MM, Garcia CA, Kampel M, Oliveira EN, Lorenzzetti JA (2006) Multi-sensor satellite and in situ measurements of a warm core ocean eddy south of the Brazil–Malvinas Confluence region. Remote Sens Environ 100(1):52–66

    Article  Google Scholar 

  • Diaz AF, Studzinski CD, Mechoso CR (1998) Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans. J Clim 11(2):251–271

    Article  Google Scholar 

  • Frenger I, Gruber N, Knutti R, Munnich M (2013) Imprint of Southern Oceaneddies on winds, clouds and rainfall. Nat Geosci. doi:10.38/ngeo1863

    Google Scholar 

  • Gaube P, Chelton DB, Strutton PG, Behrenfeld MJ (2013) Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J Geophys Res Oceans 118:6349–6370. doi:10.1002/2013JC009027

    Article  Google Scholar 

  • Gordon AL (1981) South Atlantic thermocline ventilation. Deep Sea Res I Oceanogr Res Pap 28(11):1239–1264

    Article  Google Scholar 

  • Hausmann U, Czaja A (2012) The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep Sea Res I Oceanogr Res Pap 70:60–72

    Article  Google Scholar 

  • Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375

    Article  Google Scholar 

  • McGillicuddy DJ, Robinson AR (1997) Interaction between the oceanic mesoscale and the surface mixed layer. Dyn Atmos Oceans 27:549–574

    Article  Google Scholar 

  • Nardelli BB (2013) Vortex waves and vertical motion in a mesoscale cyclonic eddy. J Geophys Res Oceans 118(10):5609–5624

    Article  Google Scholar 

  • Piola AR, Gordon AL (1989) Intermediate waters in the southwest South Atlantic. Deep Sea Res A 36:1–16

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015

    Article  Google Scholar 

  • Samelson RM, Skyllingstad ED, Chelton DB, Esbensen SK, O’Neill LW, Thum N (2006) On the coupling of wind stress and sea surface temperature. J Clim 19(8):1557–1566

    Article  Google Scholar 

  • Saraceno M, Provost C (2012) On eddy polarity distribution in the Southwestern Atlantic. Deep Sea Res I 69(11):62–69

    Article  Google Scholar 

  • Saraceno M, Provost C, Piola AR, Bava J, Gagliardini A (2004) Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res Oceans 109:C05027. doi:10.1029/2003JC002127

    Article  Google Scholar 

  • Saraceno M, Provost C, Zajaczkovski U (2009) Long-term variation in the anticyclonic ocean circulation over the Zapiola Rise as observed by satellite altimetry: evidence of possible collapses. Deep Sea Res I Oceanogr Res Pap 56(7):1077–1092

    Article  Google Scholar 

  • Souza JMAC, De Boyer Montegut C, Le Traon PY (2011) Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci 7(3):317–334

    Article  Google Scholar 

  • Souza JMAC, Chapron B, Autret E (2014) The surface thermal signature and air–sea coupling over the Agulhas rings propagating in the South Atlantic Ocean interior. Ocean Sci 10(4):633–644

    Article  Google Scholar 

  • Tilburg CE, Subrahmanyam B, O’Brien JJ (2002) Ocean color variability in the Tasman Sea. Geophys Res Lett 29(10):1487. doi:10.1029/2001GL014071

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311

    Article  Google Scholar 

  • Villas Bôas AB, Sato OT, Chaigneau A, Castelão GP (2015) The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys Res Lett 42(6):1856–1862

    Article  Google Scholar 

  • Xie S (2004) Satellite observations of cool ocean-atmosphere interaction. Bull Am Meteorol Soc 85:195–208

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88(4):2007

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the following Grants: FONCyT—PICT-2012-1972, EUMETSAT/CNES DSP/OT/12-2118, ANPCyT PICT 2012-0467, CONICET PIP 112-20110100176, PIO 133-20130100242 and MinCyT/CONAE-001. The authors also thank two anonymous reviewers whose comments greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés M. Leyba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leyba, I.M., Saraceno, M. & Solman, S.A. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Clim Dyn 49, 2491–2501 (2017). https://doi.org/10.1007/s00382-016-3460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3460-5

Keywords

Navigation