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prediction errors. However, due to the effect of nonlin-
earities, the NFSVs usually have the western pole of the 
zonal dipolar pattern much farther west, and covering 
much broader region. The nonlinearities have a suppres-
sion effect on the growth of the prediction errors caused 
by the FSVs and the particular structure of the NFSVs 
tends to reduce such suppression effect of nonlinearities, 
finally making the NFSV-type tendency error yield much 
large prediction error for Niño-3 SSTA of El Niño events. 
The NFSVs, compared to the FSVs, are more applica-
ble in describing the most disturbing tendency error of 
the Zebiak–Cane model since they consider the effect of 
nonlinearities. The NFSV-type tendency errors may pro-
vide information concerning the sensitive areas where 
the model errors are much more likely to yield large pre-
diction errors for El Niño events. If the simulation skills 
of the states in the sensitive areas can be improved, the 
ENSO forecast skill may in turn be greatly increased.

Keywords  Predictability · Model error · Optimal 
perturbation · El Niño event

1  Introduction

The El Niño–Southern Oscillation (ENSO) cycle has 
attracted the attention of scientists in recent decades 
because its environmental and socioeconomic impacts are 
felt worldwide (e.g., McPhaden et al. 2006). Knowledge of 
the ENSO cycle and forecasts of its variations are therefore 
valuable for agriculture, public health and safety, and many 
other climate-sensitive human endeavors.

Since the development of the Zebiak–Cane model 
(Zebiak and Cane 1987), which for the first time demon-
strated the possibility of ENSO prediction by forecasting 

Abstract  The nonlinear forcing singular vector (NFSV) 
approach is used to identify the most disturbing tendency 
error of the Zebiak–Cane model associated with El Niño 
predictions, which is most potential for yielding aggres-
sively large prediction errors of El Niño events. The 
results show that only one NFSV exists for each of the 
predictions for the predetermined model El Niño events. 
These NFSVs cause the largest prediction error for the 
corresponding El Niño event in perfect initial condition 
scenario. It is found that the NFSVs often present large-
scale zonal dipolar structures and are insensitive to the 
intensities of El Niño events, but are dependent on the 
prediction periods. In particular, the NFSVs associated 
with the predictions crossing through the growth phase 
of El Niño tend to exhibit a zonal dipolar pattern with 
positive anomalies in the equatorial central-western 
Pacific and negative anomalies in the equatorial eastern 
Pacific (denoted as “NFSV1”). Meanwhile, those associ-
ated with the predictions through the decaying phase of 
El Niño are inclined to present another zonal dipolar pat-
tern (denoted as “NFSV2”), which is almost opposite to 
the NFSV1. Similarly, the linear forcing singular vectors 
(FSVs), which are computed based on the tangent linear 
model, can also be classified into two types “FSV1” and 
“FSV2”. We find that both FSV1 and NFSV1 often cause 
negative prediction errors for Niño-3 SSTA of the El Niño 
events, while the FSV2 and NFSV2 usually yield positive 
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the 1986/1987 El Niño event in real time, a suite of mod-
els with varying degrees of complexity have been devel-
oped for ENSO modeling and prediction (Neelin 1990; 
Kleeman 1991; Latif et  al. 1993; Penland and Magorian 
1993; Luo et al. 2008). The climate forecast system at the 
National Centers for Environmental Prediction (NCEP) 
(Saha et  al. 2006), the seasonal forecast systems at the 
European Center for Medium-Range Weather Forecasts 
(ECMWF), and the multi-model ensemble (MME) sys-
tems of the EU (Palmer et al. 2004) and the Asia–Pacific 
Economic Cooperation (APEC) Climate Center (APCC) 
have also been developed for seasonal to interannual cli-
mate prediction.

While significant progress has been made with respect 
to ENSO theories and predictions over the years, there 
still exist considerable errors when predicting ENSO 
events (Jin et al. 2008; Tang et al. 2008), possibly due to 
the uncertainty in initial conditions and model parameters, 
the inherent nonlinearity of ENSO, atmospheric noise, 
and other high-frequency variations. Many studies have 
explored ENSO predictability associated with prediction 
errors from the viewpoint of initial error growth (Moore 
and Kleeman 1996; Samelson and Tziperman 2001) and 
showed that initial errors may have a significant effect 
on ENSO predictions. Moore and Kleeman (1996) dem-
onstrated the season-dependent evolutions of initial errors 
of ENSO events and illustrated the “spring predictability 
barrier” (SPB) phenomenon from the viewpoint of error 
growth. Chen et  al. (1995) reduced the SPB phenome-
non of the model developed by Zebiak and Cane (1987) 
through improving the initialization, and the result showed 
an enhancement of the ENSO forecasting skill. Recently, 
Mu et  al. (2007a, b) further emphasized the importance 
of a particular initial error pattern in yielding the SPB for 
ENSO events.

In realistic ENSO predictions, the prediction errors are 
generally caused by initial errors and model errors. Further-
more, an increasing number of studies have indicated that 
model errors also influence the ability to forecast ENSO 
(Wu et  al. 1993; Hao and Ghil 1994; Blanke et  al. 1997; 
Flügel and Chang 1998; Latif et al. 1998; Liu 2002; Zhang 
et al. 2003; Zavala-Garay et al. 2004; Williams 2005). The 
model errors may arise from various schemes of physi-
cal parameterization (Syu and Neelin 2000), atmospheric 
noise, or other high-frequency variations, such as west-
erly wind bursts and the Madden–Julian oscillation (Geb-
bie et  al. 2007; Tang and Yu 2008; Marshall et  al. 2009). 
However, some of these physical processes are omitted 
in intermediate-complexity models (Zebiak and Cane 
1987; McCreary and Anderson 1991), therefore, model 
errors may exist in these models. Considering the effect 
of uncertainties in empirical model parameters on ENSO 
predictability (Mu et  al. 2002), Duan and Zhang (2010) 

and Yu et al. (2012) used an approach of conditional non-
linear optimal perturbation (CNOP) to explore the influ-
ence of model parametric errors on ENSO predictability 
and argued that the parameter errors may have less influ-
ence on prediction uncertainties of ENSO. Generally, the 
model errors consist of the combined effect of uncertain-
ties of model parameters, unrecognized physical processes, 
sub-grid parameterization, and atmospheric noise etc., and 
cannot be solely represented by model parametric errors. 
Furthermore, the effect of model errors on ENSO pre-
dictability cannot be only described by parametric errors’ 
effects. It is therefore necessary to explore the effect of all 
kinds of model errors on ENSO predictability. Actually, we 
cannot be exact in separation of these kinds of model errors 
from prediction results; we have to explore the combined 
effect of these kinds of model errors on ENSO prediction 
uncertainties.

Roads (1987) superimposed tendency equation with an 
external forcing term and used it to describe the combined 
effect of unrecognized physical processes, sub-grid param-
eterization, atmospheric noise, and so on. Following this 
idea, Barkmeijer et al. (2003) proposed the forcing singu-
lar vector (FSV) concept, which is supposed to be invari-
ant during forecast periods and represents the constant ten-
dency error that has the fastest growth. That is to say, they 
attempted to reveal the most disturbing tendency errors of 
the model that tend to yield aggressively large prediction 
errors. However, the FSV is based on linear theory and can-
not depict the effect of nonlinearity, thus not representing 
the most disturbing tendency error in a nonlinear model. In 
order to overcome this limitation, Duan and Zhou (2013) 
extended the FSV to a nonlinear field, i.e., the nonlinear 
forcing singular vector (NFSV) approach, in which they 
considered the effect of nonlinearity on tendency errors. 
The competing aspect of NFSV takes into account the 
effect of nonlinearity existing in numerical models, and 
thus is more applicable in describing the most disturbing 
tendency error in predictability studies associated with 
model errors.

In this paper, we use the NFSV approach to study the 
most disturbing tendency error and explore the effect of 
model errors on prediction uncertainties for ENSO events. 
We begin by reviewing the NFSV approach in the follow-
ing section. Then, in Sect. 3, we introduce the intermediate 
Zebiak–Cane model used in the study. Section 4 explores 
the NFSVs and FSVs of reference-state El Niño events, 
reveals the differences between them, and then discusses 
the mechanism of the evolution of prediction errors caused 
by the NFSVs. Section 5 investigates the role of nonlineari-
ties in modulating the NFSV-resultant prediction errors. In 
Sect. 6, we present an interpretation concerning the differ-
ence between NFSVs and FSVs. Finally, a summary and a 
discussion are presented in Sect. 7.
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2 � The nonlinear forcing singular vector

If we denote the state vector as W, the evolution equations 
for W can be written as

where W(x, t) = (w1(x, t), w2(x, t), . . . , wn(x, t)), W0(x, t) 
is the initial state, (x, t) ∈ � × [0, τ ], Ω is a domain in Rn, 
x = (x1, x2, …, xn), t = 0 is the initial time, and t = τ with 
τ  < +∞ is the future time of the evolution of state vari-
ables. F is a nonlinear differential operator. We assume that 
the dynamic system equation and the initial state are known 
exactly, and the future state can be determined by integrat-
ing Eq. (2.1). The solution to Eq. (2.1) for the state vector 
W at time τ is given by

where Mτ (W0) is the propagator of the Eq. (2.1). That is to 
say, the Eqs. (2.1) and (2.2) are in perfect model scenario.

As mentioned above, predictions are generally influ-
enced not only by initial uncertainties, but also model 
uncertainties. If model uncertainties are assumed to be 
time-invariant during the forecast period, then the cor-
responding forecast model, based on the Eq. (2.1), can be 
described by the following equation:

where f(x) represents tendency errors, and w0 represents 
initial errors. If we use Mτ (f ) to denote the propagator of 
Eq.  (2.3), then when f = 0, Mτ (f ) is the same as Mτ in 
Eq.  (2.1). Or say, when f = 0, Eq.  (2.3) represents a per-
fect model of Eq. (2.1). When f �= 0, ones hope to find the 
tendency error that causes the largest prediction error at 
prediction time in predictability studies (Barkmeijer et  al. 
2003; Duan and Zhou 2013).

Based on Eq.  (2.3), Duan and Zhou (2013) defined the 
NFSV, which represents the constant tendency error that 
has the largest effect on prediction uncertainties at predic-
tion time. A forcing vector f δ is the NFSV if and only if

where

and �·�a and �·�b are measurements of tendency errors f in 
terms of the norm. The objective function J measures the mag-
nitudes of prediction errors caused by the tendency error f.

The NFSV is a natural generalization of the (linear) FSV 
in a nonlinear field. The so-called FSV was proposed by 
Barkmeijer et al. (2003) and defined as follows:

(2.1)

{

∂W
∂t

= F(W(x, t)),

W|t=0 = W0,
in Ω × [0, τ ]

(2.2)W(x, τ) = Mτ (W0).

(2.3)

{

∂(W+w)
∂t

= F(W + w) + f (x),

W + w|t=0 = W0 + w0,

(2.4)Jδ(f δ) = max
�f�a≤δ

J(f ),

(2.5)J(f ) = �Mτ (f )(W0) − Mτ (0)(W0)�b,

where Mτ (f ) is the tangent linear operator of Mτ (f ) with 
respect to the reference state W(x, t) = Mt(W0), and the 
norm �·� here is described by the inner product. The vec-
tor f ∗ represents the FSV and can be obtained by solving 
the optimization problem (2.6). The FSV describes the ten-
dency error that has the largest growth rate in the linearized 
model during the forecast period.

To compute the NFSV, we must numerically solve 
Eq.  (2.4). However, Eq.  (2.4) is a maximization problem, 
and cannot be computed directly. Fortunately, several opti-
mization algorithms are available for calculating minimi-
zation problems. Actually, Eq.  (2.4) can be transformed 
into a minimization problem by considering the negative 
of the objective function. Accordingly, the algorithms for 
solving minimization problems, such as Spectral Pro-
jected Gradient 2 (SPG2; Birgin et  al. 2000), Sequential 
Quadratic Programming (SQP; Powell 1983) and Limited-
Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS; 
Liu and Nocedal 1989), can be used to compute the NFSV. 
In these algorithms, the gradient of the modified objec-
tive function [i.e., the negative of the objective function 
in the Eq.  (2.5)] with respect to the external forcing f is 
required; furthermore, the adjoint of the corresponding 
models is usually used to obtain the gradient. Duan and 
Zhou (2013) addressed how to compute the gradient of the 
objective function with respect to external forcing by using 
the adjoint and gave the formula of the gradient. With this 
gradient information, employing the above algorithms can 
determine the minimum of the modified objective function, 
i.e., the maxima of the objective function in the Eq.  (2.4) 
along the descending direction of the gradient. In phase 
space, the point corresponding to the minimum of the mod-
ified objective function is the NFSV defined by Eq.  (2.4). 
In the current study, we will use the SPG2 algorithm to 
obtain the NFSVs of the Zebiak–Cane model with respect 
to the predetermined model El Niño events.

3 � The Zebiak–Cane model

The Zebiak–Cane model is a nonlinear anomaly model of 
intermediate complexity that describes anomalies about a 
specified seasonally varying background, avoiding the “cli-
mate drift” problem. The model is composed of a Gill-type 
steady-state linear atmospheric model and a reduced-grav-
ity oceanic model, which depict the thermodynamics and 
atmospheric dynamics of the tropical Pacific with oceanic 
and atmospheric anomalies (Zebiak and Cane 1987). The 
atmospheric dynamics are described by the steady-state 
linear shallow water equations on an equatorial beta plane. 

(2.6)�(f ∗) = max
f

�Mτ (f )(0)�

�f�
,
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The circulation is forced by a heating anomaly that depends 
partially on local heating that is associated with SST 
anomalies and partially on low-level moisture convergence 
(parameterized in terms of the surface wind convergence) 
(Zebiak 1986). In this anomaly, convergence feedback is 
a nonlinear process because the moisture-related heating 
occurs only when the total wind field is convergent, which 
depends not only on the calculated convergence anomaly, 
but also the specified mean convergence. The important 
effect of the feedback is to focus the atmospheric response 
on the SST anomalies in or near the regions of mean con-
vergence, particularly the Intertropical Convergence Zone 
and the Southern Pacific Convergence Zone. The thermo-
dynamics of this phenomenon are governed by an evolution 
equation of the SSTA in the tropical Pacific that includes 
three-dimensional temperature advection by the speci-
fied mean currents and the calculated anomalous currents. 
The assumed surface heat flux anomaly is proportional 
to the local SST anomaly and constantly adjusts the tem-
perature field toward its climatological mean state, which 
is specified through observation. In the coupled Zebiak–
Cane model, the atmosphere is first run with the specified 
monthly mean SST anomalies to simulate monthly mean 
wind anomalies. Next, the ocean component is enforced 
by surface wind stress anomalies that are generated from 
a combination of surface wind anomalies produced by the 
atmosphere model and the background mean winds.

The Zebiak–Cane model was the first coupled ocean–
atmosphere model to simulate the observed ENSO interan-
nual variability, and has provided a benchmark in ENSO 
research over several decades since. In particular, it is one 
of the few real-time models that successfully predicted the 
onset of the 91/92 warm ENSO phase. Its successful per-
formance has led to this model being widely used in predic-
tion and predictability studies (Zebiak and Cane 1987; Blu-
menthal 1991; Xue et al. 1994; Chen et al. 2004; Tang et al. 
2008; Mu et al. 2007a; Duan et al. 2009; Yu et al. 2012). 
There are two types of El Niño events. One type consists 
of canonical El Niño events, which typically develops from 
the South American coast and propagates westward across 
the tropical Pacific (Rasmusson and Carpenter 1982) and is 
referred to as “EP-El Niño events” in some papers (Kao and 
Yu 2009; Kug et al. 2009); the other type is a new type El 
Niño events (often called “CP-El Niño events”), in which 
warm SST is mainly concentrated in the central Pacific and 
does not propagate (Ashok et al. 2007). Duan et al. (2013) 
demonstrated that the Zebiak–Cane model tends to be well 
in simulating the EP-El Niño events but bad in depicting 
the CP-El Niño events. Therefore, the Zebiak–Cane model 
may describe the essential physics of EP-El Niño and can 
be regarded as a tool for investigating the effect of super-
imposed tendency errors on the predictability of EP-El 
Niño events. That is to say, the results derived from the 

Zebiak–Cane model are generally for EP-El Niño events in 
a perfect model scenario.

4 � The NFSVs of the Zebiak–Cane model with respect 
to predetermined El Niño events

Perfect model predictability experiments have been widely 
used in predictability studies, in which numerical models 
are assumed to be perfect and perturbations are superim-
posed on initial conditions or model parameters or tendency 
equations to explore the effect of initial errors or model 
errors on predictability (Lorenz 1996; Moore and Kleeman 
1996; Barkmeijer et al. 2003; Mu and Zhang 2006; Duan 
et  al. 2009; Duan and Zhou 2013, etc.). In this paper, we 
assume the Zebiak–Cane model to be perfect and conduct 
the predictability experiments in a perfect model scenario 
(see Sect. 3), in which a tendency error is superimposed to 
the Zebiak–Cane model for describing an imperfect fore-
cast model [see Eq.  (4.1)] and explore which feature dis-
plays the most disturbing tendency error associated with El 
Niño predictions, which, as mentioned in Sect. 3, is for EP-
El Niño events. For simplicity, we still use the terminology 
“El Niño” to describe the results in the context.

where T, U, ws, and _w̄s, denote anomalies of mixed layer 
temperature (or SST), horizontal surface velocity (a vec-
tor), the upwelling at the mixed layer base, and the mean 
upwelling. The coefficient αs is a nondimensional param-
eter that represents the Newtonian cooling coefficient for 
SSTA. The function M(x) is defined by

It accounts for the fact that surface temperature is affected 
by vertical advection only in the presence of upwelling. 
The anomalous vertical temperature gradient, Tz, is defined 
by

where H1 is the surface layer thickness, and Te measures 
the temperature anomalies entrained into the surface layer.

Tropical Pacific SSTAs comprise one of the main com-
ponents of the interannual variations of the coupled system 
in the core region of the ENSO. To utilize the Zebiak–Cane 
model to study the effect of tendency errors on the predic-
tion uncertainties for ENSO, we consider superimposing 
a tendency error to the SSTA equation that describes the 

(4.1)

∂T
/

∂t = −U · ∇
(

T + T
)

− Ū · ∇T − [M(ws + ws) − M(ws)] × Tz

− M(ws + ws)Tz − αsT + f (x, y).

M(x) =

{

0, x ≤ 0;

x, x > 0.

Tz =
T − Te

H1
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interannual variations of ENSO and explore the NFSVs 
of the Zebiak–Cane model with respect to some predeter-
mined reference-state El Niño events [(see Eq.  (4.1)]. We 
define the objective function associated with the NFSV 
[i.e., the vector f δ in Eq. (4.2)] as follows:

where the norm ||T
′
(τ )||a =

√

∑

i,j (T
′

i,j(τ ))2 is used to 
measure the amplitude of the prediction error caused by 
the tendency error f and the norm ||f ||b =

√

∑

i,j (fi,j)
2 is 

adopted to constrain the magnitude of tendency error f. 
Here, T

′
(τ ) represents the evolution of the error of predic-

tions for the SSTA component caused by tendency error at 
future time τ, and is obtained by subtracting the SSTA of 
the reference-state El Niño events from the predicted SSTA 
generated by the Zebiak–Cane model (with the tendency 
error f) at prediction time τ. T

′

i,j represent the prediction 
error of the SSTA at different grid points and (i, j) is the 
grid point in the domain of the tropical Pacific with latitude 
and longitude, respectively, from 129.375°E to 84.375°W 
by 5.625° and from 19°S and 19°N by 2°. The NFSV is 
computed for the time period from the start time to the 
future prediction time [i.e., the time interval (0, τ)], which 
is also called the optimization time period of determining 
the NFSV.

We first determine the reference-state El Niño events 
to be predicted. Mu et  al. (2003) and Duan et  al. (2012) 
demonstrated that the CNOP-type initial anomalies are 
most likely to evolve into El Niño events and act as the 
optimal precursory disturbance for El Niño events. Fur-
thermore, the CNOP-resultant El Niño events sufficiently 
consider the effect of nonlinearity. In this study, we choose 
the CNOP-resultant El Niño events as reference states 
to be predicted, which may be convenient for revealing 
the effect of nonlinearity on the prediction errors caused 
by the tendency errors. The CNOP-type initial anoma-
lies of the Zebiak–Cane model are initialized in January 
and determined by constraint conditions with magnitudes 
of σ = 0.4, 0.6, 0.8 and 1.0 (see the “Appendix”). These 
CNOP-initial anomalies tend to exhibit a zonal dipolar 
SSTA pattern with positive anomalies in the equatorial 
eastern Pacific and negative anomalies in the equatorial 
central-western Pacific, and a thermocline depth anomaly 
pattern with positive anomalies along the equator (Fig. 1). 
Such patterns are favorable for a strong equatorial east–
west thermal contrast and a deepening thermocline depth 
along the equator, which then easily induce a strong equa-
torial westerly anomaly and initial warm subsurface water, 
thereby causing the temperature of the upwelled water to 
become warmer and finally yielding El Niño events [the 
details can be referred to in Duan et al. (2012)]. Figure 2 
plots the Niño-3 index of the El Niño events induced by 

(4.2)J(f δ) = max
||f ||b≤δ

||T
′
(τ )||a,

the CNOP-type initial anomalies in Fig. 1. It can be seen 
that the CNOP-type initial anomalies evolve into El Niño 
events with different intensities; specifically, the larger the 
magnitudes (i.e., values of σ) of CNOP-type initial anom-
alies, the stronger the corresponding El Niño events. The 
four El Niño events shown in Fig. 2 often present their peak 
phases in boreal winter and persist for roughly more than 
20 months. The properties of these model El Niño events 
are very similar to the observed El Niño events. It is there-
fore reasonable for us to use these model El Niño events as 
reference states to obtain the NFSV-type tendency errors.

In this context, we use Year (0) to denote the year when 
El Niño attains a peak value, and Year (−1) and Year (1) 
to signify the year before and after Year (0), respectively. 
If the reference-state El Niño events are assumed to be 
predicted with 1  year lead time by using the Zebiak–
Cane model with tendency errors f, then the optimiza-
tion time period of determining the NFSVs is 12 months. 
In the numerical experiments, the El Niño predictions are 
first made with a start month of January (0) [i.e., January 
in Year (0)], April (0), and July (0). Then, the NFSVs are 
determined with these start months and optimization time 
period of 12 months. These NFSVs are mainly associated 
with the predictions for the growth phase of El Niño; and 
for convenience, we hereafter refer to these predictions as 
growth-phase predictions and the NFSVs as the ones of the 
growth-phase predictions, which represent the constant ten-
dency errors that have the largest effect on the uncertainties 
of the growth-phase predictions. Subsequently, we perform 
further numerical experiments for El Niño predictions with 
a start month of January (1) [i.e., January in Year (1)], April 
(1), and July (1) and a lead time 12  months. These three 
predictions are the ones crossing through the decaying 
phase of El Niño and are therefore referred to hereafter as 
decaying-phase predictions; and the corresponding NFSVs, 
with the optimization time period being 12  months, are 
described as the ones of the decaying-phase predictions for 
El Niño events.

For the NFSVs, we choose for the experiments the con-
straint bounds δ [see Eq. (3.1)] as 0.8, 1.0, and 1.2, to con-
strain the magnitudes of tendency errors f of SSTA. As a 
result, we will have 18 predictions for each El Niño event, 
as shown in Fig.  1, a total of 72 predictions (36 growth-
phase predictions and 36 decaying-phase predictions) for 
the four El Niño events, and are then required to compute 
the NFSVs of 72 predictions. Computations show that, for 
each value of δ, regardless of start month, there exists one 
NFSV for each prediction. Then, we obtain the 72 NFSVs. 
The magnitudes of all these NFSVs in terms of the cho-
sen norm are always equal to the values of the constraint 
bounds δ. That is, all of these NFSVs locate on the bound-
ary of the corresponding constraint condition ||f ||b ≤ δ. 
These NFSVs consist of the SSTA component and, for the 
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reference-state El Niño events with different intensities, 
often exhibit similar large-scale zonal dipolar patterns for a 
particular initial time. More specifically, the NFSVs of the 
growth-phase predictions present a zonal dipolar pattern 
with positive anomalies in the equatorial central-western 

Pacific and negative anomalies in the equatorial eastern 
Pacific (hereafter denoted by “NFSV1”). However, those of 
the decaying-phase predictions have signs almost opposite 
to the former (hereafter denoted by “NFSV2”).

Figure  3 plots the NFSV-type tendency errors of the 
growth-phase predictions (for the El Niño event with 
σ = 1.0) with the start month being January (0) and the con-
straint bounds of tendency errors being δ = 0.8, 1.0, 1.2,  
respectively. It can be seen that, although all these tendency 
errors tend to present the NFSV1 pattern, there exist dif-
ferences among them for different constraint bounds. In 
particular, the NFSV1 with large magnitudes tend to extend 
their positive anomalies much farther westward. In any 
case, from the pattern of the NFSV1, it is inferred that the 
NFSV1 tendency errors tend to enhance the equatorial east-
ern cooling–western warming thermal contrast and induce 
strong easterly anomalies, which are superimposed on the 
SSTA equation of the Zebiak–Cane model and persist to 
force the tropical Pacific SSTA. Subsequently, a persistent 

(a)

(b)

(c)

(d)

Fig. 1   The SST and thermocline depth anomalies of the CNOP-type 
initial anomalies. a The initial anomalies with magnitude of σ = 0.4; 
b, c, and d as in (a) but with magnitudes of σ =  0.6, σ =  0.8, and 

σ = 1.0, respectively. These initial anomalies are initialized in Janu-
ary, with optimization periods of 12 months

Jan(0) Apr(0) Jul(0) Oct(0) Jan(1) Apr(1) Jul(1) Oct(1) Jan(2)
-1.5
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0
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1
1.5

2
2.5

3
3.5

SS
TA

σ=0.4
σ=0.6
σ=0.8
σ=1.0

( C
)

o

Fig. 2   Niño-3 indices of the El Niño events caused by the CNOP-
type initial anomalies shown in Fig. 1
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anomalous upwelling may occur in the equatorial eastern 
Pacific, and the upwelled sub-surface cold water can sup-
press the warming of El Niño events, finally weakening the 
reference-state El Niño events and yielding a negative pre-
diction error of the Niño-3 SSTA for the El Niño events.

To confirm this inference, we investigate the prediction 
errors of El Niño events caused by the NFSV1 tendency 
errors. With the initial anomalies of the reference-state El 
Niño events as the initial values, we integrate the Zebiak–
Cane model with the NFSV1 tendency error for one 
model year and obtain the predictions for El Niño events. 
Subtracting the reference-state El Niño events from their 
predictions provide the prediction errors caused by the 
NFSV1 tendency errors with lead times of three, six, nine, 
and 12  months and the corresponding thermocline depth 
and wind stress anomalies. We determine that, no matter 
which El Niño event is predicted, and whatever the initial 
times are, the NFSV1 tendency errors with δ = 0.8, 1.0, 1.2 
always cause significantly negative prediction errors of the 
Niño-3 SSTA. Furthermore, the prediction errors caused 

by the NFSV1 tend to behave as a La Niña-like evolving 
mode. Figure  4 presents the SST, thermocline depth and 
wind stress anomalies of the prediction errors (of the El 
Niño event with σ = 1.0) caused by the NFSV1 of δ = 1.0 
with the start month January (0). The results demonstrate 
that the NFSV1 tendency errors induce anomalous easterly 
forcing and decrease the thermocline depth in the eastern 
Pacific, which finally suppresses the evolution of El Niño 
events and causes a negative prediction error for Niño-3 
SSTA of El Niño events (see Table 1).

For the NFSV2 tendency errors, we plot in Fig.  5 the 
cases for the El Niño event with σ = 1.0, with January (1) 
in the decaying phase of the El Niño as the start month of 
predictions, and δ = 0.8, 1.0, 1.2 as the constraint bounds 
of tendency errors’ magnitudes, respectively. Indeed, the 
NFSV2 are almost opposite to the NFSV1 and have the pat-
tern with negative anomalies in the equatorial central-west-
ern Pacific and positive anomalies in the equatorial eastern 
Pacific. Furthermore, they behave as an El Niño-like evolv-
ing mode (Fig.  6), which is contrary to the La Niña-like 

(a)

(b)

(c)

Fig. 3   SSTA component of FSV1 and NFSV1 of the El Niño event 
(induced by the CNOP-type initial anomaly with magnitude of 
σ = 1.0). These NFSVs and FSVs are, respectively, of magnitudes of 

a δ = 0.8, b δ = 1.0, and c δ = 1.2, and are calculated with the start 
month of January (0) and the optimization period being 12 months
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evolving mode of the NFSV1. That is to say, the NFSV2 
cause a positive prediction error of the Niño-3 SSTA for the 
reference-state El Niño events (see Table 1).

The NFSV is a nonlinear extension of the FSV. For com-
parison, we compute the FSVs of the growth-phase and 
decaying-phase predictions for the reference-state El Niño 
events by using the linearized Zebiak–Cane model. Note 
that if fL is an FSV, the vectors cfL (c is a real number) are 
also FSVs with the same growth rate as the FSV fL. The 
NFSVs differ from the FSVs. If fδ is an NFSV, cfδ may 
not be an NFSV because of the effect of the nonlineari-
ties. Therefore, a given NFSV should be compared with the 
FSV with the same magnitude. For this reason, we define a 
scaled FSV as follows:

(4.2)
f̂L = (−1)N �fδ�

�fL�
fL , N = 1, 2

Thus, 
∥

∥

∥
f̂L

∥

∥

∥
= �fδ�. If the sign of the FSV fL is opposite to 

(or the same as) that of the NFSV fδ, the “N” in Eq. (4.2) is 
equal to 1 (or 2). Then, the NFSV fδ and the scaled FSV f̂L 
have the same signs and magnitudes. The following com-
parison between the NFSV and the FSV is conducted under 
this condition.

Results demonstrate that the FSVs also exhibit a large-
scale zonal dipolar pattern similar to the NFSVs. However, 
for different values of δ, the FSVs respectively present their 
western and eastern poles in almost common locations; 
while the NFSVs, particularly for large values of δ, tend 
to extend their western poles much farther westward and 
cover a much broader spatial region. If we make the FSVs 
of growth-phase predictions have signs as in the NFSV1 
and those of the decaying-phase predictions have signs as 
in the NFSV2, then the FSVs can also be classified into two 

Fig. 4   The evolution patterns of the prediction errors caused by the NFSV1 shown in Fig. 3, but only for that with magnitude of δ = 1.0. The 
left, middle, and right columns describe the SSTA, thermocline depth anomaly, and the corresponding zonal wind anomaly, respectively
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types: FSV1 and FSV2. As examples, we plot in Figs.  3 
and 5 the corresponding FSV1 with the start month being 
January (0) and the FSV2 with the start month being Janu-
ary (1). The results show that the FSV1, as the NFSV1 do, 
often cause negative prediction errors of Niño-3 SSTA of El 
Niño events; while the FSV2, like the NFSV2, yield posi-
tive prediction errors for the Niño-3 SSTA. Despite this, the 
FSVs often cause a much smaller prediction error than the 
corresponding NFSVs (see Table 1). It is therefore inferred 
that the tendency errors of the NFSV structures will clearly 
be more likely to cause a much larger prediction error than 
the tendency errors of the FSVs. Therefore, the tendency 
errors of the NFSV structure may be more applicable than 
the FSV in describing the most disturbing tendency errors 
that have the largest effect on the prediction errors.

5 � The role of nonlinearity in modulating  
the NFSV‑resultant prediction errors

NFSVs are derived from a nonlinear model, whereas 
FSVs originate from the linearized version of the nonlin-
ear model. It is clear that the differences between the pat-
terns of the NFSVs, particularly for those with large mag-
nitudes, and those of the corresponding FSVs, result from 
the effects of the nonlinearities, which finally causes the 
difference in their resultant prediction errors. This outcome 
indicates that the prediction errors caused by the NFSVs 

with larger magnitudes are more significantly influenced 
by nonlinearities. But how do nonlinearities influence the 
NFSV-resultant prediction errors?

To address the behavior of nonlinearities modulating 
NFSV-resultant prediction errors, we choose magnitudes of 
tendency errors that are favorable for revealing the effect 
of nonlinearities. As shown above, choosing the large val-
ues of δ contributes to testing the effect of nonlinearities 
on prediction errors caused by the tendency errors. Specifi-
cally, we choose the NFSVs with the constraint δ = 1.0.

We superimpose the SSTA equation of the Zebiak–
Cane model with FSV-type and NFSV-type tendency errors 
and integrate the perturbed model for 12  months, obtain-
ing the predictions for the reference-state El Niño events. 
By subtracting the reference-state El Niño events from 
their predictions, the NFSV- and FSV-resultant predic-
tion errors can be obtained. Similarly, we superimpose the 
FSV- and NFSV-tendency errors to the linearized Zebiak–
Cane model with respect to the reference-state El Niño 
events and integrate it for 12 months, obtaining the predic-
tion errors caused by the FSV and NFSV in the linearized 
Zebiak–Cane model. By comparison, we identify the effect 
of nonlinearity on prediction errors caused by the ten-
dency errors. For El Niño events with different intensities, 
we obtain similar results. Next, we take the El Niño event 
induced by the CNOP-type initial anomaly with σ = 1.0 
(see the Appendix) as an example to describe the results.

The SSTA component of the prediction errors caused by 
the NFSV1 and FSV1 tendency errors with the start month 
being January (0) is plotted in Fig. 7. It can be seen that the 
prediction errors induced by the FSV1 tendency errors in 
the linearized Zebiak–Cane model are significantly larger 
than those caused by those in the nonlinear model. This 
indicates that the model’s nonlinearities suppress the evo-
lution of prediction errors caused by the FSV1 tendency 
errors, and also that the nonlinearities have a damping 
effect on the growth of the prediction errors associated with 
the growth-phase predictions for El Niño events. However, 
when we focus on the prediction errors caused by the FSV1 
and NFSV1 tendency errors in the nonlinear model, we 
can see that the prediction errors caused by the NFSV1 are 
certainly larger than those caused by the FSV1 in the non-
linear model. It is obvious that the structure of the NFSV1 
tendency errors is particularly favorable for reducing the 
suppression effect of the nonlinearities on the growth of 
prediction errors of the growth-phase predictions for El 
Niño.

For the FSV2 and NFSV2 tendency errors, they, as 
demonstrated above, often cause positive prediction errors 
of the Niño-3 SSTA for the decaying-phase predictions 
of El Niño events. Although both FSV2 and NFSV2 have 
dynamic behaviors almost opposite to those of FSV1 and 
NFSV1, they also usually yield much larger prediction 

Table 1   Prediction errors for Niño-3 SSTA of an El Niño event 
caused by the NFSVs and FSVs (for δ = 0.8, 1.0, and 1.2), where the 
El Niño is induced by the CNOP-type initial anomaly with σ = 1.0

δ 0.8 1.0 1.2

Start month Jan (0)

 FSV −3.64 −5.15 −6.34

 NFSV −3.68 −5.81 −7.07

Start month Apr (0)

 FSV −3.01 −5.38 −5.69

 NFSV −3.21 −5.82 −6.98

Start month Jul (0)

 FSV −3.57 −5.86 −5.02

 NFSV −3.65 −5.96 −6.09

Start month Jan (1)

 FSV 4.13 4.40 4.57

 NFSV 4.49 5.02 6.69

Start month Apr (1)

 FSV 3.30 4.28 4.58

 NFSV 3.95 5.52 5.48

Start month Jul (1)

 FSV 3.55 4.03 4.63

 NFSV 3.68 5.81 6.24
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errors in the linearized Zebiak–Cane model than in the non-
linear model (see Fig. 8), and the nonlinearities have a sup-
pressing effect on the growth of prediction errors. Further-
more, considering the NFSV2 certainly yield much larger 
prediction errors than the FSV2 in the nonlinear model, 
we also conclude that the particular structure of NFSV2 is 
favorable for reducing the suppressing effect of nonlineari-
ties on the growth of prediction errors associated with the 
decaying-phase predictions for El Niño.

We have showed that the FSVs, compared to the NFSVs, 
tend to yield much larger prediction errors in the linearized 
model, but much smaller prediction errors in the nonlinear 
Zebiak–Cane model. This does not mean that we, since the 
FSV causes much small prediction errors in the nonlinear 
model, should adopt here the results of FSV. In fact, we 
attempt to reveal the most disturbing tendency error of the 
Zebiak–Cane model associated with El Niño predictabil-
ity. Therefore, we should explore the tendency error that 
causes the largest prediction error. The NFSVs yield much 
larger prediction errors than the FSVs in the nonlinear 

Zebiak–Cane model and are then more applicable for rep-
resenting the most disturbing tendency error. Although the 
FSVs cause larger prediction errors than the NFSVs in the 
linearized model, the linearized model is an approximation 
to the nonlinear Zebiak–Cane model and then the resultant 
FSVs cannot represent the most disturbing tendency error 
of the nonlinear Zebiak–Cane model.

6 � Interpretation

The above reported results demonstrated that the nonlin-
earities have a damping effect on the growth of the pre-
diction errors caused by the FSV1 and FSV2. That is to 
say, the FSVs result in much smaller prediction errors in 
the nonlinear Zebiak–Cane model than in its linearized 
version and nonlinearities suppress the growth of predic-
tion errors caused by the FSVs. The nonlinearities in the 
Zebiak–Cane model are mainly from the nonlinearities in 
perturbation temperature advection, wind stress anomalies 

(a)

(b)

(c)

Fig. 5   As in Fig. 3, but for FSV2 and NFSV2
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formulation, and sub-surface temperature parameteriza-
tion. Duan et al. (2008) demonstrated that the perturbation 
temperature advection always shows positive values in the 
equatorial eastern Pacific during either an El Niño or a La 
Niña event, enhancing the former and suppressing the lat-
ter. Meanwhile, the nonlinearity in wind stress anomalies 
suppresses El Niño and enhances La Niña, and that asso-
ciated with the sub-surface temperature parameteriza-
tion suppresses both El Niño and La Niña. In this paper, 
we have shown that the prediction errors caused by the 
FSV1 exhibit a La Niña evolving mode and those caused 
by the FSV2 tend to present an El Niño evolving mode. 
It is therefore inferred that the nonlinearity in the pertur-
bation temperature advection may suppress the predic-
tion errors caused by the FSV1 but enhance those caused 
by the FSV2. Meanwhile, the nonlinearity in wind stress 
anomalies may increase the prediction errors caused by the 
FSV1 and reduce those caused by the FSV2, and that in 

the sub-surface temperature parameterization suppresses 
the prediction errors caused by both FSV1 and FSV2. We 
have demonstrated that the combined effect of three kinds 
of nonlinearities is to suppress the prediction errors caused 
by the FSV1 and FSV2. It is inferred that, for the predic-
tion errors caused by the FSV1, the suppression effects 
of both perturbation temperature advection and sub-sur-
face temperature parameterization may be larger than the 
enhancement effect of the wind stress anomalies, finally 
causing the combined effect of three kinds of nonlineari-
ties to suppress the prediction errors. Meanwhile, for those 
caused by the FSV2, the nonlinear enhancement effect of 
perturbation temperature advection may be smaller than 
the suppression effect of nonlinearities in both sub-surface 
temperature parameterization and wind stress anomalies, 
which then also results in the combined effect of three 
kinds of nonlinearities to suppress the growth of prediction 
errors.

Fig. 6   As in Fig. 4, but for NFSV2
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We have also shown that the NFSV1 and NFSV2 favor 
reducing the damping effect of nonlinearities on predic-
tion errors caused by the FSVs. The NFSV1 and NFSV2, 
particularly for those of large magnitudes, compared to the 
FSV1 and FSV2, tend to present their two western poles 
much farther western. In fact, the NFSV1 (and NFSV2) 
patterns can be understood as the composite of the FSV1 
(and FSV2) patterns and an additional SSTA tendency error 
of a zonal dipolar structure with positive (negative) anoma-
lies in the equatorial western Pacific and negative (positive) 
anomalies in the equatorial eastern Pacific (see Fig. 9). The 
additional SSTA tendency errors, having patterns similar 
to the NFSV1 (NFSV2), easily induce anomalous easter-
lies (westerlies) along the equatorial Pacific, which are 
superimposed on the FSV1 (FSV2)-induced anomalous 
easterlies (westerlies) in the equatorial eastern Pacific and 
induce much stronger upwelling (downwelling) to occur 
in a much broader region in the equatorial central-eastern 
Pacific, ultimately yielding much larger but negative (posi-
tive) prediction errors of Niño-3 SSTA for El Niño events. 
It is clear that the role of the structure of NFSVs in yield-
ing prediction errors is to increase the prediction errors, 
while that of nonlinearities is to suppress the prediction 
errors. Therefore, when the effect of the NFSVs’ structure 

on prediction errors is superimposed on that of nonlineari-
ties in the Zebiak–Cane model, the particular structure of 
NFSVs tends to reduce the damping effect of nonlinearities 
on prediction errors caused by the FSVs.

From the above analysis, it is clear that the nonlin-
earities in the Zebiak–Cane model suppress the growth of 
prediction errors caused by the FSVs, and the particular 
structure of the NFSVs reduces the suppression effect of 
nonlinearities, which finally results in the NFSVs to cause 
much larger prediction errors than the FSVs and represent 
the most disturbing tendency error.

7 � Summary and discussion

In this study, we apply the NFSV approach to the Zebiak–
Cane model to identify the most disturbing tendency error 
that has the largest effect on prediction uncertainties of 
El Niño events. For the predetermined reference-state El 
Niño events with different intensities, we calculate the cor-
responding NFSVs, which are superimposed to the SSTA 
equation of the model and act as the most disturbing ten-
dency errors associated with for El Niño predictions. The 
results show that only one NFSV exists for each El Niño 

Fig. 7   The SSTA component of prediction errors caused by the 
NFSV1 and FSV1 in the nonlinear Zebiak–Cane model (denoted by 
“NFSV1-N” and “FSV1-N”, respectively) and those caused by the 
NFSV1 and FSV1 in the linearized Zebiak–Cane model (denoted by 

“NFSV1-L” and “FSV1-L”, respectively). The prediction period is 
12 months, with the start month being January (0), and the magnitude 
of NFSV and FSV is δ = 1.0
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event prediction. These NFSVs always locate the boundary 
of the constraint conditions and often exhibit large-scale 
zonal dipolar patterns. For a particular start time of predic-
tions, the dipolar patterns of NFSVs are insensitive to the 
intensities of El Niño events, but dependent on the predic-
tion periods. Specifically, the NFSVs associated with the 
predictions crossing though the growth phase of El Niño 
are of a zonal dipolar pattern, with the western poles of 
positive anomalies in the equatorial central-western Pacific 
and the eastern poles of negative anomalies in the equa-
torial eastern Pacific. We denoted these as “NFSV1” ten-
dency errors. Meanwhile, the NFSVs associated with the 
predictions crossing through the decaying phase of El Niño 
tend to have another zonal dipolar pattern, which is almost 
opposite to the NFSV1, which we refer to as “NFSV2” ten-
dency errors. As a comparison, we also explore the FSVs, 
i.e., the linear counterpart of the NFSVs. The results show 
that the FSVs, similar to the NFSVs, can also be classi-
fied into two types. Correspondingly, the FSVs with the 
same signs as NFSV1 are denoted as “FSV1”, and the 
other FSVs with the same signs as NFSV2 are referred to 
as “FSV2”. The dipolar patterns of both FSV1 and NFSV1 
tend to increase the equatorial eastern cooling–western 
warming thermal contrast and favor strong easterly anom-
alies, which persist to force tropical Pacific SSTAs. Then, 
a persistent anomalous upwelling occurs in the equatorial 

eastern Pacific, ultimately suppressing the warming of El 
Niño events and yielding a negative prediction error of the 
Niño-3 SSTA for the growth-phase predictions of El Niño 
events. Conversely, the FSV2 and NFSV2, since they have 
patterns opposite to the NFSV1 and FSVs, often cause pos-
itive prediction errors for the decaying-phase predictions 
of El Niño events. As demonstrated through the context, 
the NFSVs are directly from the nonlinear model while 
the FSVs come from the linearized model. Differences 
between the NFSVs and FSVs certainly exist. Actually, due 
to the effect of nonlinearities, the NFSVs usually have the 
western pole of the zonal dipolar pattern much farther west 
and cover a much broader region. Furthermore, we show 
that the FSVs yield much larger prediction errors for the 
Niño-3 SSTA in the linearized model than in the nonlin-
ear model, and then the nonlinearities have a suppression 
effect on the growth of the prediction errors caused by 
the FSVs. However, the particular structure of the NFSVs 
tends to reduce the suppression effect of nonlinearities on 
the growth of prediction errors and results in the NFSVs to 
cause much large prediction errors in the nonlinear model. 
Obviously, the NFSV approach is superior to the FSV one 
in demonstrating the effects of nonlinearity on El Niño pre-
dictability, and is much more applicable in describing the 
most disturbing tendency error that causes the largest pre-
diction errors.

Fig. 8   As in Fig. 7, but for NFSV2 and FSV2
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We notice that NFSVs and FSVs often concentrate the 
tendency errors of large values in few areas, which may 
indicate that the model errors in these areas have a much 
larger contribution to the occurrence of prediction errors. 
That is to say, the model errors in these few areas, compared 
to those in other areas, are much more likely to cause large 
prediction errors for El Niño events. These areas may rep-
resent the sensitive areas of El Niño predictions associated 
with model errors. Therefore, if the ability of the model 
simulating the states in the sensitive areas is improved, 
the ENSO forecast skill may in turn be greatly improved. 
The FSVs are derived from linearized models and act as 
an approximation to NFSVs (Duan and Zhou 2013). Cor-
respondingly, due to the effect of nonlinearity, the sensitive 
areas identified by the NFSVs are somewhat different from 
those identified by the FSVs (see Sect. 4). Actually, the sen-
sitive areas identified by the FSVs locate in the equatorial 
central-eastern Pacific and eastern Pacific, while those iden-
tified by the NFSVs are in the equatorial central-western 

Pacific and eastern Pacific. Considering the NFSVs are 
directly from the nonlinear model and do not have any 
approximation, we would rather believe that the NFSVs 
are much more applicable in identifying the sensitive areas 
associated with the model errors. That is to say, the sensitive 
areas identified by the NFSVs may be much more useful for 
improving the ENSO forecast skill. Of course, the validity 
of the sensitive areas identified by the NFSVs needs to be 
further validated by sensitivity experiments and even hind-
cast experiments, which we have begun to embark upon.

Predictability studies for ENSO are challenging due 
to the nonlinearity and complexity of the coupled ocean–
atmospheric system. In particular, the predictability prob-
lems associated with model errors pose great difficulties due 
to the lack of effective approaches. In this study, we use the 
NFSV approach to address the effect of constant tendency 
errors on ENSO predictability and reveal the behavior of 
nonlinearity modulating the prediction error caused by the 
tendency errors, which confirms that the NFSVs, compared 

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 9   The left column is for NFSV1 (a1), FSV1 (b1), and the dif-
ference between them (c1); the right column is for the NFSV2 (a2), 
FSV1 (b2), the difference between them (c2). The NFSV1 (NFSV2) 

can be understood as the composite of the FSV1 (FSV2) and the dif-
ference between NFSV1 (NFSV2) and FSV1 (FSV2) (i.e. the addi-
tional SSTA tendency error of a dipolar pattern in the text)
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to the FSVs, comprise a much more applicable approach in 
describing the tendency error that has the largest effect on 
prediction error in the nonlinear model. To further validate 
these results, a much more realistic ENSO model should be 
adopted to investigate the NFSVs. In addition, we should 
also study the optimal time-variant tendency errors and their 
effect on prediction errors for El Niño events. It is expected 
that the results obtained from the present work can provide 
ideas for further investigation on tendency errors.
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Appendix

Definition, physics, and computation of CNOP

The conditional nonlinear optimal perturbation (CNOP) is 
an initial perturbation that satisfies a given constraint and 
has the largest nonlinear evolution at the prediction time 
(described below). The CNOP approach is a natural gener-
alization of the linear singular vector (LSV) approach to a 
nonlinear system.

Let Mt0,t be the propagator (i.e., the numerical model) of 
a nonlinear model from initial time t0 to t. u0 is an initial per-
turbation superimposed on the basic state U(t), which is a 
solution to the nonlinear model and satisfies U(t) = Mt(U0),  
with U0 being the initial value of basic state U(t).

For a selected norm || · ||, an initial perturbation u0δ is 
defined as a CNOP if and only if

where �u0� ≤ δ is the initial constraint defined by the 
selected norm || · ||. The norm || · || also measures the evolu-
tion of the perturbations. We can also investigate situations 
in which the initial perturbations belong to other types of 
functional sets. Furthermore, the constraint condition could 
reflect physical laws that the initial perturbation should 
satisfy.

The CNOP is characterized by maximum nonlinear 
evolution of initial perturbations satisfying the given 
constraint condition (Mu et  al. 2003; Mu and Zhang 
2006). The CNOP possesses clear physical meanings 
(Duan and Mu 2009). Duan et  al. (2004) demonstrated 
that when the objective function measures the maximum 

(A.1)J(u0δ) = max
||u0||≤δ

∥

∥Mt0,t(U0 + u0) − Mt0,t(U0)
∥

∥,

evolution of SSTAs for the ENSO, the resulting CNOP, 
superimposed on the climatological basic state, acts as 
the initial anomaly that is most likely to evolve into an 
El Niño event and represents the optimal precursor to El 
Niño. The CNOP can also be used to study the initial 
error with the largest effect on the prediction result at 
the prediction time (Duan and Mu 2009). In sensitivity 
analysis studies, the CNOP may represent the least sta-
ble mode and can be used to study target observations 
(Mu et al. 2009).

In the present study, we regard the CNOP as the optimal 
precursory disturbance (i.e., optimal initial anomaly) that is 
most likely to evolve into an El Niño event, and take the cor-
responding El Niño event as the reference state to explore the 
NFSV tendency errors. The CNOP-type initial anomalies, 
denoted by u0σ, are obtained by solving the following non-
linear optimization problem, which is based on Eq. (A.1):

where u0 = (w−1
1 T0, w−1

2 h0) is non-dimensional, denot-
ing the initial SSTA and the thermocline depth anom-
alies superimposed on the climatological annual 
cycle. w1  =  2  °C and w2 = 50 m are the characteris-
tic scales of SST and thermocline depth, respectively. 
||u0||α ≤ σ is the constraint condition and the norm is 

||u0||α =
√

∑

i,j {(w
−1
1 T0i,j)

2 + (w−1
2 h0i,j)

2}, where T0i,j 
and h0i,j represent the dimensional initial SSTA and ther-
mocline depth anomaly at different grid points, respec-
tively, and (i, j) is the grid point in the domain of the 
tropical Pacific (latitude and longitude, respectively), from 
129.375°E to 84.375°W (at an interval of 5.625°) and from 
19°S to 19°N (at an interval of 2°). The SSTA evolution is 
measured by ||T(τ )||2 =

√

∑

i,j (Ti,j(τ ))2. T(τ ) represents 
the SSTA component of the evolution of initial anomalies 
at time τ, and is obtained by integrating the Zebiak–Cane 
model with initial anomalies.

We use the SPG2 solver to obtain the CNOP-type initial 
anomalies of the Zebiak–Cane model. To obtain CNOP-
type initial anomalies, we modify the corresponding maxi-
mization problem into a minimization one and try at least 
30 initial guesses (obtained randomly). If several initial 
guesses converge to a point in the phase space, this point 
can be considered a minimum in the neighborhood; thus, 
several such points are obtained, of which the one that 
yields the largest value of the cost function in Eq. (A.2) is 
regarded as the CNOP-type initial anomalies.

References

Barkmeijer J, Iversen T, Palmer TN (2003) Forcing singular vec-
tor and other sensitivity model structures. Q J R Meteorol Soc 
129:2401–2423

(A.2)J(u0σ ) = max
||u0||α≤σ

||T(τ )||2,



2366 W. Duan, P. Zhao

1 3

Birgin EG, Martínez JM, Raydan M (2000) Nonmonotone spec-
tral projected gradient methods on convex sets. SIAM J Optim 
10:1196–1211

Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic 
wind stress forcing on ENSO irregularity. J Clim 10(7):1473–1486

Blumenthal MB (1991) Predictability of a coupled ocean–atmosphere 
model. J Clim 4(8):766–784

Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved 
procedure for El Niño forecasting: implications for predictability. 
Science 269:1699–1702

Chen D, Cane MA, Kaplan A, Zebiak SE, Huang DJ (2004) Predict-
ability of El Niño over the past 148 years. Nature 428:733–736

Duan WS, Mu M (2009) Conditional nonlinear optimal perturbation: 
applications to stability, sensitivity, and predictability. Sci China 
D 52:884–906

Duan WS, Zhang R (2010) Is model parameter error related to a sig-
nificant spring predictability barrier for El Niño events? Results 
from a theoretical model. Adv Atmos Sci 27(5):1003–1013

Duan WS, Zhou F (2013) Non-linear forcing singular vector of a two-
dimensional quasi-geostrophic model. Tellus A 65. doi:10.3402/ 
tellusa.v65i0.18452

Duan WS, Mu M, Wang B (2004) Conditional nonlinear optimal per-
turbation as the optimal precursors for ENSO events. J Geophys 
Res 109:D23105

Duan WS, Xu H, Mu M (2008) Decisive role of nonlinear tempera-
ture advection in El Niño and La Niña amplitude asymmetry. J 
Geophys Res 113:C01014. doi:10.1029/2006JC003974

Duan WS, Liu XC, Zhu KY, Mu M (2009) Exploring the characteris-
tic of initial errors that cause a significant “spring predictability 
barrier” for El Niño events. J Geophys Res 114:C04022. doi:10.1
029/2008JC004925

Duan WS, Yu Y, Xu H, Zhao P (2012) Behaviors of nonlinearities 
modulating the El Niño events induced by optimal precursory 
disturbances. Clim Dyn. doi:10.1007/s00382-012-1557-z

Flügel M, Chang P (1998) Does the predictability of ENSO depend 
on the seasonal cycle? J Atmos Sci 55(21):3230–3243

Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modula-
tion of westerly wind bursts by sea surface temperature: a semis-
tochastic feedback for ENSO. J Atmos Sci 64(9):3281–3295

Hao Z, Ghil M (1994) Data assimilation in a simple tropical ocean 
model with wind stress errors. J Phys Oceanogr 24(10):2111–2128

Jin EK, James L, Kinter III, Wang B, Park C-K, Kang I-S, Kirtman 
BP, Kug J-S, Kumar A, Luo J-J, Schemm J, Shukla J, Yamagata T 
(2008) Current status of ENSO prediction skill in coupled ocean–
atmosphere models. Clim Dyn 31(6):647–664

Kleeman R (1991) A simple model of the atmospheric response to 
ENSO sea surface temperature anomalies. J Atmos Sci 48(1):3–19

Latif M, Sterl A, Maier-Reimer E, Junge MM (1993) Structure and 
predictability of the El Niño/Southern Oscillation phenomenon 
in a coupled ocean–atmosphere general circulation model. J Clim 
6(4):700–708

Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetmaa A, 
O’Brien J, Rosati A, Schneider E (1998) A review of the predict-
ability and prediction of ENSO. J Geophys Res Oceans (1978–
2012) 103(C7):14375–14393

Liu Z (2002) A simple model study of ENSO suppression by external 
periodic forcing. J Clim 15(9):1088–1098

Liu DC, Nocedal J (1989) On the limited memory method for large 
scale optimization. Math Program 45B:503–528

Lorenz EN (1996) Predictability—a problem partly solved. In: Pro-
ceedings of the ECMWF seminar on predictability, September 
4–8, 1995, Reading, England, vol. 1. ECMWF, Shinfield Park, 
Reading, England, pp 1–18

Luo JJ, Masson S, Behera SK, Yamagata T (2008) Extended ENSO 
predictions using a fully coupled ocean–atmosphere model. J 
Clim 21(1):84–93

Marshall AG, Alves O, Hendon HH (2009) A coupled GCM analy-
sis of MJO activity at the onset of El Niño. J Atmos Sci 66(4): 
966–983

McCreary JP, Anderson DLT (1991) An overview of coupled ocean–
atmosphere models of El Niño and the Southern Oscillation. J 
Geophys Res Oceans (1978–2012) 96(S01):3125–3150

McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrat-
ing concept in Earth science. Science 314(5806):1740–1745

Moore AM, Kleeman R (1996) The dynamics of error growth and 
predictability in a coupled model of ENSO. Q J R Meteorol Soc 
122(534):1405–1446

Mu M, Zhang Z (2006) Conditional nonlinear optimal perturba-
tions of a two-dimensional quasigeostrophic model. J Atmos Sci 
63:1587–1604

Mu M, Duan WS, Jiacheng W (2002) The predictability problems 
in numerical weather and climate prediction. Adv Atmos Sci 
19(2):191–204

Mu M, Duan WS, Wang B (2003) Conditional nonlinear optimal 
perturbation and its applications. Nonlinear Process Geophys 
10:493–501

Mu M, Xu H, Duan WS (2007a) A kind of initial perturbations related 
to “spring predictability barrier” for El Niño events in Zebiak–
Cane model. Geophys Res Lett 34:L03709. doi:10.1029/200
6GL-27412

Mu M, Duan WS, Wang B (2007b) Season-dependent dynamics of 
nonlinear optimal error growth and El Niño-Southern Oscillation 
predictability in a theoretical model. J Geophys Res 112:D10113. 
doi:10.1029/2005JD006981

Mu M, Zhou F, Wang H (2009) A method to identify the sensitive 
areas in targeting for tropical cyclone prediction: conditional non-
linear optimal perturbation. Mon Weather Rev 137:1623–1639

Neelin JD (1990) A hybrid coupled general circulation model for El 
Niño studies. J Atmos Sci 47(5):674–693

Palmer TN, Andersen U, Cantelaube P et  al (2004) Development 
of a European multi-model ensemble system for seasonal to 
inter-annual prediction (DEMETER). Bull Am Meteorol Soc 
85(6):853–872

Penland C, Magorian T (1993) Prediction of Niño-3 sea surface tem-
peratures using linear inverse modeling. J Clim 6(6):1067–1076

Powell MJD (1983) VMCWD: a Fortran subroutine for constrained opti-
mization. ACM SIGMAP Bull 4–16. doi:10.1145/1111272.1111273

Roads JO (1987) Predictability in the extended range. J Atmos Sci 
44:1228–1251

Saha S, Nadiga S, Thiaw C et al (2006) The NCEP climate forecast 
system. J Clim 19(15):3483–3517

Samelson RM, Tziperman E (2001) Instability of the chaotic ENSO: 
the growth-phase predictability barrier. J Atmos Sci 58(23): 
3613–3625

Syu HH, Neelin JD (2000) ENSO in a hybrid coupled model. Part 
I: sensitivity to physical parametrizations. Clim Dyn 16(1):19–34

Tang Y, Yu B (2008) MJO and its relationship to ENSO. J Geophys 
Res 113:D14106. doi:10.1029/2007JD009230

Tang Y, Kleeman R, Moore AM (2008) Comparison of information-
based measures of forecast uncertainty in ensemble ENSO pre-
diction. J Clim 21(2):230–247

Williams PD (2005) Modelling climate change: the role of unresolved 
processes. Philos Trans R Soc Math Phys Eng Sci 363(1837): 
2931–2946

Wu DH, Anderson DLT, Davey MK (1993) ENSO variability and 
external impacts. J Clim 6(9):1703–1717

Xue Y, Cane MA, Zebiak SE, Blumenthal MB (1994) On the predic-
tion of ENSO: a study with a low order Markov model. Tellus 
46A:512–528

Yu Y, Mu M, Duan WS (2012) Does model parameter error cause a 
significant “Spring Predictability Barrier” for El Niño events in 
the Zebiak–Cane Model? J Clim 25(4):1263–1277

http://dx.doi.org/10.3402/tellusa.v65i0.18452
http://dx.doi.org/10.3402/tellusa.v65i0.18452
http://dx.doi.org/10.1029/2006JC003974
http://dx.doi.org/10.1029/2008JC004925
http://dx.doi.org/10.1029/2008JC004925
http://dx.doi.org/10.1007/s00382-012-1557-z
http://dx.doi.org/10.1029/2006GL-27412
http://dx.doi.org/10.1029/2006GL-27412
http://dx.doi.org/10.1029/2005JD006981
http://dx.doi.org/10.1145/1111272.1111273
http://dx.doi.org/10.1029/2007JD009230


2367Revealing the most disturbing tendency error

1 3

Zavala-Garay J, Moore AM, Kleeman R (2004) Influence of stochas-
tic forcing on ENSO prediction. J Geophys Res Oceans (1978–
2012) 109:C11007. doi:10.1029/2004JC002406

Zebiak SE (1986) Atmospheric convergence feedback in a simple 
model for El Niño. Mon Weather Rev 114(7):1263–1271

Zebiak SE, Cane A (1987) A model El Niño-Southern oscillation. 
Mon Weather Rev 115:2262–2278

Zhang RH, Zebiak SE, Kleeman R, Keenlyside N (2003) A new 
interpmediate coupled model for El Niño simulation and predic-
tion. Geophys Res Lett 30(19). doi:10.1029/2003GL018010

http://dx.doi.org/10.1029/2004JC002406
http://dx.doi.org/10.1029/2003GL018010

	Revealing the most disturbing tendency error of Zebiak–Cane model associated with El Niño predictions by nonlinear forcing singular vector approach
	Abstract 
	1 Introduction
	2 The nonlinear forcing singular vector
	3 The Zebiak–Cane model
	4 The NFSVs of the Zebiak–Cane model with respect to predetermined El Niño events
	5 The role of nonlinearity in modulating the NFSV-resultant prediction errors
	6 Interpretation
	7 Summary and discussion
	Acknowledgments 
	References


