Skip to main content

Advertisement

Log in

On the stability of the Atlantic meridional overturning circulation during the last deglaciation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using a generalized stability indicator L, we explore the stability of the Atlantic meridional overturning circulation (AMOC) during the last deglaciation based on a paleoclimate simulation. From the last glacial maximum, as forced by various external climate forcings, notably the meltwater forcing, the AMOC experiences a collapse and a subsequent rapid recovery in the early stage of deglaciation. This change of the AMOC induces an anomalous freshwater divergence and later convergence across the Atlantic and therefore leads to a positive L, suggesting a negative basin-scale salinity advection feedback and, in turn, a mono-stable deglacial AMOC. Further analyses show that most anomalous freshwater is induced by the AMOC via the southern boundary of the Atlantic at 34°S where the freshwater transport (M ovS ) is about equally controlled by the upper branch of the AMOC and the upper ocean salinity along 34°S. From 19 to 17 ka, as a result of multiple climate feedbacks associated with the AMOC change, the upper ocean at 34°S is largely salinified, which helps to induce a switch in M ovS , from import to export. Our study has important implications to the deglacial simulations by climate models. A decomposition of L shows that the AMOC stability is mostly determined by two terms, the salinity stratification at 34°S and the change of stratification with the AMOC. Both terms appear positive in model. However, the former is likely to be distorted towards positive, as associated with a common bias existing over the South Atlantic in climate models. Therefore, the AMOC is potentially biased towards mono-stability in most paleoclimate simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adegbie AT, Schneider RR, Rohl U, Wefer G (2003) Glacial millennial scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr Palaeoclimatol Palaeoecol 197:323–333

    Article  Google Scholar 

  • Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and δ18O of the glacial deep ocean. Science 298:1769–1773

    Article  Google Scholar 

  • Alley RB (2000) The Younger Dryas cold interval as viewed from central Greenland. Quat Sci Rev 19(1–5):213–226. doi:10.1016/S0277-3791(99)00062-1

    Article  Google Scholar 

  • Barker S, Diz P, Vautravers MJ, Pike J, Knorr G, Hall IR, Broecker WS (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457:1097–1102

    Article  Google Scholar 

  • Beal LM, De Ruijter WPM, Biastoch A, Zahn R, SCOR/WCRP/IAPSO Working Group 136 (2011) On the role of the Aguhlas system in ocean circulation and Climate. Nature 472:429–436

    Article  Google Scholar 

  • Biastoch A, Böning CW, Schwarzkopf FU, Lutjeharms JRE (2009) Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462:495–499

    Article  Google Scholar 

  • Bitz CM, Chiang JCH, Cheng W, Barsugli JJ (2007) Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates. Geophys Res Lett 34:L07708. doi:10.1029/2006GL029237

    Google Scholar 

  • Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–112

    Article  Google Scholar 

  • Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the last 20,000 years: link to high latitude surface temperature. Nature 330:35–40

    Article  Google Scholar 

  • Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323:301–304

    Article  Google Scholar 

  • Carlson AE (2009) Geochemical constraints on the Laurentide Ice Sheet contribution to Meltwater Pulse 1A. Quat Sci Rev 28:1625–1630. doi:10.1016/j.quascirev.2009.02.011

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic ocean from thermodynamic air–sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Cimatoribus AA, Drijfhout SS, den Toom M, Dijkstra HA (2012) Sensitivity of the Atlantic meridional overturning circulation to south Atlantic freshwater anomalies. Clim Dyn 39:2291–2306

    Article  Google Scholar 

  • Clark PU, Mix AC (2002) Ice sheets and sea level of the Last Glacial Maximum. Quat Sci Rev 21(1–3):1–7

    Article  Google Scholar 

  • Clark PU, Marshall SJ, Clarke GKC, Hostetler SW, Licciardi JM, Teller JT (2001) Freshwater forcing of abrupt climate change during the last glaciation. Science 293(5528):283–287. doi:10.1126/science.1062517

    Article  Google Scholar 

  • Clark PU, Mitrovica JX, Milne GA, Tamisiea ME (2002) Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295(5564):2438–2441. doi:10.1126/science.1068797

    Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model: CCSM3. J Clim 19:2122–2143

    Article  Google Scholar 

  • Cuffey KM, Clow GD (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J Geophys Res 102(C12):26383–26396

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220

    Article  Google Scholar 

  • De Deckker P, Moros M, Perner K, Jansen E (2012) Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry. Nat Geosci 5(4):266–269

    Article  Google Scholar 

  • De Ruijter WPM, Biastoch A, Drijfhout SS, Lutjeharms JRE, Matano RP, Pichevin T, van Leeuwen PJ, Weijer W (1999) Indian–Atlantic inter-ocean exchange: dynamics, estimation, and impact. J Geophys Res 104:20885–20910

    Article  Google Scholar 

  • Dijkstra H (2007) Characterization of the multiple equilibria regime in a global ocean model. Tellus 59A:695–705

    Article  Google Scholar 

  • Dong B, Sutton RT (2002) Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29. doi:10.1029/2002GL015229

  • Donners J, Drijfhout SS, Hazeleger W (2005) Water mass transformation and subduction in the South Atlantic. J Phys Oceanogr 35:1841–1860

    Article  Google Scholar 

  • Drijfhout SS, Weber SL, van der Swaluw E (2011) The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim Dyn 37:1575–1586. doi:10.1007/s00382-010-0930-z

    Article  Google Scholar 

  • Gordon AL, Weiss RF, Smethie WM, Warner MJ (1992) Thermocline and intermediate water communication between the South Atlantic and Indian Oceans. J Geophys Res 97:7223–7240

    Article  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W (2007) Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys Res Lett 34:L05704. doi:10.1029/2006GL028906

    Google Scholar 

  • Hu A, Otto-Bliesner BL, Meehl GA, Han W, Morrill C, Brady EC, Briegleb B (2008) Response of thermohaline circulation to freshwater forcing under present day and LGM conditions. J Clim 21:2239–2258

    Article  Google Scholar 

  • Hu A, Meehl GA, Otto-Bliesner BL, Waelbroeck C, Han W, Loutre M, Lambeck K, Mitrovica J, Rosenbloom N (2010) Influence of Bering Strait flow and North Atlantic circulation on glacial sea level changes. Nat Geosci 3:118–121. doi:10.1038/NGEO729

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W, Timmermann A, Otto-Bliesner BL, Liu Z, Washington W, Large W, Abe-Ouchi A, Kimoto M, Lambeck K, Wu B (2012) Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proc Natl Acad Sci 109(17):6417–6422. doi:10.1073/pnas.1116014109

    Article  Google Scholar 

  • Huisman SE, den Toom M, Dijkstra HA, Drijfhout S (2010) An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J Phys Oceanogr 40:551–567. doi:10.1175/2009JPO4215.1

    Article  Google Scholar 

  • Jackson LC (2013) Shutdown and recovery of the AMOC in a coupled global climate model: the role of the advective feedback. Geophys Res Lett 40:1182–1188. doi:10.1002/grl.50289

    Article  Google Scholar 

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci 105(5):1425–1430. doi:10.1073/pnas.0707386105

    Article  Google Scholar 

  • Kageyama M, Merkel U, Otto-Bliesner BL, Prange M, Abe-Ouchi A, Lohmann G, Roche DM, Singarayer J, Swingedouw D, Zhang X (2013) Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim Past 9(2):935–953

    Article  Google Scholar 

  • Krebs U, Timmermann A (2007) Tropical air–sea interactions accelerate the recovery of the Atlantic meridional overturning circulation after a major shutdown. J Clim 20:4940–4956

    Article  Google Scholar 

  • Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346

    Article  Google Scholar 

  • Liu W (2012) Insights from deglacial changes in the Southern Ocean and Atlantic meridional overturning circulation during the last deglaciation. Ph.D thesis 150 pp. Univ of Wisconsin-Madison

  • Liu W, Liu Z (2013) A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. J Clim 26:1926–1938

    Article  Google Scholar 

  • Liu W, Liu Z (2014) A note on the stability indicator of Atlantic meridional overturning circulation. J Clim 27:969–975

    Article  Google Scholar 

  • Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325:310–314

    Article  Google Scholar 

  • Liu W, Liu Z, Hu A (2013) The stability of an evolving Atlantic meridional overturning circulation. Geophys Res Lett 40:1562–1568. doi:10.1002/grl.50365

    Article  Google Scholar 

  • Liu W, Liu Z, Brady EC (2014) Why is the AMOC mono-stable in coupled general circulation models? J Clim 27:2427–2443

    Article  Google Scholar 

  • Lutjeharms JRE (2006) The agulhas current. Springer, Berlin

    Google Scholar 

  • Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi J, Ivanova E, Kissell C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann US, Yu E, Zahn R (2007) Atlantic overturning circulation during the Last Glacial Maximum. Science 316:66–69

    Article  Google Scholar 

  • Manabe S, Stouffer R (1988) Two stable equilibria of a coupled ocean–atmosphere model. J Clim 1:841–866

    Article  Google Scholar 

  • McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837

    Article  Google Scholar 

  • Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in CCSM3. J Clim 19:2526–2544

    Article  Google Scholar 

  • Otto-Bliesner BL, Hewitt CD, Marchitto TM Jr, Brady EC, Abe-Ouchi A, Crucific M, Murakami S, Weber SL (2007) Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys Res Lett 34:L12707. doi:10.1029/2007GL029475

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth—the ICE-5G(VM 2) model and GRACE. Annu Rev Earth Planet Sci 32(1):111–149

    Article  Google Scholar 

  • Praetorius SK, McManus JF, Oppo DW, Curry WB (2008) Episodic reductions in bottom water currents since the last ice age. Nat Geosci 1:449–452

    Article  Google Scholar 

  • Provost C, Escoffier C, Maamaatuaiahutapu K, Kartavtseff A, Garcon V (1999) Subtropical mode waters in the South Atlantic Ocean. J Geophys Res 104:21033–21049

    Article  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811

    Article  Google Scholar 

  • Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich IV, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. doi:10.1029/2005GL023655

    Article  Google Scholar 

  • Sachs JP, Anderson RF, Lehman SJ (2001) Glacial surface temperatures of the southeast Atlantic Ocean. Science 293:2077–2079

    Article  Google Scholar 

  • Schäfer-Neth C, Paul A (2003) The Atlantic Ocean at the last glacial maximum: 1. objective mapping of the GLAMAP sea-surface conditions. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the late quaternary: material budget and current systems. Springer, Berlin, pp 531–548

    Chapter  Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner BL, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54

    Article  Google Scholar 

  • Sijp WP (2012) Characterising meridional overturning bistability using a minimal set of state variables. Clim Dyn 39:2127–2142

    Article  Google Scholar 

  • Sijp WP, England MH, Gregory JM (2012) Precise calculations of the existence of multiple AMOC equilibria in coupled climate models. Part I: equilibrium states. J Clim 25:282–298

  • Stanford JD, Rohling EJ, Hunter SE, Roberts AP, Rasmussen SO, Bard E, McManus J, Fairbanks RG (2006) Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 21(4):PA4103

    Article  Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 2:224–230

    Article  Google Scholar 

  • Stouffer RJ, Dixon KW, Spelman MJ, Hurlin WJ, Yin J, Gregory JM, Weaver AJ, Eby M, Flato GM, Robitaille DY, Hasumi H, Oka A, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Peltier WR, Vettoretti G, Sokolov AP, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi:10.1175/JCLI3689.11

    Article  Google Scholar 

  • Talley LD (2008) Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog Oceanogr 78:257–303. doi:10.1016/j.pocean.2008.05.001

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tsugawa M, Hasumi H (2010) Generation and growth mechanism of a Natal Pulse. J Phys Oceanogr 40:1597–1612

    Article  Google Scholar 

  • Weber SL, Drijfhout SS (2007) Stability of the Atlantic meridional overturning circulation in the last glacial maximum climate. Geophys Res Lett 34:L22706. doi:10.1029/2007GL031437

    Article  Google Scholar 

  • Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner BL, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Clim Past 3:51–64

    Article  Google Scholar 

  • Weldeab S, Schneider RR, Kölling M, Wefer G (2005) Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 33:981–984. doi:10.1130/G21874.1

    Article  Google Scholar 

  • Wu L, Li C, Yang C, Xie S-P (2008) Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J Clim 21:3002–3019

    Article  Google Scholar 

  • Xie S-P (1996) Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J Atmos Sci 53:3236–3250

    Article  Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts, in Earth’s climate: the ocean–atmosphere interaction. Geophys Monogr Ser, vol 147, edited by Wang C, Xie S-P, Carton JA, AGU, Washington, DC, pp 121–142

  • Xie S-P, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus(A) 46:340–350

    Article  Google Scholar 

  • Yeager S, Shields C, Large W, Hack J (2006) The low-resolution CCSM3. J Clim 19:2545–2566

    Article  Google Scholar 

  • Zhang R, Delworth T (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860

    Article  Google Scholar 

Download references

Acknowledgments

Wei Liu and Zhengyu Liu are supported by NSF, DOE and NSFC 41,130,105. Jun Cheng is supported by NSFC 41206024. Haibo Hu is supported by the National Key Program for Developing Basic Science (Grant Nos. 2010CB428504, 2012CB956002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Liu, Z., Cheng, J. et al. On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Clim Dyn 44, 1257–1275 (2015). https://doi.org/10.1007/s00382-014-2153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2153-1

Keywords

Navigation