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Abstract This study aims at sharpening the existing

knowledge of expected seasonal mean climate change and

its uncertainty over Europe for the two key climate vari-

ables air temperature and precipitation amount until the

mid-twentyfirst century. For this purpose, we assess and

compensate the global climate model (GCM) sampling bias

of the ENSEMBLES regional climate model (RCM) pro-

jections by combining them with the full set of the CMIP3

GCM ensemble. We first apply a cross-validation in order

to assess the skill of different statistical data reconstruction

methods in reproducing ensemble mean and standard

deviation. We then select the most appropriate recon-

struction method in order to fill the missing values of the

ENSEMBLES simulation matrix and further extend the

matrix by all available CMIP3 GCM simulations forced by

the A1B emission scenario. Cross-validation identifies a

randomized scaling approach as superior in reconstructing

the ensemble spread. Errors in ensemble mean and standard

deviation are mostly less than 0.1 K and 1.0 % for air

temperature and precipitation amount, respectively.

Reconstruction of the missing values reveals that expected

seasonal mean climate change of the ENSEMBLES RCM

projections is not significantly biased and that the associ-

ated uncertainty is not underestimated due to sampling of

only a few driving GCMs. In contrast, the spread of the

extended simulation matrix is partly significantly lower,

sharpening our knowledge about future climate change

over Europe by reducing uncertainty in some regions.

Furthermore, this study gives substantial weight to recent

climate change impact studies based on the ENSEMBLES

projections, since it confirms the robustness of the climate

forcing of these studies concerning GCM sampling.

Keywords Future climate projections � Regional climate

models � ENSEMBLES � Uncertainty � Sampling bias �
Europe

1 Introduction

The application of general circulation models (GCMs)

driven by prescribed greenhouse gas (GHG) emission

scenarios is nowadays the most common way to obtain

physically based climate projections. Due to their coarse

spatial resolution (typically 100–300 km horizontal grid

spacing with an effective resolution of about 1,000 km)

GCMs currently fail to properly represent many regional

and local climate processes, such as, e.g., orographic pre-

cipitation (McGregor 1997). In order to generate climate

simulations with finer horizontal resolution, regional cli-

mate models (RCMs) are nested within the GCM large

scale atmospheric circulation over a limited area (Giorgi

and Mearns 1991, 1999; McGregor 1997; Wang et al.

2004; Rummukainen 2010) and the added value of RCMs

in representing regional climate characteristics has been

demonstrated in several studies (Jones et al. 1995; Laprise

2003; Castro et al. 2005; Buonomo et al. 2007; Feser et al.

2011).

Regional as well as global climate projections are sub-

ject to considerable uncertainties which can be roughly
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divided into three components: (1) Uncertainty due to

natural variability, (2) uncertainty due to unknown future

GHG emissions, and (3) uncertainty due to imperfect

simulation of the climate system (Collins 2007). In order to

analyse these uncertainties in RCM projections, large-scale

European projects such as PRUDENCE (http://prudence.

dmi.dk/; Christensen and Christensen 2007) and ENSEM-

BLES (http://ensembles-eu.metoffice.com/; van der Linden

and Mitchell 2009) produced coordinated multi-model

ensembles, improving rapidly the knowledge about

uncertainties in regional climate projections in the last

decade. Furthermore, these simulations provided the basis

for most investigations of regional climate change impacts

over Europe in recent years.

Due to limited computational capacities, only a limited

number of RCM simulations can be realised and it is a

question of the experimental design which uncertainty

components are primarily tackled within the ensemble.

Therefore, missing realisations within RCM ensembles are

a common problem and even simple ensemble estimates

such as mean and variability are potentially biased due to

unequal sampling of the uncertainty components. In order

to avoid such biases, Déqué et al. (2007) introduced an

iterative data reconstruction method which assumes addi-

tivity between uncertainty components in order to estimate

the missing climate change signals (CCSs). This recon-

struction method was further applied in several studies in

order to obtain a balanced design for the analysis of vari-

ance components (Déqué et al. 2007; Heinrich and Gobiet

2011b; Prein et al. 2011; Déqué et al. 2012). However, as

the method relies on an implicit formulation of the

uncertainty components, it cannot be used to extend the

ensemble to experiments outside of the original experi-

mental design (e.g., for GCMs that have not been used as

driver for any RCM in the ensemble). For such an exten-

sion, scaling techniques are widely applied (Mitchell et al.

1999; Mitchell 2003; Rummukainen et al. 2003; Harris

et al. 2006; Hingray et al. 2007; Ruosteenoja et al. 2007).

They have been originally used to derive regional climate

projections of time horizons or emission scenarios which

have not been GCM simulated, by scaling the global mean

temperature change of simple energy balance models with

the geographical pattern of the GCM simulations (pattern-

scaling). In our case, we aim at predicting the RCM

response from the driving GCM response, by applying a

scaling relationship according to the regional CCSs. In this

respect, it has already been shown that scaling has skill at

the GCM grid point scale (Kendon et al. 2010).

The aim of our study is to assess and compensate for the

potential GCM sampling bias in expected regional mean

climate change and the associated uncertainty of the

ENSEMBLES RCM projections by data reconstruction and

combination with the much larger GCM ensemble of the

third phase of the Coupled Model Intercomparison Project

(CMIP3; Meehl et al. 2007). For this purpose, we first

assess the skill of different statistical additive and scaling

reconstruction methods in reproducing ensemble mean and

standard deviation. We then apply the most appropriate

reconstruction method to the sparsely filled ENSEMBLES

simulation matrix and further extend the matrix to all

available GCM simulations of the CMIP3 ensemble forced

by the A1B emission scenario (Nakicenovic et al. 2000).

As final result, we present an update of expected regional

climate change for air temperature and precipitation

amount in eight European subregions until the mid-twen-

tyfirst century and reassess its uncertainty under the light of

the extended ensemble.

The paper is structured as follows. Section 2 introduces

the data and study regions. In Sect. 3 we describe the

reconstruction methods. In Sect. 4 we explain the setup of

the cross-validation and the statistical analysis. In Sect. 5

we present the cross-validation results. Section 6 provides

a revision of expected regional climate change and its

uncertainty over Europe, followed by Sect. 7 which sums

up the key findings of this study.

2 Climate model data and study region

We use the RCM data from the ENSEMBLES project

which produced a set of 21 high resolution RCM simu-

lations with a horizontal grid spacing of about 25 km

(Table 1). The ensemble consists of 8 GCMs and 16

RCMs, but due to limited computational resources, only a

small fraction (16.4 %) of the possible GCM–RCM

combinations could be realised. Sub sampling mainly

addressed uncertainty in boundary conditions (choice of

the driving GCM) and RCM model formulation (Chris-

tensen et al. 2010). Since the choice of the GHG emis-

sion scenario is less important until the mid-twentyfirst

century (Hawkins and Sutton 2009, 2011; Prein et al.

2011), only the A1B emission scenario was used to force

the climate simulations. As suggested by Christensen

et al. (2010), we consider the three sensitivity experi-

ments of HadCM3–HadRM3 as different model combi-

nations, as their climate response is highly variable

(Collins et al. 2006).

Many of the RCM simulations (10 out of 21) were driven

by only two GCMs, namely ECHAM5 and HadCM3Q0. All

GCMs, except CGCM3.1 and IPSL-CM4, drive at least two

RCMs. Three RCMs were forced by multiple GCMs,

namely DMI-HIRHAM, METNO-HIRHAM, and SMHI-

RCA. The driving GCM data of ENSEMBLES was either

obtained by the database of ENSEMBLES (http://

ensemblesrt3.dmi.dk/) or CMIP3 (https://esg.llnl.gov:84

43/). As we aim at extending the uncertainty analysis to
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unknown GCMs, we also take into account all additional

available GCM simulations of CMIP3 forced by the A1B

emission scenario. Altogether, we have 53 GCM simulations

for air temperature and 50 for precipitation amount from a

set of 27 GCMs (precipitation from 3 out of 5 simulations of

the GISS-ER model are missing in the CMIP3 database).

From this ensemble, 10 GCMs were started with different

perturbed initial conditions and, therefore, cover uncertainty

due to natural variability (see Table 1).

In order to be comparable to previous studies con-

ducted within PRUDENCE and ENSEMBLES, we focus

on the land grid points of eight European subregions

according to Christensen and Christensen (2007): Iberian

Peninsula (IP), Mediterranean (MD), France (FR), Middle

Europe (ME), Alps (AL), Eastern Europe (EA), British

Isles (BI), and Scandinavia (SC). In addition, we also

provide information concerning entire Europe (EU). The

selected subregions cover the diversity of main climate

characteristics in Europe, ranging from arid climate con-

ditions during summer in the southern European regions

IP and MD to humid maritime climate characteristics in

BI and SC (Heinrich and Gobiet 2011a). The focus is on

seasonal mean CCSs, calculated as the difference between

the two periods of 2021–2050 for the future period and

1961–1990 for the baseline period (except for the GKSS-

CLM model which starts in 1963). The precipitation

CCSs are calculated relatively with respect to the baseline

period.

3 Data reconstruction methods

As we aim at deriving RCM responses based on their

associated driving GCMs, we first highlight the effect of

RCMs on the CCSs of their driving GCMs. Figure 1 shows

the mean difference in the seasonal mean CCSs between

RCMs and associated driving GCMs of the 21 available

ENSEMBLES projections for air temperature and precip-

itation amount, respectively. The climate model data have

been resampled to a common grid of 3.75� longitude and

2.5� latitude which is most common to the ENSEMBLES

GCMs. A more detailed description of the resampling

technique can be found in Suklitsch et al. (2008).

Concerning air temperature, the RCMs feature smaller

CCSs than their driving GCMs for most of Europe with

highly pronounced differences in spring and summer,

particularly in Eastern and Southern Europe. On subre-

gional scale, EA and MD show the largest difference with

-0.8 K in JJA (see Table S1 in the online supplementary

material). For precipitation, the RCMs tend to feature lar-

ger CCSs (moister conditions) for large parts of Europe,

particularly in JJA with the most pronounced differences of

?6.5 % in FR, ?5.4 % in EA, and ?5.1 % in ME.

3.1 Additive method

First, we consider the additive reconstruction method

introduced by Déqué et al. 2007 (D07). The reconstruction

Table 1 The ENSEMBLES simulation matrix of the 25 km runs until 2050

The orange coloured cells marked with X’s indicate the available simulations and empty cells represent the missing GCM–RCM combinations.

The models spanning the RCM and GCM uncertainty of ENSEMBLES are highlighted in blue and green, respectively. Additional uncertainty

due to the CMIP3 GCMs is displayed in red and GCMs which are driven by different perturbed initial conditions are marked with an asterisk.

The GCMs and RCMs of ENSEMBLES are used for calibrating the statistical reconstruction methods which are then applied to the GCMs of

both ENSEMBLES and CMIP3 in order to reconstruct the associated missing RCM responses
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method is embedded in the framework of an analysis of

variance (ANOVA), neglecting the highest interaction term

in order to reconstruct the actual missing value. The

reconstruction algorithm writes in case of the ENSEM-

BLES simulation matrix as follows:

DXij ¼ DXi� þ DX�j � DX��
¼ DX�� þ ðDXi� � DX��Þ þ ðDX�j � DX��Þ; ð1Þ

where DX denotes the CCS of an RCM for a specific

subregion, i is the index of the RCM (i ¼ 1; . . .; 17), and

j the index of the driving GCM (j ¼ 1; . . .; 8). The dot

operator denotes averaging across the corresponding indi-

ces. The reconstruction algorithm can be understood intu-

itively: consider RCM1 driven by a set of GCMs and

RCM2 driven by the same GCMs except one. This missing

value is then reconstructed by adding the mean difference

between RCM2 and RCM1 to RCM1. Since the recon-

struction of the missing values depends on the grand mean

of the entire simulation matrix, 30 iterations are performed

(Déqué et al. 2007).

Fig. 1 The mean difference in

the seasonal CCSs between

RCMs and associated driving

GCMs of ENSEMBLES for air

temperature (a) and

precipitation amount (b). The

CCSs are calculated between

the two periods of 2021–2050

and 1961–1990. In each panel,

top-left is winter (DJF), top-

right is spring (MAM), bottom-

left is summer (JJA), and

bottom-right is autumn (SON)
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3.2 Scaling methods

The main disadvantage of the D07 method is that it cannot

be used for an extension to unknown GCMs, as there is no

explicit formulation between the CCSs of RCMs and their

associated driving GCMs. For such an extension, scaling

techniques are widely applied and in this study we assess

the capability of different scaling methods in reconstruct-

ing the RCM projections.

Scaling can be generally formulated as:

DXij ¼ DYj � ~k þ ~d þ eij; ð2Þ

where ~k and ~d are the linear regression coefficients of a

least-square-fit to the data. In order to account for the

downscaling effect which is specific for a particular RCM,

we introduce the additive term eij. In this study, three dif-

ferent formulations of the RCM specific downscaling effect

eij are investigated: (1) there exists no RCM specific

downscaling effect with eij ¼ 0 (SCA1), (2) the RCM

specific downscaling effect is the mean RCM specific

residual of the least-square-fit (SCA2), (3) the RCM spe-

cific downscaling effect is randomly sampled from a nor-

mal distribution with zero mean and standard deviation

estimated from the regression residuals of all RCMs

(SCA3).

In literature, the regression line is typically forced to

cross the abscissa at zero (intercept ~d ¼ 0 in Eq. 2) which

is argued to be reasonable if global mean temperature

change is used as predictor for the regional climate

response (e.g., Hingray et al. 2007; Ruosteenoja et al.

2007). However, the relevance of this assumption has not

been assessed so far for a scaling relationship at the GCM

scale and, therefore, we also consider a scaling relationship

without intercept (SCA0). SCA0 can be regarded as

degenerated linear regression with zero intercept, while

scaling (Eq. 2) is a full linear regression with varying

intercept and slope. We also note that RCM specific ran-

dom sampling is not feasible as the majority of RCMs is

only driven by a single GCM (see Table 1). In addition, the

insufficient sample size at the RCM specific level does not

allow for applying a hierarchical linear model (e.g., Gel-

man and Hill 2009) in order to estimate RCM specific

regression lines.

Furthermore, we note that the random sampling

approach SCA3 is embedded in the framework of mul-

tiple imputation (MI; Rubin 1987; Little and Rubin

2002), which aims at generating a set of multiple plau-

sibly reconstructed data sets. Common statistical analysis

is then applied to each individual data set, generating a

set of parameter estimates of interest. The final param-

eter estimate is then achieved by simply taking the

average of the individual realizations (Rubin 1987). As

we are dealing with a large fraction of missing values,

we generate a set of 1,000 reconstructed data sets

throughout the study in order to ensure convergence of

random sampling.

4 Design of the cross-validation and statistical analysis

4.1 Cross-validation

In order to compare the skill of the different reconstruction

methods, we follow a cross-validation (CV) strategy. CV is

often used to estimate the predictive skill of statistical

models in application and has the further advantage that it

can be applied to small sample sizes as it does not rely on

asymptotic theory. In this study, we apply a leave-one-out

cross-validation (LOOCV) method by fitting the statistical

model to a training data set which consists of leaving out a

data point from the original sample. This data point is then

predicted by the statistical model and the procedure is

repeated for each single data point in the sample, gener-

ating a completely reconstructed data set. As the focus of

our study is on the estimation of expected seasonal mean

climate change and its uncertainty, the LOOCV is used to

assess the predictive skill of the reconstruction methods in

estimating ensemble mean and standard deviation by

comparing their match between original and reconstructed

sample. Although an unbiased estimation of the ensemble

mean is an important prerequisite for the further analysis of

this study, the mean errors might compensate among the

predictions and, therefore, the root mean square deviations

(RMSD) between original and reconstructed CCSs are also

assessed.

Cross-validation (CV) of the methods which are based

on RCM specific information (D07 and SCA2) requires

RCMs which are driven by more than one GCM. Unfor-

tunately, only a subset of eight simulations of three RCMs

were forced by multiple GCMs in ENSEMBLES (see

Table 1) and the corresponding LOOCV results have to be

regarded as a rather rough estimate of the skill due to the

small sample size. However, the LOOCV based on this

subset is the only way to compare the skill of all imple-

mented reconstruction methods. All other reconstruction

methods allow for a LOOCV based on the full sample of 21

simulations.

Concerning the LOOCV, we follow two strategies.

First, we compute a LOOCV which is based on leaving out

the CCS of a single RCM (LOOCV-RCM). As most of

the GCMs are used as driving data for at least two RCMs,

the entire GCM information is available for predicting the

RCM change in most cases. Therefore, this strategy can be

regarded as measuring the performance of deriving the

missing CCSs of the ENSEMBLES simulation matrix (see
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Table 1). However, it might be argued that the influence of

a single data point decreases as the sample size increases.

In order to take this into account and as we also aim at

extending the ENSEMBLES simulation matrix to unknown

GCMs, we additionally apply a more stringent cross-vali-

dation which is achieved by leaving out the CCSs of a

driving GCM and all associated RCMs as second LOOCV

strategy (LOOCV-GCM). Compared to the LOOCV-RCM,

the sample size of the training data sets for each of the

LOOCV-GCM predictions is generally smaller. Further-

more, we note that the LOOCV-GCM is asymmetric in the

sense that the number of neglected RCM simulations is

GCM-dependent (up to almost 25 % of the data is

neglected in case of ECHAM5 and HadCM3Q0) which

consequently increases the independence among the train-

ing samples since the entire information of the driving

GCM is removed for each of the RCM predictions.

4.2 Statistical analysis

4.2.1 Statistical significance

After reconstructing the missing values of the simulation

matrix, we assess the statistical significance of the differ-

ences in expected seasonal mean climate change and the

associated uncertainty between original and reconstructed

ensemble. Statistical tests for differences in the mean

generally require equal variances (Behrens–Fisher prob-

lem). However, this cannot be assumed here, as the

reconstruction of the missing CCSs potentially changes the

spread of the ensemble. Therefore, we apply a t test for

unequal variances (Welch-test) under the null hypothesis

that the ensemble mean of original and reconstructed

ensemble are equal. The application of the t test requires

independently and normally distributed samples. As we are

dealing with rather small sample sizes, it is difficult to

assess the normality of the data. However, the assumption

of normality in our study is supported by the central limit

theorem since multiple averaged quantities are applied.

The statistical significance of the differences in the

ensemble spread is assessed by applying the robust Flig-

ner–Killeen test (Conover et al. 1981) under the null

hypothesis that the ensemble variances of original and

reconstructed ensemble are equal.

In order to eliminate possible dependencies among the

RCM simulations due to their driving GCMs, we average

across the RCMs according to their driving GCMs. For the

same reason, we average across the different GCM runs of

the CMIP3 database after reconstructing the RCM changes.

Therefore, the sample sizes of original and reconstructed

simulation matrices reduce to the number of GCMs indi-

cated in Table 1 (8 for the ENSEMBLES simulation matrix

and 27 for the extended matrix).

Significance levels lower than 3, 3 to 5, 5 to 10 %, and

greater than 10 % are termed as strongly significant, sig-

nificant, weakly significant, and insignificant, respectively.

4.2.2 Quantification of uncertainty

The uncertainties of the projected changes are quantified by

two measures. Firstly, we calculate the ensemble standard

deviation. As its calculation is based on rather small

sample sizes in this study, we apply a minor bias correction

as proposed in Knutti et al. (2010). Secondly, we calculate

the percentage of models which coincide in the sign of

change as a non-parametric uncertainty measure. Applying

the confidence terminology defined by the intergovern-

mental panel on climate change (Solomon et al. 2007;

Mastrandrea et al. 2010), very high confidence, high con-

fidence, and medium confidence is obtained if at least

90 %, at least 80 %, and at least 50 % agree in the sign of

the multi-model mean change, respectively.

5 Results of the cross-validation

Figures 2 and 3 depict the results of the LOOCV for air

temperature and precipitation amount, respectively. The

spread of the box-whisker plots displays variability among

subregions. For comparative purposes, we only show the

results of LOOCV-RCM based on the subset of RCM

simulations driven by multiple GCMs which includes all

reconstruction methods. All additional LOOCV results

based on LOOCV-GCM and the full sample are provided

in the online supplementary material, Fig. S1 to Fig. S6.

For air temperature, the largest differences between

reconstructed and original ensemble mean are obtained for

D07 concerning all seasons. However, the bias is rather

small, showing mostly an underestimation of the ensem-

ble mean. The largest bias of D07 is obtained in DJF

with -0.06 K in the median and ranging from -0.13 K to

-0.04 K. SCA0 shares this negative bias in DJF, but with a

lower magnitude of -0.01 K in the median. For all other

methods, biases in both directions are obtained with mag-

nitudes less than 0.02 K in the median. The differences

between SCA1 and SCA3 in the ensemble mean can be

related to finite sampling of the residuals and converge to

zero as the number of random draws increases. For the

ensemble standard deviation, D07 generally shows an

underestimation which is largest in DJF with -0.23 K in

the median. Although the scaling methods generally per-

form better in reconstructing the ensemble standard devi-

ation, underestimated variability is obtained as expected

for the scaling relationships without random sampling of

the residuals. Only the randomized scaling approach SCA3

is able to compensate for the underestimated standard
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deviation as additional variability is introduced due to

random sampling of the residuals. The RMSD is generally

lower for the scaling methods. The difference in the RMSD

between SCA1 and SCA3 can be explained by the fact that

additional variability is introduced due to random sampling

of the residuals. More specifically, the difference in the

squared RMSD between SCA1 and SCA3 can be calcu-

lated analytically and is given by the mean variance of the

residuals among the LOOCV samples. All reconstruction

methods show a seasonal dependency of the RMSD with

the best and worst skill in DJF and SON, respectively. The

differences between the various scaling methods are gen-

erally small (especially for SCA0 and SCA1).

For precipitation amount, D07 tends to overestimate

(underestimate) the ensemble mean in DJF and JJA (MAM

and SON). The biases are rather small with a peak mag-

nitude in SON with -0.3 % in the median. For the scaling

methods, the ensemble mean is underestimated in MAM

and SON. SCA0 generally shows large biases in combi-

nation with rather large ranges among the subregions. The

largest bias of SCA0 is found in SON with a median dif-

ference of -0.7 % and ranging from -3.0 % to ?1.0 %.

For the ensemble standard deviation, D07 again tends to

underestimate the ensemble spread with the largest differ-

ence in the median of -1.8 % in SON. The scaling

methods partly show a pronounced underestimation of

variability. The largest difference in the median is obtained

for SCA0 and SCA1 in JJA with a magnitude of -3.3 and

-2.0 %, respectively. As already shown for air tempera-

ture, SCA3 again shows the overall best performance in

reproducing the ensemble spread as random sampling of

the residuals increases variability of the scaling relation-

ship and consequently compensates for the underestimated

ensemble standard deviation. For the RMSD, the scaling

reconstruction methods consistently reveal the best skill in

DJF while D07 shows the lowest RMSD in SON. The

differences in the RMSD between SCA0 and SCA1 are

again small. The worst skill for all reconstruction methods

is obtained in JJA, peaking up to 8.3 % for D07. Here, the

rather large difference between SCA1 and SCA3 can be

Fig. 2 Results of the LOOCV-RCM for air temperature based on the

subset of RCMs which are driven by multiple GCMs. Displayed are

the differences between reconstructed and original ensemble mean

(a) and standard deviation (b), and the associated root mean square

deviations (c). The spread of the box-whisker plots shows variability

among subregions and displayed are the 10th, 25th, 50th, 75th, and

90th percentile
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related to large additional variability introduced by random

sampling of the residuals and reasonably indicates large

variability of the summer precipitation CCSs among the

different RCM projections (e.g., Déqué et al. 2012).

The results of the second cross-validation strategy

LOOCV-GCM, which is based on leaving out the CCSs of

a driving GCM and all associated RCMs, underpin the

results reported above. Extending the LOOCV to the entire

sample, rather large negative precipitation biases are

obtained for SCA0 in all seasons. Concerning the ensemble

spread, SCA0 and SCA1 mostly underestimate variability

and the superiority of SCA3 in reconstructing the ensemble

spread is further confirmed (see online supplementary

material, Fig. S1 to Fig. S6).

Based on the results of the LOOCV, we choose SCA3 as

preferred reconstruction method, especially due to its

overall best performance in reconstructing ensemble mean

and variability. Table 2 summarises the results of the two

LOOCV strategies for SCA3 based on the entire sample as

further applied in the study. As expected, the results of the

more stringent LOOCV-GCM strategy indicate a worse

performance than the LOOCV-RCM strategy which can be

related to the smaller size of the training samples and the

asymmetric character of LOOCV-GCM. However, both

CV strategies reveal differences in the ensemble mean and

spread mostly clearly less than 0.1 K and 1.0 % for air

temperature and precipitation amount, respectively. As

these values provide a measure of the predictive skill of our

statistical reconstruction method, we expect rather small

errors introduced by the statistical model in prediction

mode. As already discussed above, the RMSD values are

inflated by additional variability due to random sampling of

the residuals. The coefficient of determination (R2) is

generally larger for air temperature than for precipitation

amount, ranging from below 0.1 for precipitation amount

for MD in JJA up to 0.9 for air temperature in several

subregions and seasons. However, small R2 values are

generally not related to large biases and/or differences in

the ensemble spread, reflecting a potential instability of the

R2 due to the rather small sample size. Figure 4 displays

the linear fits between the CCSs of RCMs and associated

driving GCMs as further applied in the study. As it can be

seen, intercept and slope are both varying across subre-

gions and seasons, further underpinning that the

Fig. 3 Same as Fig. 2 but for precipitation amount
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formulation of the zero intercept model (SCA0) may not be

appropriate. This is generally in agreement with the results

of the LOOCV. For example, air temperature reveals a

distinct non-zero intercept in MAM for all subregions

which consequently results in poor performance of SCA0

concerning both LOOCV strategies (see online supple-

mentary material, Fig. S3 and Fig. S5).

6 Revision of expected regional climate change

and its uncertainty over Europe

Table 3a and b show the differences in ensemble mean and

standard deviation between original and filled ENSEM-

BLES simulation matrix for air temperature and precipi-

tation amount, respectively. For air temperature, the

differences in the ensemble mean are mostly negative in

DJF, JJA, and SON, indicating slightly larger CCSs of the

original ensemble, while in MAM larger mean values of

the filled ensemble are obtained for all subregions. How-

ever, the differences are rather small and insignificant, with

maximum differences in the order of ±0.2 K. For the

ensemble standard deviation, mostly lower values for the

filled ensemble are obtained. Exceptions are EA in JJA and

BI in DJF and the differences are again small and insig-

nificant, peaking up to -0.5 K for SC in MAM. For pre-

cipitation amount, the differences in the ensemble mean

vary across seasons and subregions. As for air temperature,

the differences are again small and insignificant, with a

maximum difference of ?1.1 % for AL in DJF. Concern-

ing the ensemble spread, mostly lower standard deviations

for the filled ensemble are obtained. Exceptions are SC in

DJF as well as FR and ME in MAM. The differences are

again rather small and insignificant, peaking up to -4.4 %

for FR in JJA.

Table 3c and d show the differences in ensemble mean

and standard deviation between original and extended

ensemble concerning all available GCM simulations of

CMIP3 forced by the A1B emission scenario. For air

temperature, the ensemble mean of the extended ensemble

is mostly reduced, showing the largest differences in EA in

JJA with -0.4 K. However, no statistical significance for

the changes is obtained. Concerning the ensemble spread,

the extended ensemble generally shows a reduction with

the most pronounced changes in EA and SC in MAM with

-0.5 K. Again, the changes are mostly insignificant. For

precipitation amount, the sign of the difference in the

ensemble mean is varying among subregions and seasons

(only in SON mostly lower CCSs of the extended ensemble

are obtained). The largest difference is -4.2 % in IP in

DJF and the changes are again mostly insignificant. Con-

cerning the ensemble spread, mostly lower ensemble

standard deviations for the extended ensemble are

obtained. The most pronounced change is obtained in AL

in JJA with -3.3 % and the changes are again mostly

insignificant.

We note that the main characteristics of the geographi-

cal pattern of the CCSs are not deteriorated through sta-

tistical reconstruction (also see online supplementary

material, Fig. S7 and Fig. S8). These patterns include large

spatial differences of winter air temperature change, which

are explained by moderate warming of the ocean influ-

encing the maritime climate of western Europe in combi-

nation with altered snow-albedo feedback mechanisms in

northern and eastern Europe (Rowell 2005), high summer

air temperatures in the south, which are related to an earlier

and more rapid reduction of soil moisture in spring (e.g.,

Wetherald and Manabe 1995; Gregory et al. 1997), and a

dipolar pattern of the precipitation change (decrease in the

south and increase in the north), which can be related to a

seasonal dependent northward shift of the mid-latitude

storm track which is identified as the European Climate

change Oscillation (ECO) (Giorgi and Coppola 2007).

Although the focus of this study is on near-term projections

until the mid-twentyfirst century, we stress that the pro-

jected changes are expected to further increase after the

2050s (e.g., Heinrich et al. 2013). In this respect, the pro-

jected precipitation changes are expected to further inten-

sify until the end of the twentyfirst century with the most

pronounced intensifications for the hot-spot regions in

southern and northern Europe. Furthermore, the confidence

of the projected precipitation changes generally increases

until the end of the twentyfirst century. However, low

confidence remains especially along the transition zone

from drier conditions in southern Europe to wetter condi-

tions in northern Europe.

Figure 5 depicts maps for the confidence levels of the

precipitation changes for the original, filled, and extended

ENSEMBLES simulation matrix. Maps for air temperature

are not shown, since very high confidence of warming is

achieved in all subregions with and without reconstruction

(see online supplementary material, Fig. S9). The confi-

dence of the projected precipitation changes are partly

reduced for the filled ENSEMBLES simulation matrix in

DJF, MAM, and SON, revealing overconfident projections

of the original ensemble. Concerning the extended

ENSEMBLES simulation matrix, both lower and larger

confidence levels are obtained, revealing under- as well as

overconfident projections of the original ensemble. For

example, larger confidence levels are obtained for the

changes in MD in SON, while in BI, EA, IP, and ME the

confidence is reduced. However, the differences between

original, filled, and extended ENSEMBLES ensemble are

generally small and the overall picture of high confidence

in the northern- and southernmost European regions with

low confidence in-between is further underpinned.
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Table 2 Results of the cross-validation for SCA3

Air temperature Precipitation amount

DJF MAM JJA SON DJF MAM JJA SON

IP

Mean -0.1/0.2 -0.3/-3.8 0.5/3.4 0.2/2.9 0.1/2.8 -1.1/-4.3 -1.8/28.3 2.5/-15.4

SD 0.1/-0.1 -0.4/1.3 -0.5/-3.3 0.1/-0.6 -0.1/-18.4 -3.0/11.1 -0.1/-20.7 -7.2/16.8

RMSD 0.2/0.2 0.3/0.3 0.3/0.4 0.4/0.5 4.5/4.2 5.1/5.0 10.5/10.4 5.7/5.8

R2 0.9/0.9 0.9/0.9 0.9/0.8 0.8/0.8 0.8/0.8 0.8/0.8 0.3/0.3 0.5/0.6

MD

Mean 0.0/3.2 -0.7/-9.2 1.1/5.0 0.9/9.0 -8.8/-1.1 8.8/-9.3 -3.5/-0.5 -2.0/1.2

SD 0.1/0.4 -0.3/8.3 -0.2/1.0 -1.2/-7.2 -6.9/-0.4 -14.6/9.2 2.2/-9.6 3.9/-20.2

RMSD 0.3/0.3 0.5/0.5 0.5/0.5 0.6/0.6 5.4/5.5 6.5/7.3 11.8/11.8 5.4/5.5

R2 0.8/0.8 0.7/0.7 0.8/0.7 0.5/0.5 0.6/0.6 0.4/0.4 0.0/0.1 0.6/0.6

FR

Mean 0.0/1.5 -0.1/-3.5 0.4/2.9 0.2/2.7 -0.5/0.4 6.7/45.2 -13.3/-7.3 24.2/84.4

SD -0.3/-1.3 0.1/2.2 -0.7/-3.6 -0.7/0.0 -0.9/13.0 4.7/-38.4 -7.2/15.7 -25.5/-123.7

RMSD 0.2/0.2 0.3/0.3 0.5/0.5 0.5/0.5 3.4/3.3 4.3/4.5 11.3/11.3 6.2/7.2

R2 0.9/0.9 0.8/0.8 0.8/0.8 0.7/0.7 0.8/0.8 0.8/0.8 0.2/0.2 0.7/0.7

ME

Mean 0.1/3.7 -0.9/-13.1 0.4/1.2 0.0/3.3 12.0/33.9 7.7/18.4 0.5/22.3 -2.9/-10.9

SD 0.0/0.6 0.2/10.5 -0.6/-2.9 -0.2/0.4 -5.3/1.5 12.0/-10.3 -11.7/11.8 4.4/28.5

RMSD 0.3/0.3 0.6/0.7 0.4/0.4 0.6/0.6 4.1/4.3 6.6/6.4 8.8/8.9 4.4/4.5

R2 0.9/0.9 0.5/0.5 0.8/0.7 0.5/0.5 0.8/0.8 0.7/0.6 0.3/0.3 0.8/0.8

AL

Mean 0.0/5.8 -0.7/-14.4 0.7/3.2 0.2/6.6 19.6/48.3 4.3/68.9 3.9/62.8 5.8/12.7

SD 0.0/3.1 0.3/14.5 -0.1/-4.2 -1.2/-3.0 -18.2/-22.4 -5.4/-47.1 13.0/20.8 5.3/-6.1

RMSD 0.3/0.3 0.5/0.6 0.5/0.5 0.7/0.7 7.6/8.0 6.2/6.7 9.4/9.4 7.0/7.2

R2 0.9/0.9 0.6/0.6 0.8/0.7 0.5/0.4 0.3/0.3 0.4/0.4 0.3/0.3 0.5/0.5

EA

Mean -0.5/3.7 -0.8/-13.8 -0.4/1.5 0.0/6.1 9.9/78.8 13.1/55.6 23.3/80.1 -2.1/-9.7

SD 0.4/3.3 0.6/12.3 0.5/-1.1 1.1/3.7 -14.8/15.7 31.0/9.4 -19.7/-36.0 2.1/20.8

RMSD 0.4/0.4 0.8/0.9 0.6/0.6 0.8/0.8 6.6/6.6 7.3/7.6 9.4/10.2 4.8/4.8

R2 0.8/0.8 0.5/0.5 0.7/0.7 0.1/0.1 0.7/0.7 0.2/0.2 0.3/0.4 0.6/0.6

BI

Mean 0.1/2.0 0.1/-1.4 0.4/0.9 0.1/1.3 4.2/6.2 -4.4/-54.8 13.5/40.7 1.5/34.5

SD 0.0/-1.0 0.1/0.6 -0.4/-2.0 -0.2/2.2 0.5/26.4 0.1/51.7 -2.0/50.6 -0.9/29.7

RMSD 0.2/0.2 0.3/0.3 0.3/0.3 0.3/0.3 2.0/2.1 5.8/5.8 6.3/7.0 3.7/3.9

R2 1.0/1.0 0.8/0.8 0.9/0.9 0.8/0.8 0.9/0.9 0.5/0.5 0.2/0.3 0.4/0.5

SC

Mean -0.5/0.2 0.8/1.9 -0.3/-3.8 -0.5/3.6 0.1/-19.8 -8.3/-57.9 0.9/42.1 -10.5/-49.1

SD -0.2/2.4 0.1/11.8 0.3/1.6 0.2/1.3 -5.1/-37.5 -2.8/-10.9 1.4/-32.5 0.6/63.8

RMSD 0.4/0.4 0.8/0.8 0.4/0.4 0.7/0.7 4.1/4.1 6.2/6.3 3.7/3.8 4.0/4.5

R2 0.9/0.9 0.7/0.6 0.8/0.8 0.2/0.2 0.7/0.7 0.3/0.2 0.6/0.6 0.7/0.7

EU

Mean 0.0/2.6 -0.6/-7.1 -0.1/0.1 0.0/4.1 2.4/15.9 11.2/76.9 1.0/13.2 -2.2/8.1

SD 0.1/0.8 -0.2/6.9 -0.2/-1.1 -0.2/1.6 -3.9/-10.5 9.7/-33.9 -2.8/4.3 -2.2/-8.5

RMSD 0.2/0.2 0.6/0.6 0.4/0.4 0.6/0.7 3.3/3.2 4.4/4.8 4.4/4.4 2.9/3.0

R2 0.9/0.9 0.7/0.6 0.8/0.8 0.3/0.3 0.6/0.6 0.4/0.3 0.4/0.4 0.5/0.5

The left and right values indicate the estimates of LOOCV-RCM and LOOCV-GCM, respectively. Differences in the ensemble mean (Mean) and standard

deviation (SD) between reconstructed and original ensemble are multiplied by a factor of 100 and the units are [K] and [%] for air temperature and

precipitation amount, respectively. The RMSD values are inflated by additional variability due to random sampling of the residuals. R2 represents the

coefficient of determination between the CCSs of RCMs and associated driving GCMs
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7 Summary and conclusions

This study assesses and compensates the GCM sampling

bias in expected regional mean climate change and the

associated uncertainty of the ENSEMBLES RCM

projections by combining them with the full set of the

CMIP3 GCM ensemble. The focus was on eight European

subregions and the seasonal mean changes of the two key

climate variables air temperature and precipitation amount

until the mid-twentyfirst century were assessed.

Fig. 4 Linear least-square fits

between the seasonal CCSs of

RCMs and associated driving

GCMs for air temperature

(a) and precipitation amount

(b). In each panel, top-left is

DJF, top-right is MAM, bottom-

left is JJA, and bottom-right is

SON
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Table 3 Ensemble seasonal mean changes (upper rows of each

panel) and standard deviations (lower rows of each panel) between

2021–2050 and 1961–1990 of original and filled ENSEMBLES

simulation matrix (panel a and b, respectively) and of original and

extended ENSEMBLES simulation matrix (panel c and d, respec-

tively)

The left and right values in each box indicate the estimates of original and reconstructed ensemble respectively. The brightness of the colours

represents the level of significance of the corresponding differences. Blue and red colours indicate a shift towards lower and larger estimates of

the reconstructed ensemble, respectively

532 G. Heinrich et al.

123



In order to underpin the importance of reconstructing

RCM responses, we first highlighted the impact of RCMs on

the CCSs of their driving GCMs and showed that down-

scaling generally leads to less warming (up to a reduction of

30 % of the GCM CCS) and partly to more precipitation over

Europe than projected by GCMs. We introduced and eval-

uated various statistical data reconstruction methods which

mimic these effects and allow for an extension of the RCM

ensemble to additional driving GCMs. The most appropriate

reconstruction method, a randomized scaling approach with

errors in ensemble mean and standard deviation mostly less

than 0.1 K and 1.0 % for air temperature and precipitation

amount, respectively, was applied to fill the missing values

of the ENSEMBLES simulation matrix and to further extend

Fig. 5 Confidence of the

projected precipitation changes

between 2021–2050 and

1961–1990 for the original (a),

filled (b), and extended

(c) ENSEMBLES simulation

matrix. Green, yellow, and red

colours display very high

confidence, high confidence,

and medium or no confidence,

respectively. The numbers

indicate the percentage of

models which agree in the sign

of the ensemble mean.

Percentages lower than 50 %

indicate skewed distributions. In

each panel, top-left is DJF, top-

right is MAM, bottom-left is

JJA, and bottom-right is SON
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the matrix by all available CMIP3 GCM simulations forced

by the A1B emission scenario. Differences between original,

filled, and extended ENSEMBLES simulation matrix were

assessed in order to identify potential ensemble biases and

improperly estimated uncertainty ranges due to the GCM

sampling strategy of ENSEMBLES. The key findings of the

intercomparison can be summarised as follows: (1) The

estimated mean climate change for air temperature and

precipitation amount over Europe is not significantly altered

due to reconstruction in almost all seasons and subregions.

(2) The estimated uncertainty is generally not increased by

extension of the ENSEMBLES simulation matrix to the

entire CMIP3 ensemble. In some seasons and subregions it is

even significantly reduced. We note that no weighting

regarding model performance was applied in our study.

Although our framework would allow for the incorporation

of such weights, the benefits of performance weighting in

constraining uncertainty of future projections could yet not

be sufficiently demonstrated (e.g., Knutti et al. 2010; Déqué

and Somot (2010).

From the results of our analysis we conclude that

expected mean climate change and the associated uncer-

tainty of the ENSEMBLES RCM projections are both not

underestimated using only few driving GCMs. In contrast,

the ensemble spread of the extended ensemble is partly

significantly lower than that of the original ensemble.

Therefore, this study substantially adds to the reliability of

numerous recent climate change impact studies over Eur-

ope which use the full range or a carefully selected subset

of the ENSEMBLES projections (e.g., Heinrich and Gobiet

2011a; Finger et al. 2012), since it confirms that the

ensemble is not significantly biased and the uncertainty is

not underestimated due to GCM sub-sampling.
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Déqué M, Somot S (2010) Weighted frequency distributions express

modelling uncertainties in the ENSEMBLES regional climate

experiments. Clim Res 44:195–209. doi:10.3354/cr00866
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temperature and precipitation change estimates for Europe under

four SRES scenarios applying a super-ensemble pattern-scaling

method. Clim Change 81:193–208

Solomon S, Qin D, Maning M et al. (2007) In: Solomon S, Qin D,

Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller

HL (eds.) Climate change 2007: The physical science basis.

Contribution of working group I to the fourth assessment report

of the intergovernmental panel on climate change, technical

summary, Cambridge University Press, Cambridge, United

Kingdom and New York, USA

Suklitsch M, Gobiet A, Leuprecht A, Frei C (2008) High resolution

sensitivity studies with the regional climate model CCLM in the

Alpine region. Meteorol Z 17:467–476

van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change

and its impacts: summary of research and results from the

ENSEMBLES project. Met Office Hadley Centre, Exeter, UK

Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC, Ding Y,

Kimura F (2004) Regional climate modeling: progress, chal-

lenges and prospects. J Meteorol Soc Jap 82:1599–1628

Wetherald RT, Manabe S (1995) The mechanisms of summer dryness

induced by greenhouse warming. J Clim 8:3096–3108

Extended regional climate model projections for Europe 535

123

http://dx.doi.org/10.1175/2009BAMS2607.1
http://dx.doi.org/10.1007/s00382-010-0810-6
http://dx.doi.org/10.1002/joc.2421
http://dx.doi.org/10.5194/hess-11-1097-2007
http://dx.doi.org/10.5194/hess-11-1097-2007
http://dx.doi.org/10.1175/2010JCLI3502.1
http://dx.doi.org/10.1175/2009JCLI3361.1
http://dx.doi.org/10.1007/BF01025367
http://dx.doi.org/10.1127/0941-2948/2011/0286
http://dx.doi.org/10.1007/s00382-005-0068-6
http://dx.doi.org/10.1002/wcc.8

	Extended regional climate model projections for Europe until the mid-twentyfirst century: combining ENSEMBLES and CMIP3
	Abstract
	Introduction
	Climate model data and study region
	Data reconstruction methods
	Additive method
	Scaling methods

	Design of the cross-validation and statistical analysis
	Cross-validation
	Statistical analysis
	Statistical significance
	Quantification of uncertainty


	Results of the cross-validation
	Revision of expected regional climate change and its uncertainty over Europe
	Summary and conclusions
	Acknowledgments
	References


