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Abstract For the construction of regional climate change

scenarios spanning a relevant fraction of the spread in cli-

mate model projections, an inventory of major drivers of

regional climate change is needed. For the Netherlands, a

previous set of regional climate change scenarios was based

on the decomposition of local temperature/precipitation

changes into components directly linked to the level of

global warming, and components related to changes in the

regional atmospheric circulation. In this study this

decomposition is revisited utilizing the extensive modelling

results from the CMIP5 model ensemble in support for the

5th IPCC assessment. Rather than selecting a number of

GCMs based on performance metrics or relevant response

features, a regression technique was developed to utilize all

available model projections. The large number of projec-

tions allows a quantification of the separate contributions of

emission scenarios, systematic model responses and natural

variability to the total likelihood range. Natural variability

plays a minor role in modelled differences in the global

mean temperature response, but contributes for up to 50 %

to the range of mean sea level pressure responses and local

precipitation. Using key indicators (‘‘steering variables’’)

for the temperature and circulation response, the range in

local seasonal mean temperature and precipitation respon-

ses can be fairly well reproduced.

Keywords Climate change � Atmospheric circulation �
Regional climate scenarios � CMIP5

1 Introduction

For many places in the world, climate change projections

are an important source of information about changes in the

characteristics of the local climate. In the low-lying delta of

the Netherlands the impacts of climate variability and

change are receiving continued attention, as it is the ability

to cope with these varying environmental conditions that

partly explains the success of this country. For this a fre-

quent update on the scientific insights concerning climate

change and its impacts is required. The construction of

regional climate change scenarios is used as a practical tool

to carry these scientific insights forward into various sectors

in society, including the sectors involved with water man-

agement and safety issues (Van den Hurk et al. 2013).

A description of changes in the characteristics of regio-

nal climate variables can be facilitated by a systematic

analysis of the main drivers of local change. In a previous

set of regional climate change scenarios for the Netherlands

(Van den Hurk et al. 2007), labelled KNMI’06, uncertainty

in the response of two major drivers of regional climate

change to altered greenhouse gas and aerosol concentra-

tions was identified: the change of the global mean tem-

perature, and the response of the regional atmospheric

circulation. For each of these two drivers indicators were

defined that were used as ‘‘steering variable’’ controlling the

range of the local response. The steering variables were

used to construct 2 9 2 discrete regional climate change

scenarios, contrasting the probabilistic approach as pio-

neered in the UK (Murphy et al. 2009). KNMI’06 was based

on an assessment and selection of a set of Global Climate

Model (GCM) simulations used in the preparation of the

Fourth IPCC assessment report (AR4; IPCC 2007) (Van

Ulden and Van Oldenborgh 2006). In addition, a regional

downscaling procedure using an ensemble of Regional
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Climate Models (RCMs) (Lenderink et al. 2007), statistical

downscaling using local observations (e.g., Bakker et al.

2011) and regional sea level scenarios (Katsman et al. 2008)

were constructed.

Recently, results from the GCM projections from the 5th

Coupled Model Intercomparison Project CMIP5 (Taylor

et al. 2011) driven by 4 different Representative Concen-

tration Pathways (RCPs) were released. This large

ensemble of projections is used to reassess the degree to

which uncertainty in local responses can be described by a

combination of only two steering variables. This assess-

ment supports the construction of a new set of regional

climate change scenarios, based on the updated information

from the new climate model projections. Given the inertia

in the climate change effect assessment chain, the structure

of the scenarios should preferably be consistent with the

previous generation, KNMI’06 (Haasnoot and Middelkoop

2012). The scenarios should be conditioned on external

drivers that explain a relevant fraction of the projected

spread in local temperature and precipitation responses.

The CMIP5 range of projected change in temperature and

precipitation in Western Europe is analysed and related to

variability in the projected global mean temperature and the

regional atmospheric circulation. First the rationale and basic

methodology will be explained, followed by the main results.

In a final results section the new steering variables are pre-

sented and briefly compared to KNMI’06, and we conclude

with some final remarks on the use of the steering variables.

2 Method and data

2.1 Rationale and basic methodology

GCM projections of future climate in response to changes

in climate forcings—such as greenhouse gas and aerosol

concentrations, land use change and solar forcings—dis-

play a pronounced range of outcomes due to a combination

of differences between model formulation and—structure,

internal (natural) variability, and differences in the initial-

ization of climate states (Cox and Stephenson 2007). The

magnitude of the variance explained by natural fluctuations

varies with the averaging period considered, although

natural variability is manifest at all relevant time scales up

to multiple decades. At the regional scale (where ‘‘regio-

nal’’ refers to areas of sub-continental size) the projected

range has a different magnitude and origin than the global

mean range of responses. Local feedbacks, advection from

remote areas, and a larger amplitude of natural climate

variability all contribute to pronounced spatial patterns of

climate responses (Hawkins and Sutton 2009).

The condensation of the many possible manifestations

of climate change at the regional scale into a limited

number of scenarios requires a drastic simplification of the

governing interactions while retaining as much of the

spread as possible. Hence we focus on the most important

processes contributing to the spread in projected response

in the regional seasonal mean temperature and precipitation

considering a climatic time scale of several decades.

The dominant response to a change in the climate

forcings is a change in the global mean temperature. The

equilibrium magnitude of this temperature change is given

by the product of the strength of the forcing and the climate

sensitivity. A second-order response is a change of the

spatial pattern of this temperature change, which depends

on spatially variable feedbacks and responses. One of these

responses is the change in the (surface) pressure patterns

governing the atmospheric circulation. Changes in the

frequency distribution of patterns of atmospheric circula-

tion can give rise to systematic alterations of the mean

temperature and precipitation climate for areas near land–

ocean transitions with a strong circulation variability, such

as Western Europe (e.g. De Vries et al. 2012). Being sit-

uated in a strong climatic gradient over the land-sea tran-

sition, the local climate in the environment of the

Netherlands is strongly related to advection and conver-

gence of moisture and heat. Increased frequency of

westerlies leads to a regional warming and wetter condi-

tions in winter, and relatively cool and wet summer

conditions.

Appreciating the fact that other responses or forcings

may impose substantial effects on the regional temperature

or precipitation climate in Western Europe, we derive only

two steering variables for regional climate change scenar-

ios: the global mean temperature change, and the atmo-

spheric circulation response. Usage of the global mean

temperature change as driver combines the range in climate

forcing, the range in (model specific) climate sensitivity

and the varying spatial temperature patterns into a single

variable, explaining a large fraction of the variability of

local temperature response. The quantity expressing the

range in circulation response is chosen in order to optimize

the explained variance in the local precipitation response

across the large ensemble of GCM projections. This

method implies a strong link between the steering variables

and the local expression of seasonal mean temperature and

precipitation change. This is different from an a priori

ranking of major response patterns for different subregions,

as is applied for instance for Australian climate change

scenarios by Whetton et al. (2012). In our case, the target

domain is sufficiently small to define fairly robust large

scale climate patterns that are optimised to maximise the

explained variance in the target region across models

(Watterson 2012).

The method is designed to disentangle the circulation

effects on regional temperature and precipitation change
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from changes imposed by the first order global mean

temperature increase. This is achieved by a two-step

approach: the first step establishes a relation between

modelled responses in regional climate variables and glo-

bal mean temperature, while in the second step circulation

induced anomalies of this regional response to global mean

temperature change are derived. In step one we express the

response of all quantities as a change per unit global

warming, obtained from transient climate projections.

These so-called normalized responses are used to find

deviations from the first order linear response to the global

warming, related to anomalies in the atmospheric circula-

tion response (step two).

2.2 Available model data

The response range is deduced from 245 transient CMIP5

climate integrations (1950–2100) distributed over four

RCPs, provided by up to 37 modelling systems per RCP. A

total number of 110 GCM/RCP combinations were used

(see ‘‘Appendix’’ for an overview). Many modelling sys-

tems provided multiple realizations for a given RCP,

allowing to distinguish between forced and unforced

(‘‘natural’’) climate variability. The included simulations

matched all CMIP5 integrations that are used to prepare the

AR5 Working Group 1 Annex I ‘‘Atlas’’ (Collins et al.

2013) except FIO-ESM. This model simulated a strong

regional cooling in Western Europe, probably related to a

strong decline of the Atlantic Meridional Overturning

Circulation (AMOC). It is a strong outlier in the CMIP5

ensemble, thereby violating many assumptions of linearity

in the statistical analysis executed here. The model gen-

erates an interesting future scenario for Western Europe,

but a collapse of the AMOC is explicitly not included in the

updated climate change scenarios. FIO-ESM is excluded

from the analysis presented here.

The four RCPs have been covered by a variable number

of models, and the models have used a variable number of

ensemble members for each projection. From each run

temperature, precipitation and mean sea level pressure

have been gridded to a common 2.5 9 2.5� grid (without

considering land/sea contrasts explicitly), averaged to

monthly values, and split into seasonal archives following

the normal midlatitude meteorological convention

(DJF = December–January–February, MAM = March–

April–May, JJA = June–July–August and SON = Sep-

tember–October–November). From these simulations, a

transient response is derived by subtracting (temperature,

pressure) or dividing by (precipitation) the climatology of a

reference period (1976–2005) from any (future) time slice

average. The choice of the reference period allows com-

parison of the results to the KNMI’06 scenarios released

earlier.

The response of local temperature (DTloc) and precipi-

tation (DPloc) that is analysed here concerns the projected

response in an area roughly encompassing the Rhine basin

(6�–9�E, 47�–52�N). Model results interpolated to the four

2.5 9 2.5� grid points within this domain are spatially

averaged. The use of this averaged sample of grid points in

this area suppresses spatial noise induced by for instance

the nearby land-sea gradient, and reflects climate vari-

ability in an area that is relevant for the Netherlands, which

is situated in the Rhine discharge area.

3 Response patterns from the model ensemble

In this section we will first analyse the patterns of response

in temperature and mean sea level pressure for the 110

GCM/RCP combinations, followed by exploring mean sea

level pressure (MSLP) patterns that are optimally related to

the variability of the projected temperature or precipitation

in the Rhine area. From these analyses the temperature and

circulation steering variables will be derived. Finally, an

analysis of the degree to which natural variability con-

tributes to the range in projected steering variables will be

presented.

3.1 Global and regional temperature response

Considerable spread in calculated global mean temperature

response can be expected when a common climate forcing

is provided to a range of GCMs (Rogelj et al. 2012). This

spread represents differences in the modelled climate

response and its spatial structure, and internal variability of

the climate system. However, the spatial structure of the

temperature response between the reference period and any

future time slice during the twenty-first century is fairly

robust among the models. For each season Fig. 1 shows

this average warming pattern. It is a weighted average of

the slope of the best-fit regression for each GCM/RCP

combination between the ensemble mean projected tem-

perature response at a given location and the global mean

temperature (qT/qTglob) for all years in the 1976–2100

period. For this slope of the regression of a variable

X against global mean temperature we use the notation

DTX in the following. The weights are inversely propor-

tional to the number of GCMs running a particular RCP

(see ‘‘Appendix’’), giving equal weights to each RCP.

However, the patterns are rather similar across the different

RCPs (not shown), hence the response scales to a good

approximation linearly with the global mean temperature

(Giorgi 2005; Mitchell 2003). For the Atlantic sector of the

Northern Hemisphere land areas warm faster than the

ocean in all seasons, and high latitudes warm much faster

than the global mean outside the summer season, due to
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among other factors the feedbacks involving sea ice and

snow. The Southern and Western European continents

warm stronger in JJA and SON than in the winter/spring

seasons (Haarsma et al. 2009). A muted response is evident

in the Northwest Atlantic, corresponding to the subpolar

gyre, which warms up less due to a reduction of the

Atlantic Meridional Overturning Circulation (AMOC)

(Drijfhout et al. 2013).

The warming pattern in a large zone encompassing the

Western European continent and the North Atlantic sector

varies quasi-linearly with DTglob across the GCM/RCP

ensemble. For each individual GCM simulation the

strength of the regional warming Pattern of Temperature,

PT, is expressed as a projection on the weighted mean

response:

PTi ¼ DTglob;i

P
DT T
� �

i
� DT T
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

DT T
� �2

q ð1Þ

where the subscript i refers to the GCM simulation, the

overbar denotes the weighted mean of all GCM/RCP

combinations (Fig. 1), and the summation takes place of all

grid points in the area indicated in Fig. 1. The fraction of

explained variance of the relationship between PT and

DTglob (calculated by the squared correlation coefficient)

ranges between 86 % in DJF and 94 % in SON (Table 1).

The strong relationship between the global mean tem-

perature response and the warming pattern strength does

also reflect a robust relationship between the modelled

global mean warming and the temperature response in a

small area as the Rhine basin. 75 to 91 % of the variance of

the temperature response in the Rhine basin (DTloc) across

the GCM ensemble is explained by the variance in DTglob,

depending on the season (Table 1; see Fig. 2). This frac-

tion of explained variance is increased slightly to 93–96 %

when variability in the strength of the warming pattern is

taken into account (regression between PT and DTloc). This
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Fig. 1 Colour shading: Seasonal mean 2 m temperature response as

fraction of the global mean temperature response [-] (DTT) averaged

for 110 ensemble mean GCM/RCP combinations, obtained by

regression between time series of local temperature on global mean

temperature. In the averaging of the GCM/RCP combinations every

RCP is given equal weight. Contour lines: RMSE [K] of the

regression, averaged over the GCM/RCP combinations. The red box

indicates the area for which the temperature pattern strength PT is

calculated
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would be a reason to use PT is a steering variable for the

regional climate change scenarios. However, the slightly

higher fraction of explained variance compared to DTglob

was not considered to be enough to compensate for the

increased complexity resulting from the addition of the

inter-model variations of the warming pattern. Therefore

we proceed using DTglob as our first steering variable.

The relation between DTloc and DTglob varies consider-

ably over the seasons (Fig. 2). In DJF and MAM the pro-

jected local temperature increase corresponds closely to the

global mean temperature increase. However, in summer and

autumn local feedback processes (such as continental dry-

ing, or cloud responses to surface warming) amplify the

warming in the Rhine basin, up to 1.6 times the global mean

temperature increase. This seasonal signature is only par-

tially consistent with the findings of Van Oldenborgh et al.

(2009), who explored the seasonality in modelled and

observed regional warming trends using several model

ensembles, including phase 3 of the Coupled Model Inter-

comparison Project. In their analysis also MAM showed a

relatively strong regional warming. However, their main

conclusion is that the observed warming trends (1950–2008)

exceed the projected regional anomalies strongly, also in the

winter season. Apparently also for this extensive CMIP5

ensemble a bias in the projected regional warming trend

needs to be interpreted carefully in order to determine the

(near-term) local temperature trend projections.

3.2 Response in surface pressure

The distinct warming pattern can lead to a systematic

change in the mean sea level pressure. Figure 3 shows the

MSLP response per unit global warming across the col-

lection of GCMs and RCPs, obtained by the slope of the

best-fit regression between Tglob and MSLP over the

1976–2100 period and weighted across the 110 GCM/RCP

combinations as for the temperature response (Fig. 1). This

Table 1 Fraction of explained variance (squared correlation coeffi-

cient) of modelled temperature response in the Rhine basin (DTloc),

global mean temperature (DTglob) and temperature pattern strength

(PT), using all GCM/RCP combinations for the time slice 2071-2100

Season DTglob versus PT DTglob versus DTloc PT versus DTloc

DJF 0.86 0.81 0.93

MAM 0.88 0.75 0.90

JJA 0.93 0.85 0.90

SON 0.94 0.91 0.96
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Fig. 2 Local temperature

response per GCM/RCP

combination in 2071–2100

relative to 1976–2005 as

function of DTglob over the same

period. Numbers refer to the

GCM system (see ‘‘Appendix’’),

color code refers to the RCP.

Also shown is the best linear fit

(solid lines) and the 1:1 slope

(dotted lines)
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normalized MSLP response shows a marked seasonal pat-

tern, with opposite responses in the Mediterranean area for

DJF and JJA, and generally high pressure anomalies West

of the British Isles. The Mediterranean response in JJA

represents a typical surface heat low response related to the

strong Mediterranean warming (Haarsma et al. 2009). The

East Atlantic high pressure response in the warm seasons

projects well on the Summer North Atlantic Oscillation

(SNAO) (Bladé et al. 2012) and may be related to the

relative cooling in the Northwest Atlantic.

3.3 Pressure fields related to local temperature

and precipitation response

Variations across the model ensemble of the pressure

response will lead to deviations in local temperature and

precipitation responses (e.g. Rodwell et al. 1999). This

sensitivity of the local climate to the regional atmospheric

circulation makes it relevant to consider variations in the

MSLP response within the large CMIP5 GCM/RCP

ensemble. In the following we will explore a number of

indicators for atmospheric circulation response.

An efficient way to define pressure patterns whose vari-

ability is well correlated to the variability in DTloc or DPloc is

linear regression between MSLP and the local climate vari-

ables across the ensemble of all 110 GCM/RCP combina-

tions. Wallace and Gutzler (1981) applied this technique to

find teleconnection patterns involving the dynamics of

geopotential height. However, all quantities involved

(DMSLP, DTloc and DPloc) are strongly related to global

mean temperature response, which makes a pattern obtained

by a straight regression between DMSLP and DTloc or DPloc

not a suitable independent steering variable. This can be

avoided by looking for patterns in normalized MSLP

response (DTMSLP) that explain large fractions of variance

in normalized local responses, DTTloc and DTPloc. Using

normalized values for both variables removes a possible

strong correlation to DTglob, and expresses the degree to

which regional atmospheric circulation changes will result in

local responses that are largely independent from DTglob.
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Fig. 3 As Fig. 1 for the normalized MSLP response (DTMSLP, [hPa/

K] computed over the period 1976–2100). Contour lines indicate one

standard deviation of normalized MSLP responses across the GCM

ensemble [hPa/K]. The red box indicates the area for which the

pattern strength PSmean is calculated
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In the KNMI’06 climate change scenarios variations in

the response of the regional atmospheric circulation were

evaluated by the zonal component of the geostrophic wind

speed, Gwest. Here we evaluate this circulation variable for

our GCM/RCP ensemble, by calculating it from DTMSLP

(Fig. 3) in a 20 9 20� area centred at (10�E, 50�N). The

quantity thus obtained the response in Eastward geo-

strophic wind per degree global mean warming. In order to

assess the degree to which model variations in Gwest

response can explain variations in local temperature or

precipitation responses, the fraction of explained variance

(squared correlation coefficient) of the regression between

DTGwest and the normalized local temperature/precipitation

responses DTTloc and DTPloc is shown in Table 2. Lender-

ink et al. (2007) explored this relation for DJF and JJA for

a selection of regional climate model integrations. The

results from our study demonstrate that Gwest is to some

extent related to variations in the precipitation response in

SON and DJF, and to the JJA temperature response, but the

fractions of variance explained are relatively low. Gwest

ignores variations in meridional pressure gradients or

vorticity, which are circulation characteristics that are

considered important for the local temperature and pre-

cipitation climate (Van Ulden and van Oldenborgh 2006).

Another way to quantify model spread in the MSLP

response is to diagnose the projection of the individual

model response on the ensemble mean response, as shown

in Fig. 3. This projection is limited to an area of influence

to Ploc and Tloc. Trial and error experimentation with the

size and position of this area revealed that using (30�W–

40�E) to (30�N–65�N) is optimally correlated to these local

climate characteristics. The quantity of interest, labelled

PSmean then is defined as

PSmean;i ¼ r DT MSLP
� �

i
�q DT MSLPi; DTMSLP

� �� �
ð2Þ

where the overbar denotes the weighted mean response,

r(DTMSLP)i is the spatial standard deviation of the

normalized MSLP response of model i within the defined

area, and the correlation is applied across all grid points

within this area. PSmean is high for models with a pressure

response that has a similar spatial structure as the mean

response, and for which the spatial variability (the pattern

amplitude) is strong. Table 2 shows that this expression of

regional pressure response does not outperform Gwest,

although more circulation characteristics are incorporated.

This can be compared to a study by Cattiaux et al. (2012),

who explored the contribution of changes in the variability

of the regional surface pressure distribution to the

European mean temperature using analogues. In their

analysis changes in the variability of the atmospheric

circulation did not lead to systematic changes in the

European mean temperature. Although our temperature

metric is different since it is limited to the Rhine basin area,

and we explore variations of seasonal means, the low

fraction of explained variance reported in Table 2 is

consistent with their results.

The MSLP response pattern that is optimally correlated

to variations in DTloc, obtained by linear regression between

the fields of DTMSLP and the normalized temperature

response in the Rhine area (DTTloc) across the GCM/RCP

ensemble, is shown in Fig. 4. For DJF and JJA the patterns

show a similarity with the mean MSLP response (Fig. 3)

with a high and low MSLP response in the Mediterranean

area for DJF and JJA respectively, implying that local

temperature anomalies are to some extent governed by

relatively strong or weak regional pressure response

anomalies. Note however that the Summer NAO pattern

does not project strongly on temperature in the Rhine basin.

For the transition seasons, e.g. MAM, the local temperature

anomalies are affected by quite different pressure anomalies

Table 2 Fraction of explained variance across all RCM/RCP com-

binations of the regression between normalized temperature (Tloc) or

precipitation (Ploc) response in the Rhine basin and four indices of

atmospheric circulation responses: Gwest, and three different normal-

ized pressure response patterns in the area (30�W–40�E) to (30�N–

65�N): the normalized pressure response (Fig. 3), the pressure

response correlated with the local temperature response (Fig. 4) and

the pressure response correlated with the local precipitation response

(Fig. 5)

Variable Season Zonal geostrophic

wind (Gwest)

Mean MSLP

response (PSmean, Eq. 2)

Regression MSLP

on Tloc (PST, Eq. 3)

Regression MSLP

on Ploc (PSp, Eq. 4)

DTPloc DJF 0.26 0.29 0.01 0.42

MAM 0.01 0.04 0.02 0.26

JJA 0.07 0.04 0.04 0.22

SON 0.34 0.14 0.02 0.51

DTTloc DJF 0.11 0.05 0.30 0.03

MAM 0.00 0.01 0.06 0.01

JJA 0.22 0.04 0.26 0.13

SON 0.01 0.01 0.02 0.01

Bold-faced numbers indicate pressure response pattern with the highest fraction of explained variance
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than the mean pressure response. In SON the local tem-

perature response is hardly correlated to pressure response

anomalies in a large surrounding domain. In DJF high

temperatures in the Rhine basin are associated with South-

westerly flows. In JJA warm easterlies set up by a relatively

low pressure response in Southern Europe is favourable for

above average temperature conditions.

A similar procedure aimed at finding MSLP anomalies

that co-vary with precipitation anomalies in the Rhine area

leads to different spatial MSLP response distributions

(Fig. 5). In all seasons except MAM a dipole pattern with a

relatively low MSLP response in the Baltic area and a high

pressure anomaly in the Southwest leads to relatively wet

responses in the Rhine area. This relative pressure distri-

bution sets up a north-westerly flow bringing relatively

warm and moist air into the NW European area, which

explains its coincidence with a positive local precipitation

response. For MAM the best fit pattern is a low pressure area

overlying the Rhine basin. Note that the MSLP anomalies

per percent of precipitation change vary strongly over the

seasons. During JJA the relation between DTPloc and

DTMSLP is very sensitive (and in fact explains a relatively

low fraction of variance; Table 2): small pressure anomalies

are related to large relative precipitation responses.

A quantitative relationship between the patterns depic-

ted in Figs. 4 and 5 and the local climate characteristics can

again be obtained by utilizing Eq. 2 to express the corre-

spondence between the normalized pressure response in

any given GCM projection and the target patterns. Similar

to the definition of PSmean we can define a temperature

related pressure response index PST by

PST ;i ¼ r MSLPið Þ � q MSLPi; MSLPTð Þ ð3Þ

where MSLPT denotes the best fit value of DTMSLP versus

DTTloc shown in Fig. 4, and r and q are calculated over all

grid points within the denoted area with a fraction of

explained variance [0.05. Equivalently, a precipitation

related pressure response index PSP is
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Fig. 4 Normalized MSLP response pattern [hPa/K] related to the

normalized Rhine basin temperature response Tloc [K/K], derived

from linear regression across the sample of GCM/RCP combinations.

Areas where the fraction of explained variance of the regression

between Tloc and MSLP (indicated by contour lines) \0.05 are

blanked. The red box indicates the area where the pattern strength PST

is defined
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PSP;i ¼ r MSLPið Þ � q MSLPi; MSLPPð Þ ð4Þ

with MSLPP equal to the best fit value of DTMSLP versus

DTPloc shown in Fig. 5.

Table 2 shows the fraction of explained variance of local

temperature and precipitation responses when using PST or

PSP as predictor. Not surprisingly, precipitation anomalies co-

vary much better with PSP than with Gwest or PSmean, while for

temperature PST gives the best correspondence in DJF and

JJA. The poor relationship between DTloc and PSP can well be

understood from comparing the patterns shown in Figs. 4 and

5. In DJF, for instance, positive temperature anomalies require

South-western flow regimes while relatively high precipita-

tion responses are associated with North-westerly flows.

Although these North-westerlies do transport maritime air

masses into the Western European domain, they have a cooler

area of origin than South-western flow directions (Sepp and

Jaagus 2002). It will thus be impossible to define an indicator

for atmospheric circulation responses that explains a fair

amount of intermodal variability for both temperature and

precipitation response in the area of interest. The conse-

quences of this will be explored below.

3.4 Natural variability

The modelled response to the RCP radiative forcing varies

across the ensemble of projections due to a combination of

differences in model formulation and inherent natural

variability. This is clearly illustrated in Fig. 6, where the

evolution of the projected PSp and Tglob, averaged using a

running mean filter of 30 years, is shown. The monotonic

increase in Tglob with time is employed by considering Tglob

as the independent variable, plotted on the horizontal axes.

In these plots, the time dependence of PSp is expressed by

defining MSLPi in Eq. (4) as the (time varying) MSLP

response relative to the mean MSLP in the 1976–2005

reference period. Shown are the results from the 110

ensemble mean GCM/RCP combinations, together with

individual ensemble members from a single GCM (EC-

Earth). The spread in PSp from the collection of GCM/RCP

models (which includes different RCPs) is substantially

reproduced by the ensemble members of this single GCM.

EC-Earth appears to have a relatively low response in

global mean temperature, reflecting a moderate climate

sensitivity (Hazeleger et al. 2012). Its MSLP response
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Fig. 5 As Fig. 4 for the normalized pressure response related to Rhine basin precipitation response [hPa/%]. Note the different color scale for

each season
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varies around small values for all seasons except JJA and

MAM, where it follows the GCM ensemble towards a

negative expression of the pattern shown in Fig. 5 as DTglob

increases. This gradual decrease of PSp is associated with a

systematic warming and drying in the Mediterranean area

(see Fig. 3) that imposes dry conditions at higher latitudes

(Haarsma et al. 2009). The small systematic MSLP

response in DJF suggests that EC-Earth is a relative outlier

in the ensemble of GCMs. In this season a persistent MSLP

response is apparent, since some individual time series

diverge and don’t rejoin the ensemble plume anymore.

However, this is an artefact of the expression of the MSLP

response relative to a reference value which is diagnosed

from the very same ensemble member.

The presence of GCMs running multiple ensemble

members per RCP (see ‘‘Appendix’’) allows an estimate of

the contribution of natural variability to the overall spread

in the response. The ratio between the signal and total

variance is estimated from a comparison between the

ensemble spread of the group of models with C3 members

to the ensemble spread for all members in the entire

ensemble. A weighted estimate of the total variance re
2

across the collection of individual model ensemble mem-

bers running a particular RCP is given by

r2
e ¼

PnGCM

i¼1
1
ni

Pni

j¼1 xij � x
� �2

nGCM � 1
ð5Þ

where ni is the number of ensemble members for model i,

nGCM is the total number of models running a particular

RCP scenario, and the overbar denotes the average of all

GCMs participating in a particular RCP. xij is the response

in a given time slice of member j from model i, and ni is the

total number of ensemble members for model i. In this

expression every GCM gets an equal weight, regardless its

number of ensemble members. The natural variability rn
2

was estimated as the ensemble spread averaged for all

models with at least 3 ensemble members for a given RCP

projection:

r2
n ¼

Pnni� 3

i¼1
1
ni

Pni

j¼1 xij � xi

� �2

nni� 3 � 1
ð6Þ

where nniC3 indicates the GCMs with C3 ensemble

members, and the overbar refers to the ensemble mean of

GCM i participating in the given RCP. The signal/total

variance ratio S/T can then be written as

S=T ¼ r2
e � r2

n

r2
e

ð7Þ

where ‘‘signal’’ refers to the systematic difference in tem-

perature or MSLP response across the sample of GCM/RCP

combinations. The results are slightly sensitive to the

minimum number of members per model used to define rn
2.

Figure 7 shows the signal to total variance ratio for both

steering variables DTglob and PSp and the local temperature

and precipitation responses for the four different scenarios.

For the global mean temperature in all seasons the variance

is dominated by the difference between the ensemble mean

model responses, S/T & 1. For the pressure pattern
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Fig. 6 Time series projection

covering 1976–2100 of PSP as

function of global mean

temperature response filtered

with a 30 year running mean

averaging window for the four

seasons. PSP is defined using the

time-varying MSLP response

relative to the mean in the

1976–2005 reference period.

Grey lines indicate the ensemble

mean GCM experiments for all

RCPs, while the coloured lines

show results from individual

ensemble members from two

RCP-experiments carried out

with the EC-Earth GCM (model

ID 13 and 14 in ‘‘Appendix’’).

Note the different scales of the

vertical axes
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response the situation is quite different. For instance, in all

seasons except JJA the variance across the model mean

responses is 40–60 % of the total variance across the

individual members with a tendency to increase as the

climate forcing increases over the scenarios. Natural vari-

ability thus accounts for nearly half of the overall variance.

In JJA the variance across the models is significantly larger

than in the other seasons. The natural variability adds a

similar absolute amount of variance to the spread across the

model mean responses, but the relative contribution is

smaller than in the other seasons.

The S/T ratio of local responses in temperature and

precipitation generally increase as the climate forcing

(RCP) becomes stronger. Natural variability is not a

dominant factor explaining variability in DTloc, but for

precipitation it contributes stronger to the spread in model

results. Estimates of contributions of natural variability to

the overall response are broadly consistent with the find-

ings of Deser et al. (2012).

4 Regional mean temperature and precipitation

response

In order to reconstruct the local temperature and precipi-

tation response from the steering variables DTglob and PSp

explored above a simple multivariate regression equation is

used (Van Ulden and Van Oldenborgh 2006):

DXloc ¼ axDTglob þ bxPSp ð8Þ

where DXloc is the local response (either temperature or

precipitation), and ax and bx describe the relationship

between the large scale steering variables and the local

responses, which vary seasonally. ax and bx are found from

the multivariate regression between DXloc, DTglob and PSp

across the ensemble of GCM/RCP projections. Selecting

representative values of DTglob and PSp allows to derive

scenario values of DTloc and DPloc.

Figure 8 shows a condensation of the results illustrated

in Fig. 6, by plotting the mean responses of DTglob and PSp

for the 2071–2100 period for each GCM/RCP combination

compared to the reference period. Except at low values of

DTglob (particularly for RCP2.6 with its highly non-linear

trend in DTglob), the pressure response index PSp of most

models can be found within a range that is linearly

increasing with DTglob, as indicated by the dotted lines in

Fig. 8. This range is quantified by taking the 1 and 99

percentile value of the ensemble of DPSp/DTglob values

from all model projections except RCP2.6.

In KNMI’06 the global mean temperature steering

variables for the end of the twenty first century were

chosen to be 2 and 4 K increase relative to the reference

period 1976–2005. From the present study the matching

values of the circulation steering variable PSp are chosen to

span the range marked by the dotted lines shown in Fig. 8

(see Table 3).
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Fig. 7 Fraction of variance in

global mean temperature

response Tglob pressure response

index PSp and local temperature

and precipitation response Tloc

and Ploc in the time slice

2071–2100 for each RCP

arising from a systematic

difference between ensemble

mean GCM projections (signal/

total variance). Values \\1

imply a strong contribution of

natural variability diagnosed

from the spread between

individual ensemble members

from a GCM experiment. RCPs

are colour-coded as in Fig. 2
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Figure 9 shows the estimated local precipitation and

temperature response for all projections using Eq. 8 and the

values corresponding to the steering variables based on the

KNMI’06 values (Table 3). This demonstrates the range of

the local climate change scenarios generated by applying

the steering variable values in Table 3, and allows a

comparison with the previous KNMI’06 scenarios for local

responses in temperature and precipitation.

The selection of DTglob = 2 K as the lowest value is

clearly inconsistent with the modelled response to the

RCP2.6 scenario. Simultaneously, quite some models

project higher local temperature responses than generated

by our scenario procedure using DTglob = 4 K. For most

seasons except JJA the range in local precipitation

response, induced mainly by assumed variations in circu-

lation patterns, is larger than in KNMI’06. Also, the new

regressions span the projected range in local precipitation

responses better than the old scenarios, which is consistent

with the improved fraction of explained variance compared

to the use of Gwest (Table 2). Note that we only purport to

span the model uncertainty by the choice of steering

parameters, which is about half the total variability

(Fig. 7). Natural variability in the 30-year time slices

causes the models to fall outside the grey areas, especially

for models with only a single realisation. For JJA the local

warming anomaly relative to DTglob is quite a bit stronger
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Fig. 8 Scatter plot of projected

change in Tglob and PSp over the

time slice 2071–2100 relative to

the reference period 1976–2005

for each GCM/RCP

combination. Dotted lines

denote the assumed range of

PSp values for a given global

mean temperature increase (see

text). Colors and labels as in

Fig. 2. Note the different scale

of the vertical axes

Table 3 Selected values for the scenario steering variables for

2071-2100 and the resulting local responses in temperature and

precipitation

Steering

variable

DJF MAM JJA SON

DTglob [K]

Min 2 2 2 2

Max 4 4 4 4

PSp per degree global warming [hPa/K]

Min -0.21 -0.35 -0.33 -0.14

Max 0.53 0.05 0.09 0.34

DTloc [K]

Min 1.9–2.4 1.9–2.3 2.6–3.7 2.4

Max 3.7–4.8 3.8–4.5 5.2–7.3 4.7–4.8

DPloc [%]

Min ?2 to ?4 -1 -22 to -45 -5 to -9

Max ?18 to ?36 ?6 to ?13 ?1 to ?2 ?12 to ?23

The values of DTglob are as used in KNMI’06, and PSp values are derived

from these following the dotted lines in Fig. 8
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than assumed in KNMI’06 (cf. Fig. 2), while a positive

precipitation response is not generated by the current pro-

cedure, in contrast with earlier results. Precipitation

response in both MAM and especially SON remain to be

very uncertain, with both scenario procedures leading to

positive and negative response values.

5 Discussion and conclusions

An extensive set of GCM projections has been used to

analyse main drivers of regional climate change in the

Rhine basin area and the Netherlands. Unlike the previous

set of KNMI climate scenarios, no selection of the avail-

able GCM projections has been applied based on a metric

such as the one proposed by Reichler and Kim (2008).

Common model biases in mean, variability and trends that

make the raw model data unrealistic are thus not explicitly

dealt with. 245 ensemble members of up to 37 modelling

systems simulating 4 transient RCP scenarios were used to

generate a set of robust patterns of regional temperature

response relative to the global mean warming. Similarly, a

regression between local precipitation response and MSLP

yields physically plausible pressure distributions that are

well related to the local response.

We find warming patterns in the region of Western

Europe that support earlier findings of larger than average

warming of the land area (particularly in boreal summer)

and a strong Arctic amplification (in boreal winter). The

surface pressure response to this warming varies stronger

over the model ensemble than the spatial temperature

response fields, but show clear patterns of high pressure

anomalies in the Mediterranean (DJF) and west of the

British Isles (JJA). This pressure response does not nec-

essarily lead to uniform responses in temperature or pre-

cipitation in the Rhine basin: pressure response patterns

that lead to strong temperature anomalies are different from

the response patterns that generate large precipitation

anomalies. Since temperature variance is largely explained

by differences in projected global mean temperature, we

have selected the pressure response pattern that explains

local precipitation responses optimally as a second steering

variable. With these steering variables we are able to span a

considerable fraction of the CMIP5 range in local tem-

perature and precipitation responses.

Natural variability (calculated for 30 year averages)

gives a minor contribution to the global mean temperature

response. However, it does account for approximately

50 % of the range projected by the different GCM and RCP

combinations for all seasons except JJA. This large fraction

of natural variability in the total variance leads to lower

fractions of explained variance of local precipitation

response, but can generally be used to select time slices of

individual ensemble members from a given GCM projec-

tion that is representative for a particular scenario steering

variable value, even if the full output of GCMs that show

this behaviour is unavailable. Downscaling of these time

slices will enable the construction of scenario values of

other relevant local weather variables, such as higher

quantiles of (daily) temperature and precipitation, or

0 1 2 3 4 5

−
10

0
10

20
30

Local responses 2071−2100 DJF

dTloc [K]

dP
lo

c 
[%

]

0304

05

06

08

11
12
16

17

18

21

22

23

24

26
28

29

30

3132

33
3435

36

01

02

03
04

05

06

07

08

09
10

1112
1315

16

17

18

1920
21
22

2324

25
26

27 28

29

30

31

32

3334
35

363706

08

12
16

17

18

21

22

23

24

26

28

30

31

32
36

01
02

03

04

05

0607

08

09

1011 12
13
14

15

16

17

18

21

22

23

24

25
26

27
28

29

30

31

32
33

34

3536

RCP2.6
RCP4,5
RCP6.0
RCP8.5

1 2 3 4

−
5

5
15

Local responses 2071−2100 MAM

dTloc [K]

dP
lo

c 
[%

]

03

04

05

06

08

11

12

16

17

18

21

22

23

24

26

28

29

30
31

32

3334
35

36

01

02

03
04

05

06

07

08

09

10

1112
1315

16

17

18 19
20
21 22

23

24

2526

27

28
29

30
31

32

33
34
35

36

3706
08

12

16

17
18 21

22
23

24

26

28

30

31
32

36

01

02

03

04

05

06

07

08

09
10

11 1213
14

15

16

17

18 21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

−
60

−
20

0
2

Local responses 2071−2100 JJA

dTloc [K]

dP
lo

c 
[%

]

0304

0506
0811

12

16
171821

22
23

24
26

28

29

30

31
32

3334

35 36

0102

0304

05
06
07 08

0910

11

12

13
15

16

17
18 19

202122
23

2425
26

27

28
29

30

31
32

33
34

35

36
3706 08

12

16
1718

2122

23

24
26

2830

31
32

36

01

02

03

04
05

0607 08

0910

11

12

1314

15

16
1718

2122 23

24

2526
27

28

29

30

31

32

3334

35

36

0 2 4 6 8 0 1 2 3 4 5 6

−
15

−
5

5
15

Local responses 2071−2100 SON

dTloc [K]

dP
lo

c 
[%

] 03

04

05

06
08

11

12

16
17

18

21
22

23

24
26

2829

3031

32

33

34

35

36

01

0203
04

05

06

07

08

09

10

11

12

13

15

16
17

18

19

20
2122

23

24
25

2627 28

29

30

31

3233
34

3536

37

06
08

12

1617

18

2122

23

24

26

28

30

3132

36

01

02

03

04

05

06

07

08

09

10

11

12
13

14
15

16
17

18

21

22

23

24 25

26

27

28
29

30

3132

33
3435

36

Fig. 9 Mean response in local

temperature and precipitation

between the reference period

and 2071–2100 for each GCM/

RCP combination (colour-coded

and labelled as in Fig. 2). The

four corner points of the grey

shapes mark the results obtained

from the regression Eq. (8) and

using steering variable values

indicated in Table 3. Blue dots

connected by dashed lines show

the results obtained from the

previous climate change

scenarios KNMI06
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quantities like evaporation, wind speed, radiation or

atmospheric humidity.

The steering variables serve their purpose of collapsing

most of the scenario and model uncertainty of climate

change in a small spatial domain onto a two-dimensional

space that is sampled by 2 9 2 discrete scenarios. As such

it is conceptually very different from approaches where

ensembles of GCM projections are downscaled using

dynamical or statistical methods. Our approach ensures that

a wide ensemble of projections can be analysed in a sin-

gular framework. Although the ensemble of downscaled

model projections rapidly increases for many regions

including Europe (Giorgi et al. 2009), it is still a consid-

erable effort to generate an ensemble as large as the one

that is used here. In addition, our method is particularly

useful for regimes for which a limited number of external

factors can be identified that explain a fair amount of

variance across the ensemble of projections in the area of

interest. This applies to small areas like the Rhine basin

here, or areas subject to a strong forcing from for instance

the North Atlantic Oscillation or the El Niño Southern

Oscillation (ENSO).

Since our method mainly quantifies modes of uncer-

tainty that can be related to large scale external drivers,

local implications of variability of these drivers still need

to be assessed with methods that are able to resolve pro-

cesses at finer spatial or temporal scales. Our method

generates boundary conditions from which a set of suitable

GCM projections or time slices can be selected in the

clouds of Fig. 9 that are further downscaled dynamically

(see e.g. Lenderink et al. 2007). Dynamical or This

downscaling allows generating the spatially consistent

high-resolution numerical fields required by impact mod-

els. Methods to deal with common model biases before or

after downscaling are subject of on-going research.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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See Table 4.
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