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Abstract Wide ranging climate changes are expected in

the Arctic by the end of the 21st century, but projections of

the size of these changes vary widely across current global

climate models. This variation represents a large source of

uncertainty in our understanding of the evolution of Arctic

climate. Here we systematically quantify and assess the

model uncertainty in Arctic climate changes in two CO2

doubling experiments: a multimodel ensemble (CMIP3)

and an ensemble constructed using a single model (Had-

CM3) with multiple parameter perturbations (THC-

QUMP). These two ensembles allow us to assess the

contribution that both structural and parameter variations

across models make to the total uncertainty and to begin to

attribute sources of uncertainty in projected changes. We

find that parameter uncertainty is an major source of

uncertainty in certain aspects of Arctic climate. But also

that uncertainties in the mean climate state in the 20th

century, most notably in the northward Atlantic ocean heat

transport and Arctic sea ice volume, are a significant source

of uncertainty for projections of future Arctic change. We

suggest that better observational constraints on these

quantities will lead to significant improvements in the

precision of projections of future Arctic climate change.
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1 Introduction

The Arctic region is expected to undergo rapid climatic

changes in the 21st century in response to anthropogenic

warming, for example rising temperatures (Chapman and

Walsh 2007), reduced sea ice (Zhang and Walsh 2006) and

snow cover (Symon et al. 2005), melting permafrost

(Lawrence et al. 2008), increased precipitation (Kattsov

et al. 2007), reduced stability in the wintertime Arctic

atmosphere (Pavelsky et al. 2010) and increased cloud

cover (Vavrus et al. 2009).

However, these studies also demonstrate that there is a

wide variation in the size of these projected changes

between climate models. In order to begin to improve and

constrain future Arctic projections, the uncertainties asso-

ciated with these projections need to be quantified,

understood and potentially attributed to a particular source.

Uncertainties have been examined in detail for the

future Arctic climate projections within the CMIP3 global

climate model ensemble (Solomon et al. 2007) by a range

of previous studies. Liu et al. (2008), for example, exam-

ined the variation in Arctic surface air temperature across

the CMIP3 ensemble, Kattsov et al. (2007)—Arctic pre-

cipitation, Holland et al. (2010)—the Sea Ice mass budget

and Eisenman et al. (2007)—Arctic cloud cover and

Longwave radiation fluxes. However, all these studies use a

diverse set of approaches and definitions to examine a

particular aspect of Arctic climate projections. It is there-

fore difficult to draw clear comparisons between them in

order to quantify and understand uncertainty in processes

across the Arctic region. The goal of this paper, therefore,

is to consistently and systematically assess and quantify the

uncertainties in projections of Arctic climate change,

across a range of local processes, and to attempt to discover

and attribute the sources of these uncertainties. To put this
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analysis in contact, we first briefly discuss the factors

affecting Arctic Climate and the sources of uncertainty in

model projections of Arctic Climate.

1.1 Arctic climate

The mean climate of the Arctic arises as a balance

between a range of Arctic processes (Fig. 1). The tem-

perature and salinity profiles in the ocean and the tem-

perature and humidity profiles in the atmosphere play a

key role. The structures of these profiles are highly sea-

sonal, and changes in the annual mean are likely to arise

from a change in the balance of the seasonally varying

forcings. For example, the atmospheric temperature

inversion arises as a consequence of surface radiative

cooling together with a number of other factors [warm air

advection, subsidence, cloud processes, surface melt,

topography—see Curry et al. (1996)]. In the ocean, tem-

perature and salinity profiles arise from freshwater runoff

from the land surface, sea ice melting and ocean advec-

tion. The resultant cold, low salinity waters can insulate

the overlying sea ice from deeper, warmer waters

(Bourgain et al. 2011).

There are strong feedbacks within the system. As the

ocean sea ice (high albedo) melts it reveals a darker (low

albedo) ocean surface—resulting in increased absorption of

solar (shortwave) radiation, causing an additional warming

and increased melting [ice-albedo feedback-Winton

(2006)]. As overlying sea ice insulates the atmosphere from

the ocean surface, increased melting leads to increase heat

and moisture fluxes into the atmosphere. These increased

fluxes may in turn lead to increases in high altitude cloud

cover, resulting in reduced outgoing longwave radiation

losses from the surface—leading to surface that is warmer

than otherwise [cloud-radiation feedback—Abbot et al.

(2009)]. The increased high altitude clouds are accompa-

nied by increased specific humidity, which traps more of

the outgoing surface longwave radiation—also leading to

increased surface warming [water-vapour feedback—Curry

et al. (1995)].

The global response to increased atmospheric CO2

concentration can alter the northward heat transport into

the Arctic, resulting in changing forcings from ocean and

the atmosphere. A reduction in sea ice cover can also

directly feedback on the heat transports by reducing the

meridional global temperature gradient. Land processes

also play a key role in Arctic climate—a retreat of the

seasonal snow cover reduces the land surface albedo

leading to anomalous warming, and melting of permafrost

increases the availability of soil moisture for evaporation.

These can result in changes to the Arctic freshwater bud-

get, via precipitation and river runoff changes, which can

ultimately alter the ocean surface salinity, and hence

stability.

Some processes that occur within the climate system are

not represented within the CMIP3 climate models [see

Randall et al. (2007)]. For example land-fast ice and bio-

logical processes of the shelf seas of the Arctic are still not

resolved in models. Land surface schemes, due to a lack of

vertical depth in the soil, are not able to represent perma-

frost well. A number of processes are under development

for inclusion in future Earth System models that may be

important for Arctic Climate, e.g. interactive chemistry and

biogeochemistry. Such missing processes represent an

uncertainty in the modelling of Arctic climate-one we are

currently unable to quantify or assess. The CMIP5 and

future ensembles are likely to include improvements in

these areas.

1.2 Sources of uncertainty

There are four sources of uncertainty in climate model

projections of Arctic climate:

– Scenario uncertainty—Uncertainty in future levels of

greenhouse gases.

– Structural uncertainty—The different methods different

models use to represent the same physical process e.g.

Model resolution, coordinate systems (e.g. constant

density vs. constant height).

– Parameter uncertainty—The value of a parameter

within a parameterization of a process not explicitly

physically resolved in a climate model (e.g. surface ice

albedo) chosen from within the given observational

range.

Fig. 1 Key processes governing Arctic climate. a Net shortwave

(SW) solar radiation (modulated by scattering of radiation by clouds

and surface albedo). b Net longwave radiation emitted by surface and

by clouds. c Turbulent (sensible ? latent) fluxes. d Atmosphere heat

transport. e Ocean heat transport. f Atmosphere temperature profile.

g Ocean temperature/salinity profile. h Sea ice, thickness and extent.

i Land surface processes. j Precipitation. k Freshwater flux e.g. from

rivers. Sarah Keeley/Rob Hine ECMWF
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– Intrinsic internal variability—The inherent variability,

or noise, within the climate system, due to its chaotic

nature.

The relative impact of these sources of uncertainty on

Arctic climate over time can be seen in Fig. 2, following

the methods of Hawkins and Sutton (2009, 2011) Model

uncertainty (structural plus parameter uncertainty) domi-

nates these quantities in the near term, but scenario

uncertainty dominates in the long term.

We do not consider scenario uncertainty in this paper,

since this is defined by external factors such as population

growth, technology and economics. We therefore eliminate

this source of uncertainty by examining the behaviour of

the Arctic climate when subjected to a concentration of

CO2 double that of pre-industrial levels. This is reasonable,

since any improvements that bring about a reduction in

projection uncertainty are likely to come through the

modifications to model structures and parameters rather

than increased certainty about future greenhouse gas

emissions. Any reduction in uncertainty is ultimately lim-

ited by the intrinsic model internal variability.

1.3 Model parameterization

Many important climate processes are not modelled

explicitly in current climate models. Such processes occur

on a spatial scale (e.g. convection) or timescale (e.g. cloud

microphysics) that is below the resolution of the model,

and so are represented in a simplified way—often as a

statistical or generalised representation of a process for an

entire model grid box. Such simplified models are termed

parameterizations. For example, the surface albedo within

the Arctic can vary dramatically within an area of the size

of model grid box. Even if an entire grid box was full of sea

ice there would be variations in albedo due to pooling of

water on the ice, snow depth and leads etc. Therefore over

the tens of kilometres represented in one model grid box a

simplified or parameterized version of the actual physical

processes is applied. Such parameterizations may be

weakly constrained by observations and as such may

potentially be a means to tune models to the mean observed

climate.

As noted above, the two goals of this study are to:

– systematically assess the uncertainty in simulations of

current and future Arctic climate.

– assess and understand the causes of the uncertainty in

future projections of Arctic climate.

The structure of this paper is as follows. Section 2

describes the models, experiments and methods used in this

study. Section 3 describes the results of the analysis of

model uncertainty. Section 4 discusses the implications of

the results and summarises our conclusions. (This study is a

synthesis and summary of a systematic review of Arctic

Uncertainty conducted for the UK National Environmental

Research Council (Hodson et al. 2010).)

2 Models and methods

There are a variety of definitions of the Arctic region in use

across the literature. Because relevant Arctic land pro-

cesses (e.g. permafrost) are poorly represented in current

models, we choose to define the Arctic as the region north

of 70�N. This incorporates more ocean grid points (70 %)

than land grid points (30 %) and hence will weight the

assessment to consider the importance of ocean and sea ice
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Fig. 2 The total uncertainty in projected Arctic temperature (a) and

precipitation (b) is separated into its various components using the

CMIP3 ensemble projections of Arctic climate, using the methods of

Hawkins and Sutton (2009, 2011). The black line represents the

observations for temperature from the NASA GISS dataset Hansen

et al. (2010)
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processes over land processes. All area average quantities

are therefore calculated between 70�N and 90�N. To sim-

plify the analysis we will examine only annual mean Arctic

variables in this study. In order to compare the different

sources of model uncertainty discussed above, we exam-

ined two ensembles: a multi-model ensemble (CMIP3), and

a perturbed-parameter ensemble of the Hadley Centre

model HadCM3, to be referred to as the THC-QUMP

ensemble.

2.1 CMIP3

The CMIP3 multi model ensemble contains 22 coupled

climate models [see Table 1, Randall et al. (2007)]. The

models vary in their structure, parameterization, resolution,

and whether or not they employ flux adjustments to ensure

a stable climate. The variance in model structure arises

from the different approximations and numerical methods

used to model the equations that describe physical process

(e.g. fluid flow, radiation) and also the interaction with the

different co-ordinate systems that may be employed (e.g.

vertical levels vs. density levels, location of poles (over

land or ocean) etc). Models also differ in the way in which

they represent sub-gridscale processes (parameterization).

The inter-model variations in these methods contribute to

the structural and parameter uncertainty in climate

projections.

2.2 THC-QUMP

The 22 member THC-QUMP ensemble was created by

perturbing parameters within model parameterizations (e.g.

cloud formation and precipitation and ice structure and

albedo) to within likely ranges. The ensemble can be

broadly described as atmospheric parameter changes

without flux correction. The aim of the ensemble is to span

the range of climate sensitivities consistent with a uniform

prior on parameters but in the process maximise the chance

of getting plausible model versions and span a wide range

of parameter settings—in other words an attempt is made

to uniformly sample the parameter space consistent with a

stable climate—for more details see: Murphy et al. (2004),

Stainforth et al. (2005), and Collins et al. (2006, 2011).

The ensemble comprises of the unperturbed member, the

base state which has the same parameter settings as Had-

CM3 in the CMIP3 ensemble, and other members that have

been perturbed away from the base state through changes

to multiple model parameters. The perturbations were

chosen according to a ‘‘Latin Hypercube’’ design which

maximises the number of potential interactions between

perturbations. The parameter perturbations are shown in

detail in Tables 2, 3, 4, 5, and 6.

The perturbations were chosen to span the range of

observational uncertainty at the time of the experiment

design, with the aim of producing a series of experiments

with a wide range of climate sensitivities. (Note that this

meant that the albedo of cold ice was not perturbed at all).

In additional, several parametization schemes were swit-

ched on or off.

Some parameters were perturbed as a linked set, namely

threshold for cloud to rain conversion rate, cloud fraction at

saturation, sea ice albedo, surface gravity wave parameters,

forest roughness lengths, number of soil levels accessed for

evapotranspiration. Perturbations requiring a logical switch

involved invoking an additional feature or process (non-

spherical ice particles, shortwave water vapour continuum

absorption, sulphur cycle, surface-canopy energy

exchange), removing a process (dependence of stomatal

conductance on CO2) or altering the method of represent-

ing a process (flow dependent Rhcrit, vertical gradient of

cloud water in grid box).

Perturbations to these parameters causes some minor

climate drift in some ensemble members. However, no flux

adjustment was applied to nudge these members back to

the climatology of the unperturbed model (Vellinga and

Wu 2008). Some ensemble members exhibit climate drift

in the Arctic resulting in low initial states of sea ice extent,

such that the summer ice cover was lost early on in the 2 9

CO2 experiments.

Each member was first integrated for 100 years as a

spin-up, to assess the amount of climate drift and model

stability. Model experiments were then initialized from the

end of these spin-up integrations. Across the ensemble a

gradual weakening of the Meridional Overturning Circu-

lation (MOC) occurs as CO2 concentrations increase,

within the range reported in the Third Assessment Report

Table 1 Models comprising the CMIP3 ensemble used in this study

bccr bcm2.0 cccma cgcm 3.1 t47 cnrm cm3

csiro mk3.0 csiro mk3.5 gfdl cm2.0

gfdl cm2.1 giss model eh giss model e r

ingv echam4 inmcm3.0 ipsl cm4

miroc3.2 hires miroc3.2 medres miub echo g

mpi echam5 mri cgcm2.3.2a ncar ccsm 3.0

ncar pcm1 ukmo hadgem1 ukmo hadcm3

Not all variables are stored for all models. Hence for many parts of

the analysis in this study only a subset of this model set was used.

Significance testing, where applied, has been adjusted to reflect this.

Pre-industrial controls (picntrl) were available for all models except

those in bold—where present-day controls (pdcntrl) were used

instead

Fig. 3 Climatology of sea ice fraction in the Control experiment for

11 of the CMIP3 models (including IAP-FGOALS) compared with

the Observed Sea ice fraction (1980–1999) (upper left)

b
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(Cubasch et al. 2001). No rapid shutdown of the MOC is

seen.

Both ensembles allow sampling of parameter uncer-

tainty and internal variability in future projections. The

CMIP3 ensemble allows the sampling of both parameter

and structural uncertainty (see Sect. 2.1). It is clear that

parameter uncertainty and structural uncertainty are not

independent quantities, since climate models are in part

constrained by past observations of climate. Hence it is

likely that some of the structural uncertainty is compen-

sated by the parameter uncertainty, i.e. parameters are

tuned within uncertainty to compensate for biases intro-

duced by structural uncertainties—and hence are likely to

be negatively correlated with each other. This means that

we cannot deduce whether parameter or structural uncer-

tainty plays a greater role in a given process from a simple

comparison of the CMIP3 and THC-QUMP ensembles.

2.3 Model experiments

For each model in the ensemble, two experiments were

performed: a Control integration and a 2 9 CO2 experi-

ment. In the Control integration the atmospheric concen-

tration of carbon dioxide (CO2) is held at a constant level

throughout the model experiment (usually pre-industrial

levels of 290 ppmv—although three models used present

day levels 348 ppmv—see Table 1); any variations in the

climate system seen in this experiment are hence solely due

to internal variability. In the 2 9 CO2 experiment the

carbon dioxide concentration is increased at a rate of 1 %

per year starting from the CO2 concentration in the control

integration. Hence at around year 70 of the 2 9 CO2

experiment, the CO2 concentration is double that of the

control integration.

2.4 Estimation of internal variability

The spread in climate variables across models (e.g. Fig. 3)

may occur due to differences in parameterization and

model structure, as discussed above. But it may also arise

as a consequence of sampling the underlying internal cli-

mate variability. A rigorous treatment of the internal var-

iability would involve a full Analysis of Variance

(ANOVA) (see von Storch and Zwiers 2002; Yip et al.

2011; Hodson and Sutton 2008), but here we simply cal-

culate an estimate of the internal variability contribution to

the overall model spread. For a given variable Xmt, where m

is the ensemble member and t is time, we assume a normal

Table 2 Perturbed parameter values for the THC-QUMP ensemble

VF1 CT CWland Cwsea RHCrit eacfbl eacftrp rhcrit2

1 1.32222 6.30E-05 2.28E-04 5.70E-05 0.6692 0.5106 0.5053 0

2 0.93337 5.10E-05 1.26E-04 2.78E-05 0.7151 0.5157 0.50786 0

3 0.78497 8.80E-05 1.50E-04 3.50E-05 0.69537 0.5417 0.52086 0

4 0.70951 1.69E-04 1.66E-03 4.15E-04 0.68539 0.5284 0.51419 0

5 0.99786 9.70E-05 1.33E-04 2.99E-05 0.80257 0.5748 0.53741 0

6 1.07324 3.17E-04 1.91E-04 4.73E-05 0.7 0.6855 0.59273 1

7 0.81076 1.27E-04 1.42E-04 3.26E-05 0.63896 0.5008 0.5004 0

8 1.32823 2.22E-04 1.55E-04 3.65E-05 0.68506 0.7189 0.60947 0

9 1.12592 9.10E-05 5.21E-04 1.30E-04 0.7 0.5232 0.51158 1

10 0.8223 7.20E-05 1.41E-04 3.23E-05 0.85307 0.5458 0.5229 0

11 0.99135 2.82E-04 1.59E-03 3.97E-04 0.8045 0.7499 0.62494 0

12 1.16724 2.34E-04 1.51E-04 3.53E-05 0.7 0.5396 0.51982 1

13 0.65009 6.60E-05 9.98E-04 2.50E-04 0.65163 0.5084 0.5042 0

14 1.42575 3.80E-04 6.78E-04 1.69E-04 0.7 0.5923 0.54616 1

15 0.86979 2.62E-04 1.41E-04 3.23E-05 0.68998 0.7889 0.64447 0

16 0.97361 2.40E-04 1.69E-03 4.22E-04 0.83177 0.7992 0.64961 0

17 1.15748 3.15E-04 1.86E-04 4.58E-05 0.68549 0.7893 0.64466 0

18 0.84221 2.28E-04 4.13E-04 1.03E-04 0.7 0.5322 0.51608 1

19 1.54799 1.44E-04 4.27E-04 1.07E-04 0.88424 0.6227 0.56133 0

20 2 5.00E-05 2.00E-03 5.00E-04 0.9 0.5 0.5 0

21 1 5.00E-05 1.00E-04 2.00E-05 0.9 0.7 0.6 0

22 1 1.00E-04 2.00E-04 5.00E-05 0.7 0.5 0.5 0

Ensemble member 22 is the standard HadCM3 configuration—and has the sulphur cycle turned off. All other members have the sulphur cycle

turned on. Descriptions of the parameters are given in Table 6
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distribution with a mean lm and variance rint
2 : Xmt *

N(lm,rint
2 ). An estimate of internal variability r̂int is given

by:

r̂int ¼
1

M

XM

m¼1

1

T � 1

XT

t¼1

ðXmt � XmÞ2
 !1=2

ð1Þ

for M ensemble members and T time points. Here Xm is the

time mean:

Xm ¼
1

T

XT

t¼1

Xmt ð2Þ

i.e. (1) is the square root of the mean of the time variance in

the Control integrations, across the ensemble. In this case

we used 80 years of the control run (T = 80). Given this

estimate of internal variability, for an ensemble composed

of 20 years means (sampled from the control integration),

we would expect a spread in the means due to sampling of

internal variability (rv) of:

rv ¼
r̂intffiffiffiffiffi

20
p ð3Þ

This is the spread we would expect between the 20 year

means of each control integration if the true long-term

means were identical. Hence it is the minimum contribu-

tion we expect from internal variability alone. If we assume

that the magnitude of the internal variability is the same in

the 2 9 CO2 experiment as the Control integration, then

minimum spread we expect between the mean projected

changes (2 9 CO2-Control) across an ensemble will be:

r̂int

ffiffiffi
2
p

=
ffiffiffiffiffi
20
p

—since the variances sum.

Does this measure capture the full effect of internal

variability? Each model in the ensemble is initialised from

different initial conditions. Since we remove the 80 year

mean in computing (1) we may remove the impact of initial

conditions. For example, each model may be in different

phases of a longer multi-decadal oscillation, or minor dif-

ferences in atmospheric initial conditions may trigger such

oscillations. Perturbed initial condition ensembles would

be required to refine this measure of internal variability

further, for example Mahlstein and Knutti (2012) and

Deser et al. (2012). For this reason we can only consider

(3) to be a lower bound estimate for the contribution from

internal variability.

Table 3 Perturbed parameter values for the THC-QUMP ensemble

Ent ice1 cape conv anvil MinSIA MaxSIA ice2 ice1 ice0

1 2.98472 9.5171 -999 0.3036 2.61912 0.5068 0.8 3 9.5171 2

2 2.89538 3.827 1.23 -999 -999 0.6013 0.8 3 3.827 2

3 2.822 8.5807 -999 -999 -999 0.5199 0.8 7 8.5807 7

4 3.12813 9.9264 1.7 0.60104 1.03742 0.501 0.8 3 9.9264 2

5 2.90642 9.325 3.03 -999 -999 0.5095 0.8 3 9.325 2

6 4.3085 7.9421 2.67 -999 -999 0.5288 0.8 3 7.9421 2

7 3.71544 7.9179 -999 -999 -999 0.5292 0.8 3 7.9179 2

8 2.76858 6.2121 1.89 -999 -999 0.553 0.8 3 6.2121 2

9 2.97842 9.3729 -999 -999 -999 0.5088 0.8 7 9.3729 7

10 4.08631 9.7071 3.42 -999 -999 0.5041 0.8 3 9.7071 2

11 3.03335 9.2929 1.58 0.46707 2.06581 0.5099 0.8 3 9.2929 2

12 4.96524 9.7279 2.76 -999 -999 0.5038 0.8 3 9.7279 2

13 2.61114 4.6212 -999 0.92649 1.60046 0.5801 0.8 3 4.6212 2

14 4.85597 8.4886 -999 0.14225 2.51386 0.5212 0.8 3 8.4886 2

15 3.12616 3.1456 -999 0.49732 1.80094 0.6195 0.8 3 3.1456 2

16 3.08109 4.6531 1.05 0.33453 1.32774 0.5793 0.8 3 4.6531 2

17 2.44041 8.9729 -999 0.95753 1.16415 0.5144 0.8 7 8.9729 7

18 5.10407 9.3464 1.96 -999 -999 0.5092 0.8 3 9.3464 2

19 4.85869 9.2357 2.22 -999 -999 0.5107 0.8 3 9.2357 2

20 3 10 -999 -999 -999 0.5 0.8 3 10.0 2

21 3 10 -999 -999 -999 0.5 0.8 3 10.0 2

22 3 10 -999 -999 -999 0.5 0.8 3 10.0 2

Ensemble member 22 is the standard HadCM3 configuration—and has the sulphur cycle turned off. All other members have the sulphur cycle

turned on. Descriptions of the parameters are given in Table 6
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3 Results

We now analyse the CMIP3 and THC-QUMP ensembles to

assess the magnitude of the uncertainty (spread) in both the

model control climatology and the climate change (2 9

CO2-Control) response (the spread in the difference

between 2 9 CO2 and Control integrations) in a number of

key Arctic variables.

3.1 Climatology and ensemble spread in key Arctic

variables

In this study we are principally concerned with the spread

in the projected changes in the Arctic under a doubling in

the concentration of atmospheric CO2. However, there is

also a spread in the climatologies of the control integrations

of the models, from which the changes are measured. This

spread in climatologies would be unimportant if each

model responded linearly to a doubling of CO2. However,

as will be shown, the initial model state (or climatology)

can determine the magnitude of the projected changes.

Hence we briefly outline the spread in the climatologies.

As noted above, we only consider annual mean quantities

here. The main differences in the CMIP3 model climatol-

ogies are well documented in the IPCC report (Randall

et al. 2007). In Fig. 3 we present a 20 year mean sea ice

fraction from the control integration of 11 of the CMIP3

models, together with the mean observed sea ice fractions

(1980–1999). The Figure shows that there are a wide range

of sea ice extents within the CMIP3 ensemble, with one

model (IAP-FGOALS) having annual mean sea ice as far

south as the UK. (For this reason, we exclude the IAP-

FGOALS model from the remainder of our analysis). This

Figure also highlights the differences in spatial resolution

across the ensemble and the subtleties of regional differ-

ences that may be hidden by analysis of the climatology

within our chosen definition of the Arctic (e.g. 70�N).

Table 7 shows estimates of the ensemble mean and

ensemble spread for key Arctic variables in the control

integrations of both the CMIP3 and THC-QUMP ensem-

bles. The table also shows an estimate of the fraction of the

ensemble spread that is simply due to sampling of the

internal (or inter-annual) variability within each model. As

noted above, this must be considered a lower bound, since

we are unable to explicitly sample the uncertainty in initial

conditions.

The mean sea ice extent and volume, surface air temper-

ature and precipitation (Table 7) are consistent (within one

standard deviation) between the THC-QUMP and CMIP3

ensembles. The mixed layer temperatures, however, are not

Table 4 Perturbed parameter values for the THC-QUMP ensemble

ice3 ice4 k-gwd diff2 length1 H2O diff1 gwd ice5 ice6

1 3.33E-04 29.804 1.04E?04 22.047 0.08307 0 6 3 1 1

2 3.62E-04 30.653 1.74E?04 20.529 0.22654 1 6 5 1 1

3 3.71E-04 39.82 1.15E?04 18.797 0.16492 1 6 3 7 7

4 3.72E-04 34.19 1.28E?04 8.785 0.49288 0 6 5 1 1

5 3.42E-04 25.596 1.92E?04 15.208 0.32231 0 6 3 1 1

6 3.49E-04 35.638 1.03E?04 17.092 0.05844 1 6 3 1 1

7 3.49E-04 29.8 1.15E?04 10.662 0.10553 1 6 5 1 1

8 3.67E-04 28.263 1.81E?04 7.079 0.07065 1 4 3 1 1

9 3.68E-04 33.789 1.75E?04 10.784 0.13415 0 6 5 7 7

10 3.34E-04 28.509 1.04E?04 11.122 0.11022 0 6 3 1 1

11 3.55E-04 28.756 1.95E?04 15.659 0.12417 0 4 5 1 1

12 3.52E-04 38.412 1.97E?04 14.006 0.224 0 6 3 1 1

13 3.73E-04 36.419 1.57E?04 13.212 0.10996 1 6 3 1 1

14 3.44E-04 28.07 1.65E?04 11.075 0.15263 0 6 3 1 1

15 3.67E-04 33.304 1.26E?04 16.649 0.13947 0 6 5 1 1

16 3.48E-04 36.72 1.51E?04 16.285 0.13698 0 6 5 1 1

17 3.60E-04 27.448 1.99E?04 12.99 0.46636 0 6 5 7 7

18 3.53E-04 39.111 1.27E?04 15.839 0.14292 0 6 5 1 1

19 3.64E-04 36.597 1.95E?04 11.501 0.16253 1 4 3 1 1

20 3.75E-04 30 2.00E?04 12 0.15 0 6 3 1 1

21 3.75E-04 30 2.00E?04 12 0.15 0 6 3 1 1

22 3.75E-04 30 2.00E?04 12 0.15 0 6 3 1 1

Ensemble member 22 is the standard HadCM3 configuration—and has the sulphur cycle turned off. All other members have the sulphur cycle

turned on. Descriptions of the parameters are given in Table 6
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consistent between ensembles. These means are comparable

to the observational estimates that exist, although the

observations do not generally lie within one standard devi-

ation of the ensemble means. This is partly due to the varying

definitions of the Arctic region used across different obser-

vational studies. For instance, observed surface air temper-

ature estimates (Liu et al. 2008) were computed over a wider

Arctic region than our chosen region ([70�N), hence

resulting in a warmer mean surface temperature due to the

inclusion of warmer lower-latitude regions.

Some quantities have a large ensemble spread (uncer-

tainty, one standard deviation across the ensemble) com-

pare to their mean, (e.g sea ice volume,1 and mixed layer

temperatures). Whilst others, notably surface air tempera-

ture and precipitation, have a smaller ensemble spread.

Hence some Arctic quantities are modelled more precisely2

than others. Some of this spread will be due to systematic

differences between models but a portion will be due to

sampling of the intrinsic internal variability within each

control. We have estimated this contribution for each

model (Table 7). It is clear that, although this contribution

is larger for some quantities than others, it is not the

dominant source of spread in the ensemble (except perhaps

for sea ice extent in the THC-QUMP ensemble (see foot

note 1). In other words, the ensemble spread in these

variables is mostly due to the parameter and structural

uncertainties contained within the ensemble, and is likely

not solely an artifact of the sampling of internal (inter-

annual) variability (although see Sect. 2.4). Note also, that

the spread in quantities within the THC-QUMP ensemble

are always smaller in magnitude than those in the CMIP3

ensemble. This implies that the parameter uncertainty is

not likely to entirely explain the spread in the CMIP3

ensemble, and that structural uncertainty must play a role.3

Table 5 Perturbed parameter values for the THC-QUMP ensemble

k-lee-gwd charnock rough boundary canopy forest1 stomatal forest2

1 1.56E?05 0.0167 7.12E-04 5.1062 1 0 0 2

2 2.61E?05 0.0126 1.85E-03 7.7027 0 0 0 2

3 1.72E?05 0.0148 2.73E-04 15.5736 0 0 0 2

4 1.92E?05 0.0161 1.31E-03 6.7025 0 3 0 2

5 2.88E?05 0.0146 1.21E-03 14.7922 1 3 1 4

6 1.54E?05 0.0138 2.81Ev03 8.8159 0 0 0 2

7 1.72E?05 0.0125 1.11E-03 7.6657 0 2 0 4

8 2.72E?05 0.0151 4.68E-03 7.5783 0 0 0 2

9 2.62E?05 0.0126 4.52E-03 9.8408 1 3 0 4

10 1.56E?05 0.0184 3.84E-03 14.6444 0 3 0 4

11 2.92E?05 0.0183 5.38E-04 13.5766 0 0 0 4

12 2.96E?05 0.0144 4.62E-03 6.6615 0 3 0 4

13 2.36E?05 0.0134 8.96Ev04 13.9517 0 3 1 2

14 2.48E?05 0.0155 3.54E-03 15.5547 0 3 0 4

15 1.89E?05 0.019 4.56E-03 12.9209 0 0 1 4

16 2.26E?05 0.0154 4.03E-03 5.1791 0 0 0 2

17 2.98E?05 0.0138 3.35E-03 7.8995 0 0 1 4

18 1.90E?05 0.014 3.70E-03 19.7066 0 1 1 4

19 2.92E?05 0.0141 3.23E-03 8.8681 0 3 1 2

20 3.00E?05 0.012 1.30E-03 10 0 0 1 4

21 3.00E?05 0.012 1.30E-03 10 0 0 1 4

22 3.00E?05 0.012 1.30E-03 10 0 0 1 4

Ensemble member 22 is the standard HadCM3 configuration—and has the sulphur cycle turned off. All other members have the sulphur cycle

turned on. Descriptions of the parameters are given in Table 6

1 Note that the small spread in sea ice extent is due to our definition

of the Arctic—within the control integration most models have

extents further south than 70�N. This also explains why the internal

variability appears to be the dominant source of uncertainty in this

variable.
2 Although a modelled quantity may be precise (small ensemble

spread, small uncertainty)—it may not be accurate e.g. it may have a

large mean bias compared to observations.

3 It is clear that these two sources of uncertainty are not independent

in the CMIP3 ensemble, since climate models are in part constrained

by past observations of climate. Hence it is likely that some of the

structural uncertainty is compensated for by the parameter uncer-

tainty, i.e. they are negatively correlated. This means that we cannot

simply compare the CMIP3 and THC-QUMP ensembles to deduce

whether parameter or structural uncertainty play a greater role in a

given process.
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3.2 Ensemble mean and spread in projected changes

under 2 9 CO2

The ensemble mean and spread (1r) in the projected

changes under 2 9 CO2 in key Arctic variables are shown

in Table 8. There is a considerable variation in the spread

between variables. In both ensembles, the spread in sea ice

volume changes is about half the size of the ensemble mean

change. However, changes in surface air temperature are

much better constrained, with uncertainties less than a third

of the mean change in both ensembles.

For some variables (e.g. sea ice volume) the THC-

QUMP spread is comparable to that in the CMIP3

ensemble: 55 versus 49 % (the sampling of internal/inter-

annual variability only accounts for a small part of the

spread in both cases). Hence the sampling of parameter

uncertainty (THC-QUMP) results in a similar uncertainty

range for projections of ice volume change as does the

sampling of structural and parameter uncertainty (CMIP3).

We cannot however, confidently conclude that parameter

uncertainty is the dominant contributor to uncertainty in the

CMIP3 projections, since, as noted previously2 the

parameter and structural uncertainties in the CMIP3

ensemble are very likely to be anti-correlated. Neverthe-

less, we can conclude that future constraints on model

parameter uncertainty are likely to lead to a reduction in

the uncertainty of future projections of sea ice volume.

The situation is somewhat different for surface air

temperature—the sampling of parameter uncertainty

(THC-QUMP) results in a much smaller uncertainty range

than the CMIP3 ensemble. This implies that the sampled

range of parameter uncertainty may not be sufficient to

explain the projected spread in surface air temperatures in

the CMIP3 ensemble, and that structural uncertainties,

such as the boundary layer and cloud schemes along with

the treatment of surface fluxes, may play a significant

role. The caveats are that THC-QUMP may not have

sampled the full range of parameter uncertainty present in

the CMIP3 ensemble, although significant efforts were

made to do so (Collins et al. 2006), and that some of the

CMIP3 models may use different parameterization

schemes.

Regardless of these caveats, it is clear from the table

that, in both ensembles, the uncertainty in the spread is

greater than the estimate of the contribution from the

internal variability (except for sea ice extent in THC-

QUMP—but see1), where it never contributes more than

half of the spread (although see Sect. 2.4). This implies that

there may be scope for reducing uncertainties in Arctic

projections by improving model structure and parameter-

izations, since projections are likely not dominated by

interannual internal climate variability.

3.3 The impact of the model control climatology

on projected changes

The time-mean response of each climate model to constant

atmospheric greenhouse gas concentrations (control inte-

gration) varies between models—resulting in a spread in

model climatologies (e.g. Fig. 3). Each CO2 doubling

experiment is initialized from a state in the control inte-

gration. The spread in the control climates across the

ensemble would be unimportant if the Arctic climate

within the model responded linearly to the doubling of

CO2. However, previous studies (e.g. Holland et al. 2010)

have demonstrated that such a spread in the climatologies

Table 6 Description of parameters in Tables 2, 3, 4, and 5

Short name Description

VF1 Ice fall speed

CT Cloud droplet to rain conversion rate

CWland Cloud droplet to rain threshold: land

Cwsea Cloud droplet to rain threshold: sea

RHCrit Threshold of rel humidity for cloud formation

rhcrit2 Flow dependent RHcrit

eacfbl Cloud fraction at saturation—boundary layer

eacftrp Cloud fraction at saturation—troposphere

Ent Entrainment rate coeff

cape Time scale for destruction of CAPE

conv Convective anvils: updraught factor

anvil Convective anvils: shape factor

MinSIA Ice Albedo at 0 �C

MaxSIA Ice Albedo at Tcold

ice1 Tcold

ice3 Ocean-ice diffusion

ice4 Ice particle size

H2O shortwave vapour continuum absorbtion

diff1 order of diffusion operator

diff2 Diffusion e-folding time

gwd Starting level for gravity wave drag

k-gwd Surface gravity wave param: wavelength

k-lee-gwd Surface gravity wave param: trapped lee wave const

canopy Surface-canopy energy exchange

forest1 Forest roughness length

stomatal dependence of stomatal conductance on CO2

forest2 No. of soil levels for evap in forest

charnock Charnock constant

rough Free convective roughness length over sea

boundary boundary layer flux profile param

length1 Asymptotic neutral mixing length param

ice0 Ice cystal type in stratiform cloud (SW)

ice2 Ice cystal type in convective cloud (SW)

ice5 Ice cystal type in stratiform cloud (LW)

ice6 Ice cystal type in convective cloud (LW)
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is partly responsible for the spread (hence uncertainty) in

projections of Arctic climate change.

To determine the relationship of the spread in the cli-

matologies with the spread in the projected changes under a

doubling of CO2 we look at the correlations across each

ensemble. For example, Fig. 4a shows the change in sea ice

volume at the CO2 doubling time, against the sea ice vol-

ume climatology in the control integration, for each model

in the CMIP3 ensemble. There is a clear negative rela-

tionship between the initial volume of sea ice (climatology)

and the magnitude of the change in sea ice volume at CO2

doubling as first noted by Holland et al. (2010). That is, the

ice volume at the start of the 2 9 CO2 experiment, deter-

mines, in a large part, the magnitude of the sea ice volume

reduction upon CO2 doubling. This behaviour could arise if

a significant number of models were free of sea ice by CO2

doubling (hence the volume change would only be

dependent on mean volume in the control). To test this we

reexamine the relationship in September (the summer sea

ice minimum) sea ice volumes half-way through the CO2

doubling experiment (Fig. 4b)—here we have explicitly

excluded two models where the sea ice volumes fall below

103 km3 by CO2 doubling (years 60–79) to exclude sea-ice

free conditions. The relationship is even stronger—sug-

gesting that the effect is real.

To further examine the dependence of Arctic climate

change on the spread of model climatologies we repeat this

correlation analysis for the change in seven key Arctic

Table 7 Mean and Spread of key Arctic variables in the control integrations (20 years)

Ensemble Ice extent /106

km2
Ice volume /103

km3
Surface air

temperature/�C

Precipitation /

mm/year

Mixed layer

temperature /�C

THC-QUMP 10.8 ± 0.29 14.5 ± 6.41 -14.03 ± 2.48 315.0 ± 31.0 -0.07 ± 0.04

(parameter uncertainty) 3 % 44 % 10 %

THC-QUMP ± 0.11 ± 0.33 ± 0.18 ± 3.3 ±0.01

Contribution from internal

variability, rv

37 % 5 % 7 % 11 % 18 %

CMIP3 10.68 ± 0.63 19.65 ± 9.21 -15.88 ± 2.38 278 ± 46 -1.09 ± 0.44

(structural and parameter uncertainty) 6 % 47 % 24 %

CMIP3 ±0.03 ±0.26 ±0.13 ±2.6 ±0.01

Contribution from internal

variability, rv

5 % 3 % 5 % 6 % 3 %

Observations 10.1a 29.0b -8.62c 234d N/A

Row 1 shows the THC-QUMP ensemble-mean time-mean of years 61–80 from each control integration (Control) together with a measure of the

ensemble spread (±one standard deviation of the time-means). Numbers in bold show the ensemble spread as a fraction of the ensemble mean,

expressed as a percentage (temperature is excluded since the the zero on the Celsius scale is arbitrary). Row 2 The estimated contribution from

internal variability (3). Numbers in italics show internal variability as a percentage of the ensemble spread. Row 3 (4)—as row 1 (2), but for

CMIP3 Row 5—observational estimates. For more details see Sect. 6.1

Table 8 Change and Spread of key Arctic variables at double pre-industrial CO2 concentration

Ensemble Ice extent /

106 km2
Ice volume/

103 km3
Surface air

temperature

/�C

Precipitation

/mm/year

Mixed layer

temperature

/�C

Polar

amplification

of SAT

Polar

amplification

of MLT

THC-QUMP -0.57 ± 0.23 5.77 ± 3.17 4.26 ± 0.63 54 ± 11 0.67 ± 0.26 2.25 ± 0.22 0.42 ± 0.14

(Parameter uncertainty) 40 % 55 % 15 % 21 % 39 % 10 % 33 %

THC-QUMP ± 0.15 ± 0.46 ± 0.25 ± 4.67 ± 0.01

Contribution from

internal variability, rv

67 % 14 % 39 % 42 % 5 % N/A N/A

CMIP3 -0.43 ± 0.21 -8.49 ± 4.18 4.01 ± 1.12 53 ± 17 0.48 ± 0.36 2.12 ± 0.39 0.38 ± 0.20

(structural and parameter

uncertainty)

48 % 49 % 28 % 32 % 75 % 18 % 53 %

CMIP3 ±0.04 ±0.37 ±0.18 ±3.7 ±0.02

Contribution from

internal variability, rv

20 % 9 % 16 % 22 % 6 % N/A N/A

As Table 7, but for 2 9 CO2—Control: the difference between the time-mean of the 2 9 CO2 experiment and the time-mean of the control

integration, for years 61:80—the 20 years centred on the CO2 doubling time. See Sect. 6.1 for more details

Identifying uncertainties in Arctic climate change 2859

123



variables (as in Table 8) and their relation to a range of

quantities in the control climatology (means of years 61–80

in the control integrations). The results are presented for

both ensembles in Table 9. There are clear similarities and

differences between the two ensembles. The large (nega-

tive) correlations between sea ice volume climatology (in

the Control integration) and the sea ice volume change are

clearly seen in both ensembles.

As noted previously THC-QUMP ensemble differ in

the values of certain parameters within key model

parameterizations. The similarity of the correlation of the

sea ice volume change and climatology between the two

ensembles suggest that the relationship is fundamentally

related to parameter uncertainty. Figure 5 shows the

variation of the sea ice volume climatology (in the THC-

QUMP control integration) as one of the model parame-

ters varies: Ice albedo at 0 �C. The dataset is limited but

ice volumes are significantly different (p \ 0.03) between

upper and lower albedo ranges. Taken together with the

result that sea ice volume changes are negatively corre-

lated with sea ice volumes in the control (Table 9), this

may suggest that sea ice volume changes under a dou-

bling of CO2 are directly related to the value of param-

eters contained within the sea ice albedo parameterization.

Hence uncertainty in sea ice volume projections may be

explained, in part, by the uncertainty in the sea ice albedo

parameterization schemes. Physically this could arise

because the surface albedo controls the climatological

radiation balance within the region, and hence the ice

energy budget and thus the climatological ice volume.

Once thick sea ice is established, the top surface of the

ice becomes well-insulated from the cold ocean under-

neath the ice (-1.8 �C for freezing seawater). This may

allow the top surface of the ice to melt in response to a

given surface heat flux, whereas a thinner ice—in closer

thermal contact with a cold ocean ‘buffer’—would not.

Hence explaining the greater sea ice loss in the models

with greater initial sea ice volumes.

Examination of Table 9 reveals a number of other

interesting relationships. In the CMIP3 ensemble, the

northward ocean heat transport in the Control integration

climatology is significantly correlated with changes in five

of the seven Arctic variables. Some of these relationships

can be seen more clearly in Fig. 6 where they are plotted

together with the data for Atlantic only ocean heat transport

(where available). These suggest that the climatology of

the model ocean heat transport into the Arctic explains a

substantial part of the spread (uncertainty) in key aspects of

Arctic climate change (surface air temperature, precipita-

tion, mixed layer temperatures and sea ice extent).

A similar relationship between surface air temperature

and the climatology of the model ocean heat transport into

the Arctic has also recently been documented in the A1B

scenario experiments (Mahlstein and Knutti 2010). It is

interesting to note that the correlation between sea ice

volume changes and Atlantic Ocean Heat transport are the

opposite sign to the correlation between sea ice extent and

Atlantic Ocean Heat transport, although the former is not

statistically significant. This opposition of signs persists

even if we consider all northern hemisphere ice (0:90N)

rather that that within our Arctic definition (70:90N).

These relationships are entirely absent from the THC-

QUMP ensemble. This may suggest that this dependence is

due to structural uncertainty, rather than parameter

uncertainty. A study by Jackson et al. (2011) reveals that

the spread of MOC strengths in THC-QUMP is less than

that of the CMIP3 ensemble, with most THC-QUMP

ensemble members having an MOC strength within the

observational range. It is important to note that the model

parameters that were varied to create the THC-QUMP

ensemble were not chosen specifically to cause a spread in

ocean heat transports—no ocean dynamics parameters

a b

Fig. 4 a The relationship between the projected changes in annual

mean sea ice volume under CO2 doubling and the climatology of the

annual mean sea ice volume for all models in the CMIP3 ensemble.

The correlation is -0.79. See also Holland et al. (2010). b as a But

for September sea ice volume (years 40–59)— for all models except

for two where the sea ice volume drops below 103 km3 in years

60–79. Correlation: -0.90
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were perturbed, for example (see Table 6)—hence they

may under-sample any parameter uncertainty that exists.

Hence, the lack of these relationships in the THC-QUMP

table may be because these rely on the interaction of the

spread in ocean heat transport and sea ice volume—an

interaction that does not occur in the THC-QUMP

ensemble.

The THC-QUMP ensemble does show a strong positive

correlation between the control climatological surface air

temperature and sea ice volume change. However, this is

likely due to the link between control climatological sea ice

volume and temperature. Higher temperatures in the con-

trol will be accompanied by a lower volume of sea ice. As

noted previously, models with lower initial ice volumes

result in smaller ice volume changes under 2 9 CO2. Such

changes are always negative (a reduction) in a warming

climate, hence higher temperatures are related to smaller

negative changes in ice volume. Therefore we would

expect a positive correlation between control SAT and sea

ice volume.

Similarly, we expect that many of the other significant

correlations in the THC-QUMP ensemble are related to the

spread in sea ice volume climatologies (for example:

Shortwave (SW) flux at the top of the atmosphere (TOA

Up SW)—High sea ice volumes are likely to have high sea

ice coverage, increasing the upward top of the atmosphere

flux in the shortwave band. High sea ice coverage results in

less heat being stored in the mixed layer during summer—

hence lower annual mean mixed layer temperatures).

The result shown in Fig. 5 and Table 9 imply that

reductions in the spread in Arctic model climatologies are

an important step in reducing uncertainty in future Arctic

climate projections. Figure 5 suggests that for ice volume

this uncertainty may be reduced by better constraining the

Table 9 Correlations between changes in Arctic variables (2 9 CO2—Control: columns) and a variable in the control integration climatology

(Control: rows) (left:CMIP3, right:THC-QUMP)

Coefficients in a coloured box are significant (p \ 0.05) for the ensemble size, with blue (red) indicating a negative (positive) correlation.

Variables are defined in Sect. 6.2. Some models are missing some variables in the CMIP3 archive—hence the CMIP3 ensemble size is not always

the same size for each variable. Consequently the sample size varies and hence so does the magnitude correlation required for a significant value.

The number of models used ranges from 6 to 18
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ice albedo parameter in model parameterizations (although

this may reveal underlying structural uncertainties—see

Sect. 2). Furthermore, Table 9 shows the importance of a

realistic ocean heat climatology when forming projections

of future Arctic climate change.

4 Conclusions

The goal of this study is to assess and quantify the

uncertainty in current Arctic climate projections in a con-

sistent manner. We have examined the uncertainty

(ensemble spread) in the response of Arctic Climate to a

doubling of atmospheric CO2 concentrations in both a

multimodel ensemble (CMIP3) and a single-model per-

turbed-parameter ensemble (THC-QUMP).

The range of models used in the CMIP3 ensemble have

control climatologies that are generally consistent with

historical observations of Arctic climate, although the

spread of the climatologies can be quite large, particularly

for some quantities (e.g. sea ice volume). Both structural

and parameter uncertainties are likely to be significant

sources of spread, since the spread of both ensembles

(CMIP3 and THC-QUMP) is larger than our estimate of

intrinsic climate noise (internal variability)—although

further analysis will be required to robustly confirm this

(see Sect. 2.4).

Fig. 5 The variation of sea ice volume climatology and variations in

the albedo parameter in the QUMP ensemble. The ice volumes in the

upper half of the albedo range (0.56–0.62) are significantly different

(p \ 0.03) to the ice volumes in the lower half of the albedo range

(0.5–0.56)

a b

c d

Fig. 6 Relationships between changes (2 9 CO2 - Control) in

Arctic variables and the time mean Ocean Heat Transport at 70N

(black: Global (Total N Ocean Heat Trans), red: Atlantic [Atl
Ocean Heat Transport)]—across all available models. a Air

Temperature (SAT), b Mixed Layer Temp, c Precip, d Sea Ice
Extent. Correlations that are not significant (p C 0.05) are given in

brackets. Variables in bold as defined in Sect. 6.2
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The ensemble spread of model climatologies is gener-

ally greater for the CMIP3 (multimodel) ensemble than the

THC-QUMP (single model, multiple parameter) ensemble.

This may suggest that structural uncertainty explains a

notable fraction of the ensemble spread. However,

although considerable efforts were made to uniformly

sample parameter uncertainty (see Sect. 2.2), it is hard to

directly relate this to parameter uncertainty within the

CMIP3 ensemble

Our key findings from this study are that:

– The uncertainty (ensemble spread) in the projections of

changes in many Arctic quantities (e.g sea ice volume,

mixed layer temperature) is large (*30 - 50 %), when

compared to the ensemble mean changes.

– Sub-gridscale parameterizations and model structure

variations are likely to be the most significant contri-

butions to this uncertainty, rather than intrinsic internal

variability. However, further work sampling internal

variability using perturbed initial condition ensembles

will be required to robustly test this conclusion (Sect.

2.4).

– Climatological errors (mean state model biases) in both

sea ice volume and northward ocean heat transport into

the Arctic are critical factors in determining the climate

response of the Arctic to a CO2 doubling [these findings

mirror studies by Holland et al. (2010) and Mahlstein

and Knutti (2010)].

– Such climatological errors in northward ocean heat

transport into the Arctic in a model may be ultimately

due to structural variations between models (CMIP3)

rather than uncertainties in sub-gridscale parameteriza-

tions (THC-QUMP).

One limitation of this study is that we have only con-

sidered variations in annual means. However, the Arctic is

a strongly seasonal climate system driven by the large

variation in solar shortwave radiation over the annual

cycle. In winter, conditions are often dominated by high

surface pressure and strong atmospheric inversion. The

resulting heat loss to space leads to sea ice growth and and

increased mixed layer depth. In summer, by contrast, the

near-permanent sunlight induces surface melting of the sea

ice, a well-mixed boundary layer and 90 % cloud cover.

Consequently, very different processes determine Arctic

climate during summer and winter and model ensemble

spread will likely vary with season. We have partly ana-

lysed the seasonal dependence in the analysis of shortwave

(SW) and longwave (LW) fluxes, both which dominate at

different parts of the year—hence capture some of the

seasonality. But a full analysis will require seasonally

resolved data. Such an analysis may reveal stronger signals

in the relationships between processes than we have doc-

umented here.

This caveat aside, we have demonstrated that there is

considerable uncertainty in climate model projections of

Arctic climate and that this uncertainty likely has its ori-

gins in model structural and parameter uncertainty, rather

than internal variability, although further work with mul-

tiple-initial conditions ensembles is required to robustly

test this. A large part of this uncertainty results from model

biases (inter-model differences in the mean state).

Addressing these biases, through technical model

improvements together with better constraints on models

from improved observations (most notably, heat transports

into the Arctic and Arctic sea ice volume), will likely lead

to significant reductions in the uncertainty of model pro-

jections of future Arctic climate.
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Appendix

Notes on Tables 7 and 8

The variables in Tables 7 and 8 are defined below in Sect.

6.2. Ice extents were computed by taking the mean ice

concentration across the whole 20 years (61:90), and then

integrating the area with a concentration greater than 0.15.

Computing the 20 year mean of monthly ice extents will

produce a different result.

Observations are derived as follows: (a) Computed from

Observed sea ice coverage (HadISST) [70�N (http://

hadobs.metoffice.com/hadisst). (b) An estimate created by

multiplying the Zhang and Walsh (2006) Figure for extent

(1979:1999 10.6 9 106 km2) by the Laxon et al. (2003)

estimate of winter time mean ice thickness in the Arctic

(1993:2001 2.73 m), hence this should be regarded as an

upper bound on the true volume. (c) 1979:1999 Mean of

Station observations and Reanalysis values given in Liu

et al. (2008). Note Liu et al. define the Arctic as the region

bounded by the mean sea ice extent, whereas we choose
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latitudes [70�N. (d) Kattsov et al. (2007) (1980:1999)

Note: precipitation has been scaled up from mm/day to

mm/year, in all cases, by multiplying by 360.0 (the number

of model days in HadCM3).

Definition of Arctic variables

See Table 10.
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