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Abstract In this study, we constructed a perturbed

physics ensemble (PPE) for the MIROC5 coupled atmo-

sphere–ocean general circulation model (CGCM) to

investigate the parametric uncertainty of climate sensitivity

(CS). Previous studies of PPEs have mainly used the

atmosphere-slab ocean models. A few PPE studies using a

CGCM applied flux corrections, because perturbations in

parameters can lead to large radiation imbalances at the top

of the atmosphere and climate drifts. We developed a

method to prevent climate drifts in PPE experiments using

the MIROC5 CGCM without flux corrections. We simul-

taneously swept 10 parameters in atmosphere and surface

schemes. The range of CS (estimated from our 35 ensemble

members) was not wide (2.2–3.2 �C). The shortwave cloud

feedback related to changes in middle-level cloud albedo

dominated the variations in the total feedback. We found

three performance metrics for the present climate simula-

tions of middle-level cloud albedo, precipitation, and

ENSO amplitude that systematically relate to the variations

in shortwave cloud feedback in this PPE.

Keywords Climate sensitivity � Cloud feedback � General

circulation model � Perturbed physics ensemble � Metrics

1 Introduction

Climate sensitivity (CS), which is defined as the global

mean surface air temperature response to a doubling of the

atmospheric CO2 concentration, is a crucial piece of

information that informs the adaptation and mitigation

policies for anthropogenic climate change. Despite the

considerable efforts of climate scientists and technical

advances, the ranges of the CS have not been narrowed

(Knutti and Hegerl 2008). In the multi-model ensemble

(MME) of general circulation models (GCMs) used for the

Intergovernmental Panel on Climate Change Fourth

Assessment Report, the range of CS was 2.1–4.4 �C

(Randall et al. 2007). The variation in the CS in the MME

is caused by the use of different model structures, i.e.,

different physical parameterization schemes and resolu-

tions. Therefore, this is known as ‘‘structural uncertainty’’

(Murphy et al. 2004, 2007).

The ‘‘parametric uncertainty’’ is another substantial

uncertainty. The present climate biases and future climate

changes in a single model may be sensitive to changes in

parameter values in the model physical schemes (Murphy

et al. 2004). The Met Office Hadley Centre’s project

‘‘Quantifying Uncertainty of Model Predictions’’ (QUMP)

and http://climateprediction.net are the first and most com-

prehensive projects to investigate the parametric uncer-

tainties of climate responses to external forcing (Murphy

et al. 2004, 2007; Stainforth et al. 2005; Webb et al. 2006;
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Collins et al. 2006, 2007, 2011; Brierley et al. 2010; Jackson

et al. 2011). These investigators constructed several per-

turbed physics ensembles (PPEs) in which they swept

uncertain parameters within the HadCM3 model (Gordon

et al. 2000). The variation in the CS in their PPEs was

comparable to or greater than the variation in the CS in the

MME (Murphy et al. 2004; Stainforth et al. 2005; Collins

et al. 2011).

A PPE that uses a different GCM, ECHAM5, also has a

CS variation that is comparable to the MME (Klocke et al.

2011). However, these wide ranges in CS are not universal.

The PPEs used versions of the CAM3 GCM (Jackson et al.

2008; Sanderson 2011) and the EGMAM GCM (Niehörster

and Collins 2009) consistently yielded a CS of less than

3 �C, whereas the PPEs of MIROC3 produced a CS greater

than 4 �C (Annan et al. 2005; Yokohata et al. 2010;

Yoshimori et al. 2011). The distributions of CS in PPEs are

contingent upon the model structures as well as the

experimental design. Inter-comparison studies of multi-

PPEs have only recently begun and can facilitate further

understanding of the structural and parametric uncertainties

of climate responses to external forcing (Yokohata et al.

2010; Sanderson 2011).

Although previous PPE approaches have been useful,

they have limitations. Most of the previous PPE studies

used atmosphere/slab-ocean (mixed layer ocean) GCMs

(ASGCMs) rather than coupled atmosphere/full-ocean

GCMs (CGCMs) (Murphy et al. 2004; Stainforth et al.

2005; Annan et al. 2005; Sanderson 2011; Klocke et al.

2011). One of the reasons for this is that the computational

costs required to reach equilibrium for the ASGCMs are

lower than those for the CGCMs. However, the climate

feedback may differ between ASGCMs and CGCMs (Boer

and Yu 2003a; Yokohata et al. 2008; Williams et al.

2008).

A few studies have performed CGCM PPEs to move

beyond this limitation of PPEs in ASGCMs (Collins et al.

2006, 2007, 2011; Brierley et al. 2010; Jackson et al. 2011;

Rowlands et al. 2012). However, another problem remains.

Changes in values of atmosphere and surface parameters

can lead to larger net radiation imbalance at the top of

atmosphere (TOA) and the climate drifts. To prevent large

climate drifts, most previous CGCM PPE studies have

applied corrections for ocean surface heat and salinity

fluxes (note that ASGCM PPEs also require flux correc-

tions). However, flux corrections can affect the CS because

of changes in the climatology of the sea surface tempera-

ture, cloud distribution, sea ice and other parameters in the

control simulation.

Jackson et al. (2011) performed a QUMP CGCM PPE

without flux corrections using atmosphere and surface

parameter values in the members of the ASGCM PPE with

a relatively small TOA imbalance. Because their approach

was based on the existence of the ASGCM PPE, other

modeling groups cannot easily apply it.

In this study, we developed a CGCM PPE without flux

corrections. Our method utilizes a preliminary ensemble of

atmospheric GCMs (AGCMs), which have much lower

computational costs to reach equilibrium than ASGCMs or

CGCMs. Therefore, this method would be useful for other

modeling groups for performing CGCM PPEs without flux

corrections.

Metrics, which are defined as measurements of the

ability of the models to simulate the present climate, have

been investigated for their use in constraining the uncer-

tainty of future climate projections (Murphy et al. 2004;

Piani et al. 2005; Hall and Qu 2006; Boe et al. 2009, 2010;

Yokohata et al. 2010; Shiogama et al. 2011). Klocke et al.

(2011) found metrics of specific cloud regions related to the

variations in the CS in their PPE. We also sought, within our

PPE, some metrics related to the variations in feedback.

This paper is organized as follows: Sect. 2 introduces

the preliminary AGCM ensemble and the design of the

CGCM PPE; Sect. 3 contains the results of the CGCM

PPE; and Sect. 4 presents the discussion and conclusions.

2 Experimental design and AGCM experiments

2.1 Description of the standard model

We use the MIROC5 CGCM (Watanabe et al. 2010). The

atmospheric component of MIROC5 used here has T42

horizontal resolution with 40 vertical levels, whereas the

original version of MIROC5 has T85 resolution with 40

vertical levels. The ocean component model (Center for

Climate System Research Ocean Component Model ver-

sion 4.5; Hasumi 2006) has a horizontal resolution of

approximately 1� and 49 vertical levels with an additional

bottom boundary layer. This model requires no flux cor-

rection with the standard set of physics parameter values.

First, using the standard CGCM, we performed 20-year

preindustrial control runs (C-CTL) after long spin-up runs

(Watanabe et al. 2010) and 20-year abrupt 49 CO2 con-

centration runs (C-CO2); combinations of these runs are

called Gregory-style experiments (Gregory et al. 2004).

We computed the ordinal least-squares regression of the

global averaged anomalies of longwave (LW) plus short-

wave (SW) radiation fluxes at TOA on the global averaged

annual mean anomalies of surface air temperature (DT).

When DT ? 0, the LW ? SW intercept of the regression

line indicates the stratosphere-troposphere adjusted radia-

tive forcing (RF) for 49 CO2. The slope of the regression

line indicates the feedback parameter. Effective climate

sensitivities for 49 CO2 are estimated by the DT-intercept

(as SW ? LW ? 0). The CS for 29 CO2 is half of the
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value of the CS for 49 CO2. The CS for 29 CO2 of the

standard model estimated using the Gregory method is

2.85 �C.

2.2 Selection of parameters that influence RF

and feedback

As a next step, we chose the relatively long list of

parameters that were expected to be the important deter-

minants of CS. Previous studies of QUMP have shown that

perturbations in the physics parameters of the atmosphere

and surface components induced larger ranges in CS than

the ocean component (e.g., Collins et al. 2011). Therefore,

we selected physics parameters for the atmosphere and

surface components of MIROC5 (Table 1) for a total of 20

continuous variables and 1 logical switch. The min–max

range of each physics parameter value was also deter-

mined. These procedures were used in earlier PPE studies.

However, it was also suggested that only a few parameters

from the long list can dominate variations in the CS

(Sanderson et al. 2008a) (note that these results may

depend on the chosen parameters and/or ranges). There-

fore, it is more efficient to select the most important

parameters before performing the CGCM PPE.

To investigate how each physics parameter influences

the feedback and RF of the MIROC5 model, we performed

perturbed single-parameter ensembles of the AGCM. The

following three types of AGCM runs were computed with

the minimum and maximum values of each parameter:

A-CTL: AGCM forced by the monthly long-term

averages of sea surface temperature (SST) and sea ice

from the C-CTL run of the standard model and by pre-

industrial CO2 concentrations.

A-SST: AGCM forced by SST and sea ice (the average

of last 10 years) from the C-CO2 run (i.e., SST and sea

ice in the warmer climate) of the standard model and by

pre-industrial CO2 concentrations.

A-CO2: AGCM forced by SST and sea ice from the

C-CTL run of the standard model and by 49 CO2

concentrations.

For each run, 6-year integrations were performed,

whereas 20-year integrations were performed for the

standard model. We considered the first year as the spin-up,

and analyzed the climatology after the second year.

Figure 1a, b show the changes in the net radiative fluxes at

the TOA in the A-CO2 and A-SST runs for each parameter

(max minus min), which reveal how each parameter

affected the RF and feedback (inflated by temperature

changes). Generally, we selected parameters that have

large effects on the RF and/or feedback (Fig. 1a, b; see the

‘‘Appendix’’). We did not use the radiation imbalance at

TOA (Fig. 1c) as the criterion for the parameter selection

because our new method of building the CGCM runs, as

described below, did not require small radiation imbalances

for each parameter. These selections reduced the list of

parameters from 21 to 10 (Table 1; Fig. 1).

It should be noted that these analyses of the AGCM runs

have the following limitations:

(i) non-linear responses between different parameters

cannot be investigated;

(ii) our analysis period was limited to 5 years because of

limited computational resources; therefore, the influ-

ence of the natural variability may be significant;

(iii) because sea ice patterns are fixed in the AGCM runs,

we could not correctly estimate the effects of

changes in the sea ice parameters on the feedback;

and

(iv) because SST is fixed in the AGCM runs, feedback

loops between the SST patterns and radiative fluxes

cannot occur.

Despite these limitations, the careful selection of a rel-

atively short list of important parameters from the original

long list that includes similar and insensitive parameters is

worthwhile. When analyzing CGCM experiments to esti-

mate the relative contributions of each parameter to the

variance of CS, the necessary ensemble sizes of CGCM

runs will be smaller if only 10 parameters. Furthermore, the

exclusion of similar parameters can make it easier to

interpret the effect of each parameter on the uncertainty

of CS. We should note that the parameter sub-selection

depends on ‘‘expert judgment’’ in choosing original

parameters and/or limits. At present, there is no objective

way to overcome the necessity of these subjective expert

judgments.

2.3 Efficient sampling of the influential parameter

combinations

We developed a methodology for choosing sets of

parameter values for the CGCM runs. Because we chose to

sweep multiple parameters simultaneously, it is necessary

to sample the parameter space as efficiently as possible,

given a finite number of runs. To allow a statistical

investigation of the effects of each parameter, parameters

with minimal covariance should be chosen. Latin hyper-

cube sampling (LHS) is useful for fulfilling these require-

ments (McKay et al. 1979). When we perform the

M member ensembles using the LHS method, we divide the

range of each parameter into M strata of equal intervals

1/M and sample once from each stratum. The selected

values of all 10 parameters are randomly paired to form the

M 10-dimensional input vectors. Klocke et al. (2011) and

Sanderson (2011) applied LHS to select parameter values

for their ASGCM PPE with flux corrections. However,

Perturbed physics ensemble 3043
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LHS does not constrain the net radiative imbalance at the

TOA. Therefore, LHS leads to large climate drifts in the

C-CTL runs of CGCMs without flux corrections. To reduce

the radiative imbalance at the TOA and prevent large cli-

mate drifts, we developed a new method called suppressed

imbalance sampling (SIS):

(a) As described above, we performed A-CTL runs with

the minimum or maximum values for each physics

parameter, and we estimated the changes in the net

radiation imbalance at the TOA (Fig. 1c).

(b) We used LHS to generate large potential sets of

parameter values (5,000 samples), in which the first

sample is set equal to the parameter values of the

standard model.

(c) We emulated the radiative imbalance at the TOA

for each sample by applying piecewise linear

interpolations of the changes in the imbalance of

A-CTL runs (Fig. 1c).

(d) We selected the sample with the lowest amplitude of

anomalies in imbalance relative to the standard model

as the combination of the parameter values to be used

in the CGCM ensemble (thus, the first-selected

sample must be the standard model).

(e) From the initial 5,000 sets of potential parameters, we

removed the selected sample described in (d), and we

also deleted all samples with parameter values that

were ‘‘very close’’ (defined below) to the selected

sample.

(f) We repeated steps (d) and (e) to choose N subsets.

Here, N = 100, but this algorithm has the flexibility

to change N depending on the available computational

resources.

Table 1 List of physics parameters that were varied in the AGCM runs

Name Category Description Standard Min Max

wcbmaxa Cumulus Maximum cumulus updraft velocity at cloud

base (m/s)

1.7 0.7 2.8

precz0a Cumulus Base height for cumulus precipitation (m) 500 200 1,000

preczha Cumulus Reference height for cumulus precipitation (m) 4,500 3,000 6,000

clmda Cumulus Entrainment efficiency (ND) 0.51 0.4 0.6

meltaua Cumulus Timescale of ice melting (s) 10 1 15

evataua Cumulus Timescale of liquid evaporation (s) 2 0.1 4

rcfactb Cloud Random overlapping factor in ice cloud falling

(ND)

0.2 0 1

vicecb Cloud Factor for ice falling speed (m0.474/s) 38 25 40

b1c Cloud Berry parameter (m3/kg) 0.09 0.07 0.11

b2c Cloud Berry parameter (s) 0.095 0.07 0.12

faz1d Turbulence Factor for PBL overshooting (ND) 1.5 1 3

alp1d Turbulence Factor for length scale LT (ND) 0.23 0.16 0.3

alp3d Turbulence Factor for length scale LB (ND) 5 2 8

octeid Turbulence Switch for cloud top entrainment instability OFF ON

tnuwc Aerosol Timescale for nucleation (s) 18,000 14,400 21,600

rcmaxc Aerosol Maximum radius of cloud droplet (liquid, ice)

(m)

30 9 10-6,

185 9 10-6
25 9 10-6,

150 9 10-6
35 9 10-6,

200 9 10-6

ucminc Aerosol Minimum cloud droplet number (liquid) (m-3) 2.5 9 107 2.2 9 107 3.0 9 107

albe Surface Albedo of ice and snowf Medium Low High

talsnwe Surface Temperature thresholds for albedo functiong (K) 268.15, 273.15 253.15, 271.15 258.15, 273.15

wsscle Surface Lifetime of puddle over land ice (s) 216,000 108,000 432,000

tauagee Surface Snow aging time scale (s) 2 9 106 2 9 105 2 9 107

Variables in italics indicate that they were also swept in the CGCM runs
a Chikira and Sugiyama (2010)
b Wilson and Ballard (1999)
c Takemura et al. (2005, 2009)
d Nakanishi and Niino (2004)
e Takata et al. (2003) and Watanabe et al. (2010)
f ‘‘alb’’ indicates a collection of 8 parameters corresponding to albedo for ice and snow over sea and land
g Because the standard values are the maximum, we performed AGCM runs with two lower value sets
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In QUMP, more elaborate emulation techniques were

applied to predict various metrics to select parameter val-

ues in their experiments (Webb et al. 2006; Rougier and

Sexton 2007; Rougier et al. 2009). However, recent studies

found that it is difficult to define metrics well correlating

with the variations of climate projections in advance

(Shiogama et al. 2011; Abe et al. 2009, 2011; Knutti 2010).

Therefore, we included only the emulated TOA imbalance

that is necessary to conduct simulations without flux cor-

rections as the prior metric in our experimental design. We

investigate metrics correlating with the variations of

feedback in Sect. 3.4. The possible effects of the TOA

imbalance constraint on the distribution of the CS are

discussed in Sect. 4.

Figure 2 shows the selected parameter values in LHS and

SIS. It is important that the sampled values in SIS are not

concentrated in small subspaces. Figure 3a shows the

Euclidean distance of two different samples in the nor-

malized 10-dimensional parameter space. We defined ‘‘very

close’’ samples in the above step (e) as those that fell in the

lowest 4 % of the probability distribution of parameter

differences. It is clear that, compared with LHS, the SIS

method sampled the parameter space relatively evenly.

Figure 3b shows the emulated changes in the radiative

imbalance at the TOA. These changes are large in LHS but

sufficiently small (less than 1 W/m2) in SIS. Although the

suppression of changes in the TOA imbalance resulted in

correlations between different parameters, the effect was

not large (the maximum of the absolute correlation values

is approximately 0.3) (Fig. 3c). In this algorithm, the def-

inition of a ‘‘very close’’ distance is critical for determining

the amplitude of the emulated TOA imbalance and the

correlation between parameters. There is a trade-off

between the parameter correlation and the amplitude of the

TOA imbalance. Here, we chose the definition of a ‘‘very

close’’ distance so that the amplitude of the emulated TOA

imbalance and the correlation are both sufficiently small.

It should be noted that the SIS method also has the limi-

tations (i)–(iv) mentioned in Sect. 2.2. Therefore, to confirm

that this method works well, it was necessary to actually

perform the CGCM runs with the selected parameter values.

3 CGCM experiments

3.1 CGCM control experiments

Here, we present the results from ongoing C-CTL and

C-CO2 runs of the CGCM without flux corrections. We

have completed 35 members of the C-CTL and C-CO2

ensembles so far that cover wide ranges of parameter

values (Fig. 2).

In the C-CTL runs, all of the members showed only small

changes in radiative imbalance and little drift in surface air

temperature (Fig. 4), which demonstrates that our SIS

method works well to prevent large drift and avert long spin-

up runs. This method allows modeling groups to overcome

the limitations of previous PPE studies, i.e., the require-

ments of the ASGCM and flux corrections. We defined the

(b) TOA NET radiation changes in the A-SST runs

(c) TOA NET radiation changes in the A-CTL runs

(a) TOA NET radiation changes in the A-CO2 runs
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Fig. 1 Differences in net radiative flux at TOA (W/m2) between the

AGCM runs with maximum and minimum values (max. minus min.;

‘‘on’’ minus ‘‘off’’ in the octei case) of each physics parameter in a A-

SST runs, b A-CO2 runs and c A-CTL runs. Black bars indicate that

these parameters were selected for perturbation in the CGCM runs
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first 10-year period as spin-up and years 11–30 as the C-CTL

runs. The 20-year C-CO2 runs were performed beginning

with year 11 of the corresponding spin-up/C-CTL runs. The

10-year length of the spin-up was chosen because of the

limited computational resources. However, the ocean time

scales of equilibration with the altered parameters could be

centuries. Not surprisingly, some models have slight drifts.

Hereafter, we removed the annual mean values of the

C-CTL runs from the values of the C-CO2 runs to reduce the

effects of the slight drifts. In other words, we assumed that

the drift involved in the C-CO2 run is the same as that in the

CTL run for each model.

3.2 Climate sensitivity, feedback and radiative forcing

Figure 5 shows the histogram of effective climate sensi-

tivity estimated by using the Gregory method. The range of

CS in our ensemble is 2.2–3.2 �C, which occupies the

lower range of the MME but not the upper range. Here, we

accounted for uncertainty arising from the natural vari-

ability in the estimation of CS of the standard model by

applying the bootstrap method (Efron 1979; Wilks 1995).

We implemented the bootstrap method as follows:

– We computed a linear regression between changes in

the annual mean global average surface air temperature

and changes in the annual mean global average

radiative flux at the TOA (C-CO2 minus C-CTL).

– We randomly resampled 10 anomalies (each 2 years in

length with considering the persistence in a first-order

auto-regression; Wilks 1995) from the original regres-

sion line with replacement.

– We added the randomly resampled anomalies to the

original regression line and re-computed the new

regression (called the bootstrap sample).

– We repeated the above two steps to generate 1,000

bootstrap samples.

Fig. 2 Histograms of selected parameter values for each parameter in

the Latin hypercube sampling (blue) and suppressed imbalance

sampling (red). Horizontal axes indicate normalized parameter values

(0 is minimum and 1 is maximum). Vertical axes show probabilities,

which are sampled in 0.01-width bins. Black vertical lines indicate the

parameter values of the standard model. Red diamonds indicate the

parameter values of 35 CGCM runs
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– We measured uncertainties using the probability of the

bootstrap samples.

The range of the CS in this PPE was greater than that

generated by the natural variability alone.

Figure 6 shows a scatter plot of the RF and feedback

parameters. There is a clear anti-correlation (-0.71)

between the RF and feedback in this ensemble. This anti-

correlation is one of the reasons why the range of the CS is

relatively narrow. The range of the CS would be larger

with the same range of feedback parameters but with a

positive RF-feedback correlation (see the blue contours of

Fig. 6). For each parameter set, we performed only one run

with perturbed initial conditions; therefore, the influence of

the natural variability may be important. By defining x, y, k
and F as the 20-year mean of DT, the 20-year mean of

Fig. 4 a Annual mean time series of global averaged net radiative

flux imbalance anomalies at the TOA (W/m2) from the standard

model. The first 10 years are spin-up, and the following 20 years are

the control runs. b Annual averaged time series of global mean

surface air temperature anomalies from the standard model (�C)

Fig. 3 a Probability (vertical axis) of the Euclidean distance between

two samples (horizontal axis) of LHS (blue) and SIS (red) in the

normalized 10-dimensional parameter space. The black vertical line
indicates the lowest 4 % distance as the threshold of ‘‘very close’’

samples. b Probability (vertical axis) of emulated changes in radiation

imbalance at the TOA (horizontal axis) (W/m2) in LHS (blue) and SIS

(red). c Probability (vertical axis) of Spearman’s rank correlation

between two different parameters (horizontal axis) in LHS (blue) and

SIS (red)

b
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SW ? LW, the feedback parameter and RF, respectively,

we can state that F ¼ y� kx in the Gregory method. The

natural variability is expected to have only a small effect

on x and y because they are computed as 20-year averages

and because the global average climate responses to the 49

CO2 concentration are greater than the natural variability.

In contrast, the natural variability can significantly affect

k and F. The fluctuations of k and F due to the natural

variability (ku and Fu) tend to be anti-correlated,

i.e., Fu ¼ �kux (x is positive). Therefore, the natural var-

iability also induces some anti-correlations between RF

and feedback (the black dots and the regression line of

Fig. 6), as has been reported previously (Webb et al. 2012).

However, we found that the slope of the ensemble mem-

bers (the red regression line) differed from that of the

bootstrap samples (the black regression line), which sug-

gests that this anti-correlation of ensemble members is not

caused only by the natural variability. It is difficult to

isolate the effect of natural variability and the relationship

between RF and feedback. We found that the models with

higher amplitudes of the El Niño-like warming pattern in

the feedback process tend to have greater magnitudes of

rapid La Niña-like warming in the adjustment process (not

shown). These opposing responses of the tropical SST may

result in the anti-correlation between RF and feedback

because they induce dynamical changes in cloud cover in

directions opposite to each other. However, it is not clear

yet whether these tropical SST opposing responses are

artifacts that result from the natural variability.

3.3 SW cloud feedback

The total feedback was decomposed into components of

surface SW (SWsfc), clear-sky SW (SWclr), cloud-sky SW

(SWcld), clear-sky LW (LWclr) and cloud-sky LW

(LWcld). The SW components were estimated by applying

the approximate partial radiative perturbation (APRP)

method (Taylor et al. 2007; Yokohata et al. 2008). The

APRP method provides an estimate of the SW radiative

perturbation by using monthly mean model outputs. Biases

in the estimates of the SWcld feedback arising from the

cloud masking that occur in the conventional cloud radia-

tive forcing method (Soden et al. 2004) do not appear in the

APRP method. For LWclr and LWcld, the conventional

cloud radiative forcing method (Cess et al. 1990) was used.

We computed the contributions of each component to the

total feedback variance by applying the following method

(Boer and Yu 2003b; Webb et al. 2006; Williams and

Webb 2009; Yokohata et al. 2010; Yoshimori et al. 2011):

Fig. 6 The red squares represent a scatter plot of radiative forcing

(W/m2; horizontal axis) and feedback parameters (W/m2/K; vertical
axis); the red line represents their total least-squares regression. Blue
contours indicate the effective climate sensitivity for a doubling of

CO2 (�C). Black dots are the bootstrap samples of the standard model;

the black line is their total least squares regression. The black error
bars are the 10–90 % ranges and the best estimates of RF and

feedback in the standard model

Fig. 5 Histogram of effective climate sensitivity for a doubling of

CO2 in the CGCM ensemble (�C). Vertical red lines indicate each

CGCM run. The black error bar indicates the 10–90 % range and the

best estimate of the standard model (estimated using the bootstrap

method)

Fig. 7 The contributions of SWsfc, SWclr, SWcld, LWclr and

LWcld to the total feedback variance between the CGCM runs (%)
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– We defined Y~ as the vector of total feedback for all

ensemble members and X~i as each component

(i = SWsfc, SWclr, SWcld, LWclr, LWcld), where

Y~ ¼ RX~i.

– We removed the ensemble averages from Y~and X~i.

– We computed a scalar Y~
t
X~i=Y~

t
Y~, which indicates the

fraction of the total variance explained by each

component.

The largest fraction of the total variance in feedback is

explained by large differences between the ensemble

members in SWcld (Fig. 7).

Figure 8 shows the histogram of the SWcld feedback

across all ensemble members. It is interesting that all the

ensemble members had negative SWcld feedback, resulting

in the low climate sensitivities of this ensemble. The

middle-level cloud albedo increased and resulted in nega-

tive SWcld feedback values (not shown). To investigate the

mechanism of different SWcld feedback among the mod-

els, we analyzed the differences between the models with

the 10 lowest (more negative) and the 10 highest (less

negative) values for the global mean SWcld feedback (i.e.,

we subtracted the 10 highest feedback values from the 10

lowest values). The differences in the local SWcld feed-

back appear mainly in the tropical oceans (Fig. 9a). Here

we broke down the global mean feedback to the local

feedback by regressing the local radiation (and other

Fig. 8 Histogram of SWcld feedbacks (W/m2/K). Vertical red lines
indicate each CGCM run. The black error bar shows the 10–90 %

range and the best estimate of the standard model, estimated using the

bootstrap method

(b) High-level cloud albedo
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(a) SWcld feedback
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(c) Middle-level cloud albedo

(d) low-level cloud albedo
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Fig. 9 a Local differences in SWcld feedbacks (W/m2/K) between

models with the 10 lowest (more negative) and 10 largest (less

negative) global mean SWcld feedback parameters. Differences in

cloud albedo feedbacks with cloud top height of b high, c middle and

d low (%/K). We show significant differences based on ±10% levels

of t tests
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variables) on the global averaged DT (Boer and Yu 2003b;

Webb et al. 2006).

We compared the spatial pattern of the SWcld feedback

with the patterns of the cloud albedo changes (Fig. 9b–d).

Here, the cloud albedo was computed with outputs from the

online observation simulator of the International Satellite

Cloud Climatology Project (ISCCP; Rossow and Schiffer

1999), which mimics the satellite view from space (along

with certain ISCCP retrieval assumptions: Klein and Jakob

1999; Webb et al. 2001). The total cloud albedo was

decomposed into contributions from clouds with three

different levels of cloud-top pressure: low level

(1,000–680 hPa), middle level (680–440 hPa) and high

level (440–50 hPa) (Rossow and Schiffer 1999). The more

negative SWcld feedback values in our simulations are

mainly attributable to greater increases in the middle-level

cloud albedo, which are partly offset by decreases in the

low-level cloud albedo.

Previous studies have shown that a few parameters

dominate variations in feedback (Sanderson et al. 2008a, b,

2010; Rougier et al. 2009). To investigate the parameters

that result in changes in feedback, we applied single linear

correlation analyses between each parameter and each

component of feedback (Fig. 10). Models with higher

values of the cumulus parameter wcbmax have more neg-

ative SWcld feedback. The second most important con-

tributor to variations in SWcld feedback is the cloud

parameter b1. The surface parameter alb (albedo values of

snow and sea ice) has a strong effect on the SWsfc feed-

back (surface albedo feedback). It should be noted that

multiple regression analyses or non-linear analyses, which

require larger ensemble sizes, are necessary to accurately

compare the contributions of each parameter to the varia-

tions of feedback. Instead we confirmed that the differences

in cloud albedo feedback between the AGCM runs with the

maximum and minimum values of wcbmax were similar to

the patterns presented in Fig. 9b–d (not shown). This result

justifies our conclusion, based on the simple composite and

linear correlation analyses, that the single parameter wcb-

max was the main driver of the variations of the SWcld

feedback.

In this section, we describe our findings that changes in

the middle-level clouds result in the greatest spread in the

SWcld and total feedback. This finding is very different

from those of previous studies, where differences in the

low- and/or high-level cloud feedback mainly resulted in

the variations of the CS in MMEs and PPEs (Bony and

Dufresne 2005; Webb et al. 2006; Medeiros et al. 2008;

Williams and Webb 2009; Yokohata et al. 2010; Watanabe

et al. 2011c, d). We found that the perturbations in the

single parameter of the newly developed cumulus scheme

(Chikira and Sugiyama 2010) drove the significant sensi-

tivity of the middle-level cloud albedo feedback. This

parameterization is characterized by a vertically variable

entrainment rate that depends on the surrounding envi-

ronment and for which the population of the middle-level

cumulus congestus is greater than that in the Arakawa-

Schubert scheme (Chikira 2010). The implementation of

(a) Middle-level cloud albedo of C-CTL runs

(b) Middle-level cloud albedo, wcbmax

[%]

[%]
00 60W60E 120W120E 180

60N
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60S
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30N
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Fig. 11 a Differences in middle-level cloud albedo (%) between the

C-CTL runs with the 10 lowest (more negative) and 10 largest (less

negative) global mean SWcld feedback parameters. These colored

differences are significant at the 10 % level in a t test. Black boxes
indicate regions where the Normalized Cloud Index is defined (see

text). b Differences in middle-level cloud albedo (%) between the

A-CTL runs with maximum and minimum wcbmax parameter values

Fig. 10 Correlations between feedback parameters and the values of

physics parameters. Dashed lines indicate correlations that are

significant at the 10 % level in a t test
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this new parameterization scheme results in the middle-

level cloud having a greater impact on the variations in CS

in the MIROC5 model than in the other GCMs.

3.4 Metrics related to the SW cloud feedback

Here, we sought metrics that are related to the variations in

SWcld feedback to provide observational constraints within

our ensemble. Figure 11a shows the differences in middle-

level cloud albedo between the C-CTL runs of models with

the 10 lowest (more negative) and the 10 highest (less

negative) SWcld feedback values. Models with greater

middle-level cloud albedo in the tropical and subtropical

oceans tend to have more negative SWcld feedback.

However, this trend does not hold in the Pacific Intertropical

Convergence Zone (ITCZ), where the cloud albedo is low.

The lower albedo of the middle-level clouds was also

observed over land surfaces. The differences in the middle-

level cloud albedo between the A-CTL runs with the

maximum and minimum wcbmax values (Fig. 11b) are

similar to those shown in Fig. 11a, which provides collat-

eral evidence that changes in the cumulus parameter wcb-

max dominate the variations in SWcld feedback.

In the C-CTL runs, middle-level cloud albedo differ-

ences (the black boxes in Fig. 11a) accompany signifi-

cantly less precipitation over the Pacific ITCZ and

significantly more precipitation over the southern part of

the Pacific ITCZ (Fig. 12a). The cumulus scheme of MI-

ROC5 is able to realistically represent the population of

middle-level cumulus congestus (Chikira and Sugiyama

2010; Chikira 2010). Larger increases in the middle-level

cloud albedo in the C-CO2 runs are related to more

cumulus congestus over the southern area of the Pacific

ITCZ and less cumulus congestus over the ITCZ in the

C-CTL runs. A wetter atmosphere over the southern part of

the Pacific ITCZ increases precipitation anomalies related

to the El Niño-Southern Oscillation (ENSO) (i.e., stronger

Bjerknes feedback; Watanabe et al. 2011a), which results

in higher amplitudes of the ENSO (Fig. 12b).

Here, we define the metric that measures the meridional

contrast of middle-level cloud albedo in the C-CTL runs

according to Watanabe et al. (2011a):

– A indicates the middle-level cloud albedo averaged

over the area of the north black box in Fig. 11a

(120�W, 180�W, 7�N, 12�N).

– B is the average over the area of the south black box

(120�W, 180�W, 12.5�S, 2.5�S).

– The Normalized Cloud Index (NCI) is defined as

(B - A)/(B ? A).

The Normalized Precipitation Index (NPI), which mea-

sures the meridional contrast of precipitation, is defined

similarly to NCI. The standard deviation of the annual

mean SST averaged over the Nino 3.4 region (170�E,

120�W, 5�S, 5�N) is considered to be the metric of the

ENSO amplitude. These metrics, in the C-CTL runs, are

negatively correlated with the SWcld feedback in the

C-CO2 runs, which is expected given their definitions

(Fig. 13). For example, the models with higher ENSO

amplitudes in the C-CTL runs had more negative SWcld

feedback values. We confirmed the robustness of these

results by expanding the length of three C-CTL runs of the

standard model as well as that of models with minimum

and maximum ENSO amplitudes from 20 years to

100 years (the triangles of Fig. 13). We compared the

metrics of each model to the metrics from the observational

datasets of Rossow and Schiffer (1999) (ISCCP cloud

albedo), Xie and Arkin (1997) (precipitation) and the Nino

3.4 index of the Climate Prediction Center of the National

Oceanic and Atmospheric Administration. The values of

these metrics obtained from observational data (red lines in

Fig. 13) are close to the values from the standard model

(red squares), which implies that the SWcld feedback of

(a) Precipitation climatology of C-CTL runs

(b) Surface air temp stdev of C-CTL runs
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Fig. 12 a Differences in precipitation (mm/day) between the C-CTL

runs with the 10 lowest (more negative) and 10 largest (less negative)

global mean SWcld feedback parameters. Black boxes represent

regions where the Normalized Precipitation Index is defined (see

text). b Differences in the standard deviation of the annual mean

surface air temperature (K) between the C-CTL runs with the 10

lowest (more negative) and 10 largest (less negative) global mean

SWcld feedback parameters. The black box indicates the Nino 3.4

region. Both panels show differences that are significant at the 10 %

level in a t test
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the standard model is more reliable than that of the other

models in this ensemble. However, non-negligible uncer-

tainty remains, which is denoted by the spreads of the

anomalies from the regression lines, i.e., other models

perform comparably to the standard model with respect to

at least these three metrics. To determine the likelihood of

model’s feedback value, an analysis of many more climate

variables is required.

It should be noted that the use of ISCCP data for the

evaluation of the middle-level cloud may be problematic. It

has been reported that the ISCCP observational data have

greater middle-level cloud fractions than the MODIS

measurements, and it is likely that the ISCCP data over-

estimate the fraction of middle-level clouds (Pincus et al.

2012, and references therein). Furthermore, satellite mea-

surement simulators do not completely mimic the satellite

instruments (Pincus et al. 2012). To estimate the effects of

the observational uncertainty on the model performance

metrics, it is better to compare the metric based on ISCCP

simulator data and that from other satellite measurements

simulators.

It should be noted that we evaluated only the perfor-

mance of each PPE member of our single model, and we do

not claim that the three metrics defined here can necessarily

be adapted to other GCMs. Within this PPE, models with a

higher ENSO amplitude in the C-CTL runs had more neg-

ative SWcld feedback values. Toniazzo et al. (2008) also

found a negative correlation between the ENSO amplitudes

and CS within the flux-corrected QUMP ensemble. By

contrast, we did not identify any significant correlations

between the ENSO amplitudes and the CS within the MME

contributing to Coupled Model Intercomparison Project

Phase 5 (not shown). ENSO amplitudes are determined by

several processes (e.g., Guilyardi et al. 2009; Collins et al.

2010; Watanabe et al. 2011a), and processes that are related

to the uncertainty of the CS may differ among GCMs.

Klocke et al. (2011) identified a performance metric of

specific cloud regions relating to climate sensitivity within

the ECHAM5 PPE, but that relationship did not carry into

the MME. These analyses of the similarities and differences

of MMEs and PPEs will promote a further understanding

of the structural and parametric uncertainties of climate

responses to external forcing.

4 Summary and discussion

The PPE approach facilitates a greater understanding of the

abilities and limitations of a particular climate model

structure as well as the systematic exploration of the

uncertainties in processes and feedbacks, apart from the

limitation that MMEs are not designed to sample modeling

uncertainty in a systematic fashion (Allen and Ingram 2002;

Murphy et al. 2004, 2007; Knutti 2010). Recent compari-

sons of two PPEs revealed significant differences between

them (Yokohata et al. 2010; Sanderson 2011). It would

Fig. 13 Scatter plots (squares) of SWcld feedbacks (W/m2/K) in the

C-CO2 runs and a Normalized Cloud Index (no dimension),

b Normalized Precipitation Index (no dimension) and c the standard

deviation of annual mean Nino3.4 SST (�C) in the C-CTL runs. Black
lines are the ordinal least square regressions. Red lines represent

observations. Red squares are output from the standard model; blue
and green squares are outputs from models with the minimum and

maximum amplitude of ENSO, respectively. Red, blue and green
triangles represent 100-year C-CTL runs of the standard model and

the models with the minimum and maximum amplitude of ENSO,

respectively
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therefore be desirable for modeling groups to perform PPEs

of their own GCMs and compare them to identify and

understand the processes driving the structural and para-

metric uncertainty of climate change projections.

Previous studies of PPEs mainly used ASGCMs and flux

corrections, which can significantly affect the climate

biases and projections. Previously, no methodology has

been useful across modeling groups to perform PPE with

CGCM and without flux corrections. The greatest chal-

lenge is a considerable TOA imbalance, which leads to

large climate drifts. In this study, we developed a method

to constrain the TOA imbalance in the CGCM PPE without

flux corrections. Although this method requires AGCM

control runs, such runs did not greatly increase the diffi-

culty of the procedure or the required computational

resources. To sweep M parameters, it is necessary to

compute only 2M ? 1 short control runs of AGCM, i.e.,

one run of the standard model plus maximum and mini-

mum value runs for each parameter. According to the

results from this AGCM ensemble, our SIS method pro-

vides parameter sets with a low TOA imbalance. One

critical point for PPEs is that hardly any of those models

would be ever selected for standard climate integration

because they are far from balanced. We succeeded in

building a PPE without this limitation (other metrics might

also not be passed). We hope that this method can help

other modeling groups to perform CGCM PPEs and thus

enables comparisons of multi-PPEs referred to as ‘‘super-

ensembles’’ by Murphy et al. (2004).

The range of CS in the MIROC5 PPE was 2.2–3.2 �C,

and one may wonder whether constraining the TOA

imbalance narrowed this CS range. Figure 14 shows the

scatter plots of RF and feedback in the CGCM PPE, as well

as the emulations of SIS and LHS estimated by applying

piecewise linear interpolations of the A-CO2 and A-SST

runs. Constraining the TOA imbalance does not greatly

reduce the range of CS in SIS compared with LHS, at least

in these linear emulations.

It is notable that the anti-correlation between RF and

feedback was not found in the emulations of LHS and SIS

(Fig. 14). In fact, weak positive correlations were present,

as could be expected from the RF and feedback responses

of the AGCM runs (i.e., they responded in the same

direction for most parameters) (Fig. 1a, b). Therefore, the

anti-correlation in the CGCM PPE is likely caused by an

air–sea interaction or the effect of the natural variability.

Variations in the SWcld feedback dominate the uncer-

tainty of the total feedback. Increases in the middle-level

cloud albedo result in more negative SWcld feedback. This

finding differs from those of previous studies of cloud

feedback uncertainty that highlighted the importance of

variations of low- and high-level cloud feedback (Hart-

mann and Larson 2002; Bony and Dufresne 2005; Webb

et al. 2006; Medeiros et al. 2008; Williams and Webb

2009; Yokohata et al. 2010; Zelinka and Hartmann 2010;

Watanabe et al. 2011c, d). Because the cumulus parameter

correlates well with the SWcld feedback, it seems that the

newly developed cumulus scheme implemented in MI-

ROC5 (Chikira and Sugiyama 2010; Chikira 2010) causes

the significant responses of middle-level cloud albedo.

Within the MIROC5 PPE, the performance metrics of the

middle-level cloud albedo pattern, precipitation pattern and

ENSO amplitude are related to the SWcld feedback values.

Without the aforementioned analyses, one may expect

these metrics to be independent even though they are

physically related to each other. When different metrics are

combined with observational constraints (Knutti et al.

2002; Forest et al. 2002; Annan and Hargreaves 2006), a

careful consideration of independence is necessary.

Although the CS of MIROC5 PPE is low (2.2–3.2 �C),

the CS within the PPE of MIROC3 ASGCM (an old ver-

sion of MIROC) is high ([4 �C) (Annan et al. 2005).

Because many of the physical schemes in MIROC3 and

MIROC5 differ (Watanabe et al. 2010), it is not clear

which schemes are largely responsible for determining the

structural dependency. The differences in the spatial reso-

lution (and the time step) may also affect the CS of the

standard models (Seiffert and von Storch 2008) and the

ranges of the CS in the PPEs. Sensitivity experiments in

which single or multiple schemes are transferred between

the old and new models (with the same spatial resolution

and the same time step) would provide insight into the

effects of each scheme and the interactions between dif-

ferent schemes (Gettelman et al. 2012). This multi-physics

ensemble approach comparing MIROC3 and MIROC5 is

reported by Watanabe et al. (2011b).

Fig. 14 Red squares represent a scatter plot of radiative forcing (W/

m2; horizontal axis) and feedback parameters (W/m2/K; vertical
axis), which are the same as in Fig. 6. Green crosses indicate

emulations of LHS members. Blue squares indicate emulations of SIS

members that have been performed, and blue crosses indicate the

remaining SIS members. Black contours show the effective climate

sensitivity for a doubling of CO2 (�C)
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Appendix: The selection of the parameters involved

in the CGCM ensemble

In the cumulus scheme, wcbmax, precz0 and clmd induce

large changes in RF, and wcbmax also affects the feedback

(Fig. 1a, b). Therefore, these three parameters were selec-

ted to be swept in the CGCM runs. Although preczh is

important for the feedback, we removed it because a sim-

ilar parameter, precz0 had already been selected (both

precz0 and preczh were included in the cumulus precipi-

tation process). meltau and evatau were also omitted from

the cumulus parameters because they are not important

determinants of either RF or feedback (even though the

experts expected significant influence). In the cloud

scheme, vicec and b1 were selected. Although b2 is also an

important parameter, we did not select it. This is because

b1 and b2 are included in the numerator and denominator,

respectively, of the equation describing the conversion rate

of cloud droplets to raindrops in the water cloud scheme

(Takemura et al. 2005; Shiogama et al. 2010). Because it is

easier to understand model behaviors when we swept the

b1 values in the numerator rather than the b2 values in the

denominator, we usually selected b1 rather than b2 to vary

in the CGCM runs. Among the turbulence parameters, faz1

and alp1 dominated the changes in RF and feedback.

Among the three aerosol parameters, rcmax was removed

because it had a smaller effect than the other two param-

eters (tnuw and ucmin). Among the surface parameters, alb

was selected because of its large effect on feedback.
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