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Abstract There is evidence that ice age cycles are paced

by astronomical forcing, suggesting some kind of syn-

chronisation phenomenon. Here, we identify the type of

such synchronisation and explore systematically its

uniqueness and robustness using a simple paleoclimate

model akin to the van der Pol relaxation oscillator and

dynamical system theory. As the insolation is quite a

complex quasiperiodic signal involving different frequen-

cies, the traditional concepts used to define synchronisation

to periodic forcing are no longer applicable. Instead, we

explore a different concept of generalised synchronisation

in terms of (coexisting) synchronised solutions for the

forced system, their basins of attraction and instabilities.

We propose a clustering technique to compute the number

of synchronised solutions, each of which corresponds to a

different paleoclimate history. In this way, we uncover

multistable synchronisation (reminiscent of phase- or fre-

quency-locking to individual periodic components of

astronomical forcing) at low forcing strength, and mono-

stable or unique synchronisation at stronger forcing. In the

multistable regime, different initial conditions may lead to

different paleoclimate histories. To study their robustness,

we analyse Lyapunov exponents that quantify the rate of

convergence towards each synchronised solution (local

stability), and basins of attraction that indicate critical

levels of external perturbations (global stability). We find

that even though synchronised solutions are stable on a

long term, there exist short episodes of desynchronisation

where nearby climate trajectories diverge temporarily (for

about 50 kyr). As the attracting trajectory can sometimes

lie close to the boundary of its basin of attraction, a small

perturbation could quite easily make climate to jump

between different histories, reducing the predictability. Our

study brings new insight into paleoclimate dynamics and

reveals a possibility for the climate system to wander

throughout different climatic histories related to preferen-

tial synchronisation regimes on obliquity, precession or

combinations of both, all over the history of the

Pleistocene.

Keywords Climate models � Milankovitch � Oscillator �
Generalised synchronisation � Lyapunov exponent �
Multistability

1 Introduction

This article is a contribution to the field of paleoclimate

dynamics theory, which has experienced many develop-

ments in terms of ice age models since many years notably

by Le Treut and Ghil (1983), Saltzman and Maasch (1990),

and many others, and remains an active research field.

Paleoclimate modelling is a complex problem, hence an

uncomfortable situation for a scientist. On the one hand,

the paleoclimatic records are often difficult to interpret

physically (these are only proxies), and an independent

dating is not always easy to achieve; hence it leads to

uncertainties both in magnitude and time. On the other
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hand, there is not a single well established model, the

problem is non autonomous, the forcing is aperiodic, and

stochastic effects are present.

Here, we focus on the slow variations of climate over

the last few million years, which include the phenomenon

of ice ages (Hays et al. 1976), that is, the repeated growth

and decay of ice sheets in the Northern Hemisphere of a

total mass as big as modern Antarctica’s. When examining

long-term climatic signals like the 5.3 Myr-long stack

produced in Lisiecki and Raymo (2005), or the 800 kyr-

long EPICA Dome C Ice Core from Luethi et al. (2008),

plotted respectively in Fig. 1a, b for the last 500 kyr, one

immediately identifies three clearly visible features of the

climatic time series:

1. oscillations: the signal oscillates between higher and

lower values of ice volume corresponding to the

glacial and interglacial states,

2. asymmetry: in Fig. 1a typical transitions from a

minimum to a maximum take much longer than

transitions from a maximum to a minimum: deglaci-

ations occur much more rapidly (sfast & 10 kyr) than

glaciations (sslow & 80 kyr), giving a distinctive

sawtooth structure in the glacial/interglacial (G/I)

cycles, especially pronounced over the last 500 kyr,

3. 100-kyr dominant period: this has been identified by

many authors since Broecker and van Donk (1970).

Note that the G/I cycles are not periodic.

The asymmetry in the oscillations has been studied by

many authors. In order to reproduce it, some authors use

underlying physical principles to build phenomenological

models that exhibit slow-fast dynamics reasonably mim-

icking the climatic proxies (Saltzman 2002). Others assume

this asymmetry by explicitly defining 2 different parame-

ters such as the time intervals sup = sslow and sdown = sfast

(Ashkenazy 2006) or time constants [sR and sF in Paillard

(1998) and Tw and Tc in Imbrie and Imbrie (1980)].

Whatever the model, it has to ultimately exhibit asym-

metric oscillations under the effect of the forcing, as it is

aimed to mimic the oscillations between G/I states.

Relaxation oscillators are therefore very straightforward

natural candidates of ice age models (Crucifix 2012). In

this article, we will consider a slightly modified van der Pol

oscillator model to illustrate the new contributions of our

synchronisation concepts.

In this article, we chose the best possible approach for

dynamical modelling available so far, i.e. we assume that

the observed G/I climate variability essentially emerges

from externally forced low-dimensional deterministic

dynamics possibly subject to stochastic disturbances.

However, it is worth mentioning that alternative approa-

ches have been developed to explain the G/I variability,

e.g. the stochastic resonance-like phenomena1 (Benzi et al.

1982) in which high-dimensional (or at least approximately

stochastic) dynamics plays a much more important role. A

short discussion about this alternative approach is given in

Crucifix (2012). It is very likely that future works should

combine different approaches in some appropriate way.

In this paper, we concentrate on the influence of the

astronomical forcing on Earth’s climate. This forcing is

induced by the slow variations in the spatial and seasonal

distributions of incoming solar radiation (insolation) at the

top of the atmosphere, associated with the slow variations

of the Earth’s astronomical elements: eccentricity (e), true

solar longitude of the perihelion measured with respect to

the moving vernal equinox (-), and Earth obliquity (�E).

These quantities are now accurately known over several

tens of millions of years (Laskar et al. 2004), but analytical

approximations of e, e sin -; and �E valid back to one

million years have been known since Berger (1978). They

take the form of d’Alembert series (
P

Ai sin½xit þ /i�).
The external forcing used throughout this article is the

insolation at 65�N latitude on the day of the summer sol-

stice. That specific insolation quantity is commonly related

to the Milankovitch theory and can be thought of as a

measure of how much ice may melt over summer. It can be

written under the following compact form:

FðtÞ ¼ 1

a�1

X35

i¼1

½si sinðxitÞ þ ci cosðxitÞ� ð1Þ

where the value of the 3 9 35 parameters (including

xi, si, and ci) are given in the Table 1 of ‘‘Appendix 1’’.

The insolation has been scaled by a�1
in order to work

dimensionless. The coefficients were extracted from Berger

(1978) by performing a linear regression of the insolation

on the xi. The validity range of this approximation is

[-1, 0] Myr, and its mean error (mean of the absolute value

of the difference, compared to Laskar et al. (2004) is

6.7 W/m2 with peaks at 27.5 W/m2. Note that the mean

value (494.2447 W/m2) has been removed; the theoretical

framework that allows to work with anomalies was justified

by Saltzman and Maasch (1991). In short, this can be done

as we are interested in oscillations, and not in the mean

values themselves. The quasiperiodic2 nature of the inso-

lation forcing F(t) is illustrated in its spectral decomposi-

tion in Fig. 2. Precession is dominated by two harmonics

around 19 and 23 kyr (1 kyr = 1,000 years) and obliquity is

dominated by a harmonic with a period of 41 kyr but it

bears periods as long as 1,200 kyr.

1 Note that the stochastic resonance is also used in the modelling of

the Dansgaard-Oeschger events (Ganopolski and Rahmstorf 2002;

Braun et al. 2009).
2 A quasiperiodic signal is the superposition of several periodic

signals with incommensurate periods.
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Many attempts have been made since the eighties in

order to identify any relationship between the frequencies

observed in the paleoclimatic records, reproduced by a

given mathematical model, and those present in the inso-

lation, mainly by performing spectral analysis. For exam-

ple, (Le Treut and Ghil 1983) consider a nonlinear climatic

oscillator based on physical climatic mechanisms, and

found frequency locking for some specific runs of their

model. They proposed to explain the ice age cycle in terms

of a beat period (or combination tone) between the 19 and

23 kyr periods. Hyde and Peltier (1985) also propose a

physical ice age model, and study several individual har-

monic forcing periods (ibid., Fig. 23) and also astronomical

forcing (Hyde and Peltier 1987) but reject the ‘‘combina-

tion tone’’ hypothesis. Paillard (1998) suggested two sim-

ple threshold models with multiple states in order to

reproduce the nonlinearity between the 100 kyr periodicity

in the records and the insolation forcing. Gildor and

Tziperman (2000) presented a sea ice climatic switch

mechanism by which the insolation changes act as a

pacemaker, setting the phase of the oscillations. Their box

model is able to reproduce the asymmetric sawtooth

structure, and results show phase-locking to the orbital

variations through a nonlinear mechanism. Most of the

time, however, the conclusions rely on a few particular

realisations of the models, without providing a global

analysis of the synchronisation phenomenon. Such an

analysis is the subject of this study.

Synchronisation

There is ample evidence that the astronomical forcing

influences the climate system. The phrase ’pacemaker of

ice ages’ was coined in a seminal paper (Hays et al. 1976)

to express the idea that the timing of ice ages is controlled

by the astronomical forcing, while the ice age cycle itself is

shaped by internal system dynamics. The paradigm has

prevailed since then and it is still supported by the most

recent analyses of palaeoclimate records (Lisiecki and

Raymo 2007; Huybers 2007). The notion of ’pacemaker’

naturally evokes some sort of synchronisation. However,

despite some attempts, the actual type of synchronisation

has not been clearly identified or demonstrated to date. For

example, (Ashkenazy 2006; Tziperman et al. 2006) speak

of ‘‘nonlinear phase-locking’’ although they do not define

suitable ‘‘phase variables’’ that can be used to demonstrate

a fixed-in-time relationship between phases of the forcing

and the oscillator response.

Synchronisation, as a universal nonlinear phenomenon,

is a pervasive process in Nature, as it is associated with

rhythmic processes. It is therefore not surprising to have

synchronisation also in Paleoclimatic Sciences. Depending

on the forcing type (periodic, chaotic, stochastic), one can

distinguish many types of synchronisation including com-

plete, lag, phase, frequency, identical, generalised (Rulkov

et al. 1995), achronal and isochronous (Wu et al. 2006),

and even noise synchronisation. For a review, the reader is

referred to Balanov et al. (2009), Pikovsky et al. (2001),
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Fig. 1 The long-term climatic signals reveal a slow-fast dynamics

(only the most recent 500 kyr of the data are displayed here). The

areas in grey (width sslow) are wider than the areas in white (width

sfast): while glaciation is a slow process of ice build-up, deglaciation

occurs much more rapidly (sslow [ sfast). One also recognizes the last

deglaciation which started some 20 kyr ago, up to the present time

(t = 0). a The LR04 stack (Lisiecki and Raymo 2005) of 57 benthic

d18O [%] records; the d18O is a proxy for the global volume of ice.

High values of d18O correspond to a colder climate (glacial state). b
CO2 composite record [ppmv] (Luethi et al. 2008). High values of

CO2 correspond to a warmer climate (interglacial state)
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among others. While some terminology is still debated,

Brown and Kocarev (2000) proposed an unified defini-

tion of synchronisation for dynamical systems—there is

synchronisation if there exists a relationship h between the

measured properties of the forcing, g(u), and those of the

oscillator, g(v):

hðgðuÞ; gðvÞÞ ¼ 0; ð2Þ

that is fixed-in-time, meaning that h is time independent.

Because we are interested in synchronisation that is stable,

for arbitrary initial conditions u(0) and v(0) that do not

satisfy Eq. 2, we require that (Brown and Kocarev 2000):

lim
t!1

hðgðuðtÞÞ; gðvðtÞÞÞ ¼ 0: ð3Þ

For example, if g(u) = u, g(v) = v, u and v have the same

dimension, and Eq. 2 can be written as u = v, we speak of

identical synchronisation. More generally, if vectors u and

v have different dimensions and Eq. 2 cannot be reduced to

more than a functional relationship u = H(v), we speak of

generalised synchronisation; see also Abarbanel et al.

(1996), Rulkov et al. (1995) and Pikovsky et al. (2001).

Note that the relationship (2) need not be unique. If there

are two or more relationships (2) for the same parameter

settings, we speak of multistable synchronisation

(Pikovsky et al. 2001, Ch.15.3.2). Then, which of the rela-

tionships the system settles to will depend on initial conditions.

In this paper, we use a simple van der Pol oscillator

model to identify and illustrate for the first time the phe-

nomenon of generalised synchronisation between ice age

cycles and astronomical forcing. The dynamical systems

approach outlined in the next section (1) allows for stability

analysis of such synchronisation, (2) uncovers interesting

effects related to the robustness of the synchronisation with

respect to external perturbations, and (3) uncovers the

phenomenon of multistable synchronisation that has been

overlooked by previous studies. We show that, in contrast

to claims in Tziperman et al. (2006), synchronisation needs

not be unique.

The article is structured as follows. Section 2 introduces

a slightly modified version of the van der Pol oscillator as a

suitable model for studying synchronisation of ice ages to

astronomical forcing. In Sect. 3, we analyse synchronisa-

tion to periodic forcing and quasiperiodic astronomical

forcing in terms of largest Lyapunov exponents. Section 4

is dedicated to the study of multistable synchronisation in

terms of attracting trajectories in the phase space of the

forced system, and the associated basins of attraction. In

Sect. 5, we investigate effects of the symmetry-breaking

parameter b for the van der Pol oscillator model. Section 6

is concerned with the robustness of the synchronisation and

focuses on two aspects relating to predictability. Firstly, it

shows that the local stability can be lost temporarily

causing divergence of nearby climatic trajectories. Sec-

ondly, it demonstrates that in the multistable regime

external perturbations (such as noise) may cause jumps

between coexisting synchronised solutions when these

solutions come close to their basin boundary. To be clear,

all the treatment below is deterministic, except for Figs. 14

and 16.

This article requires some basics of Dynamical Systems

theory (dynamical systems, nonlinear oscillations, limit

cycles, bifurcations of vector fields, etc.), for which we

refer the reader to Guckenheimer and Holmes (1983),

Arnold (1983) and Strogatz (1994). We also refer to

Saltzman (2002) for dynamical paleoclimatology, and to

Savi (2005) for a review of many useful concepts such as

attractors and Lyapunov exponents. For details about the

van der Pol oscillator, we refer the reader mainly to van der

Pol (1926), Strogatz (1994), Barnes and Grimshaw (1997),

Hilborn (2000) and Balanov et al. (2009).

2 Generic ice age model: a modified van der Pol

relaxation oscillator

The hypothesis at the basis of the work by Milankovitch

(Milankovitch 1941) is that changes in the total amount of
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Fig. 2 Spectrum decomposition of the insolation at 65�N latitude on

the day of the summer solstice (F(t) given in Eq. 1). This is a

graphical representation of Table 1 in ‘‘Appendix 1’’, with

ai
2 = si

2 ? ci
2 and Ti = 2p/xi. The eight largest parameters ai, which

represent already 80% of the signal, are the major components of the

insolation; they clearly come from the precession (19 and 23 kyr), and

from the obliquity (41 kyr) associated series. This insolation is the

forcing used to construct all figures subject to the quasiperiodic

astronomical forcing. The main harmonic �1 associated with obliquity

has an angular frequency x�1
¼ 0:1532 rad/kyr (T�1

¼ 41:0 kyr) and

an amplitude of a�1
¼ 11:77 W/m2: The three main harmonics

associated with precession are denoted p1, p2 and p3
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continental ice (say: x) are driven by summer insolation

F(t) already described in Eq. 1. One straightforward

interpretation of this hypothesis is a simple differential

equation _x ¼ �dWðxÞ=dx� cFðtÞ; where dWðxÞ=dx is the

derivative of a climatic potential and c is the forcing effi-

ciency. However, models of this form fail in practice to

correctly capture the rapid deglaciation phenomenon. We

therefore propose to model the paleoclimatic dynamical

system with a dissipative self-sustained oscillator resem-

bling the classical van der Pol oscillator3:

s _x ¼ � yþ b� c FðtÞ½ � ð4aÞ

s _y ¼ �a U0ðyÞ � x½ � ð4bÞ

where U0ðyÞ ¼ y3=3� y: The slow dynamics takes place on

the slow manifold given by the function U0ðyÞ ¼ x: Note

that this system is nonautonomous because the right-hand

side depends explicitly on time. Throughout this article, we

will also use a 41-kyr periodic forcing (main obliquity

term) as a reference case; the corresponding forcing term in

Eq. 4a will then be written under the form ½c sinðxtÞ�
instead of ½c FðtÞ�:

The physical interpretation of the model (4a, 4b) is as

follows. Ice volume x integrates the external forcing F(t)

over time but with a drift y ? b. Assuming a� 1, y is the

faster variable whose dynamics is controlled by a two-well

potential UðyÞ: For example, there are arguments that the

dynamics of the Atlantic ocean circulation may be

approximated by an equation similar to Eq. 4b (Rahmstorf

et al. 2005; Dijkstra et al. 2003). Further interpretation and

discussion of the fast variable can be found in Saltzman

et al. (1984), Tziperman and Gildor (2003), Paillard and

Parrenin (2004), Tziperman et al. (2006) and Crucifix

(2012). It is however not the goal of this paper to design the

best suited paleoclimatic model; on the contrary, we pro-

pose a methodology for diagnosing synchronisation which

could be applied to any paleoclimatic model, and which is

illustrated herein using a simple conceptual paleoclimatic

model sufficiently plausible. Also, we deliberately chose a

deterministic approach in order to present the concepts,

while it is clear that a more appropriate paleoclimatic

model should also include stochastic components.

We introduce the parameter s to have a control over the

time scale of the oscillations (it is needed, as the parame-

ters a and b both affect the period of the unforced limit

cycle). The parameter b controls the asymmetry of the

glaciation/deglaciation sawtooth structure (a higher value

of b leads to an enhanced asymmetry), because it controls

the position of the fixed-point on the slow manifold

U0ðyÞ ¼ y3=3� y ¼ x; and, consequently, the ratio of times

spent by the system in the two branches (’glacial’ and

’interglacial’) of the slow manifold. The coupled system

Eqs. 4a, 4b has one stable equilibrium solution for jbj[ 1

and a stable periodic orbit for jbj\1. We use TULC to

denote the period of the stable periodic orbit and xULC =

2p/TULC to denote the corresponding angular frequency.

Relaxation oscillators have been proposed previously to

study ice ages (Saltzman et al. 1984; Tziperman and Gildor

2003; Paillard and Parrenin 2004) although, to our

knowledge, in a less general form than here. We adopted

this form4 because it is very close to the well-studied van

der Pol oscillator, and a reasonable qualitative agreement

(timing of glacial inceptions and terminations, and their

amplitude) with ice volume proxies was easily found for

well chosen values of a, b, c and s (Fig. 3). We note,

though, that small changes in parameters or additive fluc-

tuations may easily shift the timings of ice-age termina-

tions or glacial inceptions for reasons that will be clarified

later in the paper. When driven, the van der Pol oscillator

can lead to synchronisation (Balanov et al. 2009), but also

to deterministic chaos (Ruihong et al. 2008), depending of

the level of the driving force.

The definition of synchronisation can be applied to our

model Eqs. 4a, 4b as follows. The astronomical forcing

F(t) corresponds to u(t), and the state vector whose two

components are the slowly-varying ice volume x and the

faster variable y corresponds to v(t). For nonperiodic

forcing, relationship (2) can be very complicated (non-

functional or even fractal-like) and hence difficult to detect.

Therefore, other methods of detecting (2) had to be

developed. As suggested by the auxiliary system approach

(Abarbanel et al. 1996), relationships (2) and (3) are

implied by an (invariant) attracting trajectory in the

(x, y, t) phase space of the nonautonomous forced system

(4a, 4b) (Wieczorek 2011). In the remainder of the paper,

such an attracting trajectory is denoted with AT and

referred to as an attracting climatic trajectory or syn-

chronised solution. All other solutions to Eqs. 4a, 4b will

be referred to as climatic trajectories.

Previous approaches to nonlinear dynamics of quasipe-

riodically forced oscillators focused on discrete-time map-

pings and two-frequency forcing (Glendinning and Wiersig

1999; Osinga et al. 2000; Belogortsev 1992; Broer and Simó

3 The van der Pol oscillator, or slightly different versions of it [a

similar one is the Poincaré oscillator (Glass and Sun 1994)], has been

mathematically largely studied under many aspects, most of them

being related to features used in the present study: fixed points and

Arnol’d tongues, basins of attraction (Barnes and Grimshaw 1997),

analytical expressions for the amplitude and period of the limit cycle

(D’Acunto 2006), slow manifold equation (Ginoux and Rossetto

2006), bifurcation structure (Mettin et al. 1993), chaotic dynamics

(Chen and Chen 2008; Parlitz and Lauterborn 1987), additive noise

(Degli Esposti Boschi et al. 2002), etc.

4 Note that the van der Pol oscillator model is also used as a reference

e.g. in Saltzman (2002, p. 101) for a coupled ocean/sea-ice model,

and also in Rial and Yang (2007) and Rial and Saha (2011) to

simulate high resolution ice core data with a van der Pol-based

coupled ocean/sea-ice model.
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1998). They uncovered interesting dynamics including

Arnol’d or mode-locked tongues consisting of ‘interlocking’

bubbles and open regions of multistability, nonsmooth

bifurcations, and strange nonchaotic attractors (Grebogi

et al. 1984; Feudel et al. 1995). Here, we consider quasi-

periodic forcing with 35 frequency components and focus on

the regions of mode locking. Our approach is based on

instabilities of attracting trajectories in the (x, y, t) phase

space of the continuous-time forced system because they

relate directly to the concept of generalised synchronisation.

We can provide a systematic study of generalised synchro-

nisation to astronomical forcing by demonstrating existence

of such trajectories and exploring their local and global

stability properties. More specifically, we perform three

types of calculations. Firstly, a clustering detection tech-

nique uncovers parameter regions with monostable (unique)

and multistable (non-unique) synchronisation. Secondly, the

largest Lyapunov exponent along AT quantifies its long- and

short-term local (linear) stability. Thirdly, a basin of

attraction of AT quantifies its global (nonlinear) stability.

Finally, we remark that in the theory of nonautonomous

dynamical systems, attracting trajectories in the (x, y, t)

phase space are related to a modern and more general con-

cept of a pullback attractor (Kloeden 2000; Langa et al.

2002; Kosmidis and Pakdaman 2003; Wiggins 2003).

3 Synchronisation of the paleoclimatic system

to the insolation forcing

3.1 Illustration of the synchronisation phenomenon

A typical climatic trajectory for c = 0 is shown in Fig. 4,

from two different points of view: the time series and the
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Fig. 3 Top: the insolation forcing F(t). Bottom: the x and y climatic

trajectories obtained using system Eqs. 4a, 4b with a = 11.11,

b = 0.25, c = 0.75 and s = 35.09. With these parameters, x�1 ¼
2:5xULC ; where x�1 is the angular frequency associated with the

dominant harmonic of obliquity and xULC is the angular frequency

associated with the unforced system’s periodic orbit. Blue dots
correspond to the Lisiecki and Raymo stack (LR04) described in

Fig. 1a. Time t = 0 corresponds conventionally to the year 1950. The

model is in reasonable qualitative agreement with the ice volume proxy
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Fig. 4 Dynamics of the unforced ice ages model Eqs. 4a, 4b with

a = 11.11, b = 0.25, c = 0 and s = 35.09. The slow-fast variable is

y, while x is always slow. Example of a typical climatic trajectory with

initial conditions (x-500, y-500) = (-0.24, -0.27). a Time series : x
(the ice volume) is the slow variable, while y exhibits slow-fast dynamics.

The same colour convention white/grey as in Fig. 1 has been used in

order to highlight the slow and fast episodes. b Phase space portrait in the

two-dimensional (x, y) phase space of the autonomous system: dynam-

ical flow, limit cycle and residence plot (circles are spaced at every 0.5

kyr). More time is spent along the slow manifold (red dashed curve,

corresponding to the function U0ðyÞ ¼ y3=3� y ¼ x). The trajectory

converges to the limit cycle (thin curve) with slow-fast dynamics
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phase space portrait. In the time series, we recognize the

slow variable x (the ice volume), while y exhibits slow-fast

dynamics. This climatic trajectory is also shown in the two-

dimensional (x, y) phase space of the autonomous system

where arrows indicate direction of the flow. The trajectory

converges to the limit cycle with slow-fast dynamics (the

speed along the trajectory can be visually assessed by the

circles of the residence plot). Let us now consider a set of

70 random initial conditions in the (x, y)-plane at time

t0 = 0, and study the resulting climatic trajectories in the

three-dimensional phase space (x, y, t) of the nonautono-

mous system (Fig. 5a) for time t [ t0. One clearly sees that

all trajectories converge to a cylinder—the attracting set in

the (x, y, t) space.

However, if we consider now an external forcing (c[ 0)

then synchronisation onto this forcing may occur under

certain conditions (Ashkenazy 2006; Tziperman et al.

2006). According to our definition (2–3), synchronisation is

represented by an attracting climatic trajectory in the

(x, y, t) phase space.

Consider first the case of a purely periodic forcing with a

period of TF = 41 kyr (main obliquity term) and strength

c = 3.33. The 70 initial conditions give rise to climatic

trajectories that, after a sufficiently long integration time,

converge to two attracting trajectories (see Fig. 5c). Both

attracting trajectories are periodic with period of

TR = 2TF = 82 kyr, and time-shifted versions of each

other. This phenomenon is described in the literature as 2:1

phase-locking or frequency-locking. Generally speaking a

n:m frequency-locking is defined as a fixed-in-time relation

between the frequencies of the forcing (xF) and the

oscillator response (xR) of the form n xR = m xF, where

m and n are integers (Pikovsky et al. 2001, p. 52).

Then consider the case of the quasiperiodic insolation

forcing described in Eq. 1 with c = 0.75 and s = 43.86.

Figure 5e shows that the 70 climatic trajectories now con-

verge onto three attracting trajectories, which reveals that

synchronisation can be multistable (Pikovsky et al. 2001,

p. 348), (Balanov et al. 2009, p. 94). This phenomenon is

described in the literature as mode-locking (Glass and Mackey

1988; Svensson and Coombes 2009). Note that because of the

quasiperiodicity of the insolation forcing, these attracting

trajectories are no longer periodic nor time-shifted versions of

each other. The number of attracting trajectories depends on

many factors including the dynamics of the unforced system,

the nature of the forcing F(t), and the amplitude c of the

forcing. We will study this in more details in Sect. 4.

3.2 Detection of synchronisation by the way

of the largest Lyapunov exponent (LLE or kmax)

Local or linear stability of an attracting climatic trajectory

can be quantified with the largest Lyapunov exponent

(LLE) denoted here as kmax (Benettin et al. 1980). The

quantity kmax is a measure of the (average) exponential rate

of divergence (kmax [ 0) or convergence (kmax \ 0) of

nearby climatic trajectories. Therefore, a negative value of

kmax indicates a locally attracting climatic trajectory or

generalised synchronisation (Pikovsky et al. 2001; Wie-

czorek 2009). A transition from kmax \ 0 to kmax = 0

indicates a bifurcation where the attracting climatic tra-

jectory disappears and generalised synchronisation is lost.

Null and positive values of kmax indicate lack of synchrony

(positive kmax indicates chaos but this regime is not

encountered here). In the case of periodic forcing, com-

putations of kmax can be easily validated with more precise

and reliable numerical bifurcation continuation techniques

(see § ’41-kyr periodic forcing’ below).

3.3 Long-term kmax and short-term kmax
H LLE’s

The largest Lyapunov exponent kmax is mathematically

defined5 as (Ott 2002) :

kmax ¼ lim
jdZð0Þj!0

lim
t!1

1

t
ln
jdZðtÞj
jdZð0Þj ð5Þ

where dZ = [dx, dy] are vanishing perturbations about x

and y, respectively, governed by the linearisation of system

Eqs. 4a, 4b. Whereas this classical kmax is defined in long

term limit ðt!1Þ; one can also define (Abarbanel et al.

1991) a short-term version, kmax
H , by considering a finite

time interval H (H = 50 kyr will be considered in this

article):

kH
max ¼ lim

jdZð0Þj!0

1

H
ln
jdZðHÞj
jdZð0Þj ð6Þ

While kmax gives the average or long-term stability

information, kmax
H can tell us about the behaviour of nearby

trajectories within a short time interval H. For example,

kmax \ 0 does not necessarily imply kmax
H \ 0 for some

suitably chosen H. The definition (6) will be useful in

studying the robustness of generalised synchronisation in

Sect. 6. Technical details for computing kmax are given in

‘‘Appendix 2’’.

3.4 Influence of the parameters c and TULC

The two particular types of synchronisation illustrated in

Fig. 5c, e have been obtained for a fixed value of the

amplitude c of the external forcing and of the natural period

5 Even if differential versions of the LLE have sometimes been

developed mainly for computational efficiency purposes, we however

preferred within this article to stick on the original definition of the

LLE, because it is more standard and there is no insistent need for

lowering computation time in the present framework, as the number

of degrees of freedom of the system is reduced.
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of the unforced paleoclimatic system TULC. Now, we are

equipped to achieve a much broader view of the dynamics

by performing a parametric study on these two parameters.

The quantity plotted in Fig. 6a, b is the largest Lyapunov

exponent at 3 Myr, far from the transient behaviour so that

kmax
H=3 Myr may already been considered as a good approxi-

mation of kmax.

3.5 41-kyr periodic forcing (main obliquity term)

Figure 6a corresponds to the case of the 41-kyr periodic

forcing (TF = 41 kyr). The synchronisation region

(kmax \ 0) is composed of several V-shape regions, called

Arnol’d tongues (phase- or frequency-locking), originating

at 1, 2, 3, etc. times the forcing period TF. These regions

correspond to 1:1, 2:1, 3:1 frequency-locking zones (3:2

and 5:2 can also be guessed). Periodic solutions are found

within these regions which originate generally speaking at

TULC ¼ ðm=nÞ TF : No synchronisation is possible when c is

zero but synchronisation may occur already for infinitesi-

mally small c. Then, for increasing c, the synchronisation

region widens and synchronisation becomes more stable up

to an optimum value of the forcing. Above this optimum

value, the synchronisation becomes less and less effective,

because at large c the system is too much steered away

from its natural dynamics; it may even be driven into chaos

at yet higher forcing amplitude (Mettin et al. 1993) but this

case is beyond our focus.

In order to perform an accurate validation of the syn-

chronisation region given by the LLE (kmax \ 0) method,

we computed the main Arnol’d tongues boundaries with

the more accurate numerical continuation methods such as

AUTO (Doedel et al. 2009). The case of periodic forcing

½FðtÞ ¼ sinðxtÞ� with b = 0 has been already extensively

studied in the literature, analytically assuming some

approximations (Guckenheimer and Holmes 1983,

pp. 70–75), and using numerical algorithms for pseudo-arc

length continuation (Mettin et al. 1993). The usual

approach extends the original nonautonomous system by

additional differential equations for the forcing so that the

system becomes autonomous, and then explores the (x, c)

parameter space. In this way, we computed Arnol’d tongue

boundaries as saddle-node of limit cycle bifurcations for

the extended system with a = 11.11 and b = 0.25. Note

that the asymmetry introduced here with the parameter b
adds slightly more complexity and induces additional fea-

tures to the diagrams documented in these papers.

Superposition of LLE calculations and bifurcation

boundaries in Fig. 6a shows that the synchronisation

regions obtained with the two different techniques match

perfectly. This is a confirmation that the method based on

the LLE works fine and we will be able to use it for the

case of the quasiperiodic insolation forcing. Note that

bifurcation boundaries are also drawn in Fig. 6c in order to

stress the correspondence with yet another method of

detecting synchronisation that will be discussed in Sect. 4.

3.6 Astronomical quasiperiodic forcing

For the case of the quasiperiodic insolation forcing

(Fig. 6b), the region of synchronisation appears to be in

one single piece with some indications of tongues (mode

locking) at small c. These tongues are in fact well-sepa-

rated, as it can be even more clearly seen on Fig. 6d which

is of higher resolution.

In other words, whatever the value of the natural period

TULC of the paleoclimatic system, it has a higher proba-

bility of being synchronised onto the insolation forcing.

4 Non uniqueness: multistability and basins

of attraction

The detection of synchronisation using the LLE (kmax \ 0)

gives only a Yes/No-type of information (i.e. synchronisa-

tion inside the tongues, no synchronisation outside), without

making any distinction between different tongues as this

would require information about multistability. For exam-

ple, Fig. 6b indicates synchronisation for the parameter

settings marked with the symbol ’9’ but gives no informa-

tion about the corresponding number of attracting trajecto-

ries (we know that there are three different attracting

trajectories in that case, from Fig. 5e). To explore the

problem of multistable synchronisation, we propose a

clustering method that not only allows us to detect syn-

chronisation, but additionally provides information about

the number of attracting trajectories denoted here with N.

Fig. 5 Illustration of three different paleoclimate dynamical regimes:

(top) without any forcing (c ¼ 0; s ¼ 35:09! TULC � 100 kyr),

(middle) 41-kyr periodic forcing (c ¼ 3:33; s ¼ 35:09! TULC � 100

kyr), (bottom) generalised multistable synchronisation on the quasi-

periodic insolation forcing (c ¼ 0:75; s ¼ 43:86! TULC � 125 kyr).

The 41-kyr periodic forcing case c, d is represented by the symbol ‘?’

in Fig. 6a, c, and the quasiperiodic insolation forcing case e, f by the

symbol ‘9’ in Figs. 6b, d. The ice age model used is Eqs. 4a, 4b with

a = 11.11 and b = 0.25. A set of 70 random initial conditions at

t0 = 0 is used. Left: climatic trajectories in the (x, y, t) space-time

space. Right: section of these trajectories at t = 550 kyr, which

reveals clearly the potential formation of the attracting trajectories

and allows an easier counting of these. a All trajectories converge to a

cylinder—the attracting set in the (x, y, t) space. b No clear dense

cluster of climatic trajectories is identified: no attracting trajectory

exists. c The trajectories converge to two attracting trajectories of

period 82 kyr: there is a frequency-locking 2:1. d Two clusters are

identified, corresponding to the two attracting trajectories born from

frequency-locking 2:1. e The trajectories converge now to three

attracting trajectories for a long time, revealing a multistable

synchronisation. f Three clusters of trajectories are identified,

corresponding to the three attracting trajectories born from multista-

ble synchronisation

b
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4.1 Multistability analysis: numerical estimate

of the number of attracting trajectories

N by a clustering technique

Consider the case of the quasiperiodic insolation forcing

with the three attracting trajectories, i.e., N = 3 (Fig. 5e).

Although N can often be easily assessed visually, we want

to automatically detect and count the number of ATs

(attracting climatic trajectories). As a matter of fact, N can

be easily estimated in the following way. Fix a time t that

defines a two-dimensional (x, y)-section in the (x, y, t)

phase space. Then start with a grid of initial conditions at

T
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Fig. 6 Detection of synchronisation by two different methods: the

largest Lyapunov exponent (kmax [kyr-1] \ 0) (top) and the numer-

ical estimate of the number of attracting trajectories N by a clustering

technique (bottom), and for two different types of forcing: a 41-kyr

purely periodic forcing (left) and the quasiperiodic insolation forcing

given by Eq. 1 (right). These diagrams show for which values of the

parameters {TULC, c} synchronisation of the climate system occurs

for the ice age model Eqs. 4a, 4b with a = 11.11, b = 0.25, and

s = 35.09. For the 41-kyr periodic forcing case, the bifurcation

boundaries of the Arnol’d tongues obtained with the more accurate

numerical continuation method AUTO are superimposed, for valida-

tion purposes (black curve), and match perfectly. The symbol ‘?’

refers to the specific ATs illustrated in Fig. 5c, for which N = 2. The

symbol ‘9’ refers to the specific ATs illustrated in Fig. 5e, for which

N = 3. a The region with kmax \ 0 corresponds to synchronisation;

we recognize its underlying Arnol’d tongue structure. b The broad

region of synchronisation appears to be in one single piece with some

indications of well-separated tongues (mode locking) at small

c, which is a typical signature of the quasiperiodic insolation. c The

region inside the synchronisation tongues is now coloured in function

of N. In practice, small positive values of N correspond to

synchronisation onto a few attracting trajectories, while high values

indicate no synchronisation. For the tongue corresponding to a

frequency-locking n:1, we have n attracting trajectories. d The

structure of the synchronisation zone is much more complex,

consisting of intermingled series of Arnol’d tongues. The region

with one attracting trajectory, corresponding to unique or monostable
generalised synchronisation, is the largest. However, there are also

parameter sets with N = 2, 3 or even more attracting trajectories
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some time t0 \ t and take t - t0 sufficiently large so that

all the initial conditions converge to the attracting trajec-

tories at t. Since each AT is represented by a point on the

(x, y)-section, the problem of counting attracting trajecto-

ries reduces to a simple clustering problem. We designed a

suitable automatic cluster detection algorithm that counts

the number of clusters to obtain an estimate of N. For

example, Fig. 5f shows6 the (x, y)-section of the three-

dimensional (x, y, t) phase space at t = 550 kyr, given 70

initial conditions at t0 = 0. The 70 trajectories converge

onto three (highly concentrated) clusters corresponding to

the three attracting trajectories.

The idea of using cluster analysis for paleoclimatic

dynamics comes from the natural fact that clustering is

another way of looking at generalised synchronisation

where negative LLE makes the trajectories cluster more

efficiently. This provides another insightful viewpoint on

the problem of identification of the number of synchronised

solutions of the paleoclimatic system: the more stable the

synchronisation, the more efficient the formation of

clusters.

Two important aspects of cluster analysis7 have to be

considered to avoid risks of mis-identification of clusters:

• the notion of a cluster is based on the threshold distance 8

dT that has to be carefully chosen. If dT is chosen too

large, there will be just one cluster including all points; if

it is too small, no clusters will form with more than one

point.

• In order to have sufficiently well formed clusters, the

time interval t - t0 must be chosen large enough so that

the transient behaviour is gone; an illustration of the

convergence is given in Fig. 7.

In our system, the convergence was fast and the clusters

were highly concentrated and clearly separated for the

great majority of the parameters. Therefore, defining a right

threshold was quite easy and not critical. However, for

small values of c, the convergence is weaker, as can be

seen in the bottom of the tongues on Fig. 6c.

Depending on the type and amplitude of the forcing

c, we can have potentially a whole range of possible

numbers of attracting trajectories N, ranging from one

(Tziperman et al. 2006), to a few (two in the 41-kyr peri-

odic forcing example in Fig. 5c, d, or three in the quasi-

periodic insolation forcing example in Fig. 5e, f). When no

forcing is considered (Fig. 5a, b), or there is forcing but no

synchronisation occurs, we find no clusters at all. This

means that there are as many points in the (x, y)-section at

time t as initial conditions at time t0. Clearly, it is difficult

to numerically distinguish between no synchronisation and

a large number of attracting trajectories (N � 1). There-

fore, we restrict ourselves to just six different regions in

Fig. 6, where we use white to indicate when there are none

or more than five attracting trajectories.

Now, we apply the numerical cluster analysis in the case

of the periodic forcing (Fig. 6c) and of the quasiperiodic

forcing (Fig. 6d). We set t = 0 and consider a grid of 49

initial conditions covering x 2 ½�2:2; 2:2� and y 2
½�2:2; 2:2� at the initial time t0 = -40 TF for the periodic

forcing (TF is the period of the forcing), and t0 =

-1,600 kyr for the astronomical forcing.

Two points in the (x, y)-section are estimated to belong

to a different cluster if their Euclidean distance is greater

than 0.1.

4.2 41-kyr periodic forcing (main obliquity term)

An illustration of the three possible synchronised solutions

(N = 3) existing for the 3:1 frequency-locking on a peri-

odic forcing is given in Fig. 8, where the response can be

locked on one of the periods of the forcing. More generally,

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time [kyr]

y

Fig. 7 Illustration of the importance of choosing the time interval

t - t0 large enough so that the transient behaviour is gone, in order to

have sufficiently well formed clusters. Here, choosing t = 550 kyr

ensures that the eight clusters are already formed, starting from t0 = 0

6 See also Fig. 18 for a detailed view.
7 Cluster analysis or clustering is the assignment of a set of

observations into subsets (called clusters) so that observations in the

same cluster are similar in some sense. This is a common technique

for statistical data analysis used in many fields for countless

applications. There exists many types of clustering, along with

several methods, among which: hierarchical, partitional, spectral,

kernel PCA (principal component analysis), k-means, c-means and

QT clustering algorithms.

8 This threshold distance dT appears in any computation related to

cluster analysis. It is widely used for determining neighbours in a

series of different methods, like the Recurrence Plots (RP) analysis in

complex networks (Marwan et al. 2009; Donges et al. 2009).
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N corresponds to the number of forcing cycles associated

with the synchronisation regime (N = 1 for 1:1; N = 2 for

2:1; N = 3 for 3:2, 3:1, etc.).9 The resulting pattern of

different N is in agreement with the bifurcation diagram

(Fig. 6c). For example, N = 3 in the 3:1 tongue. This

method allows one to visualise the 4:3 tongue (N = 4)

around 41 9 4/3 & 54.67 kyr, and even the 5:4 tongue

(N = 5) around 41 9 5/4 & 51.25 kyr, both to the left of

the 3:2 tongue (around 41 9 3/2 & 61.5 kyr). It is also

seen that N is generally larger where different synchroni-

sation regimes coexist; this is the case between the 2:1 and

3:1 regimes around c = 4.

4.3 Astronomical quasiperiodic forcing

Figure 6d shows that synchronisation occurs for most

parameter configurations. The region with one attracting

trajectory (N = 1), corresponding to unique or monostable

generalised synchronisation (Rulkov et al. 1995), is the

largest. However, there are also parameter sets with N = 2,

3 or even more attracting trajectories. They indicate mul-

tistable generalised synchronisation where different pos-

sible stable relationships (2) between the forcing and the

oscillator response coexist.

An expanded view of Fig. 6d in the lower values of c is

given in Fig. 9, which allows an insightful physical inter-

pretation. Three tongues with N = 1, 2, 3 are rooted at

TULC=T�1
= 1, 2 and 3, respectively, suggesting a syn-

chronisation on the main obliquity component of the

astronomical forcing of the same nature as synchronisation

on a periodic forcing. A series of other synchronisation

tongues with N [ 1 appear; they correspond to 2:1

(N = 2), 3:1 (N = 3), 4:1 (N = 4) and even 5:1 (N = 5)

synchronisation on the three leading components of pre-

cession, denoted p1, p2 and p3 (see Fig. 2). Consequently,

the richness of the astronomical forcing effectively widens

the parameter range for which synchronisation occurs,

compared to a periodic forcing. The phenomenon may be

understood intuitively: just as you are more likely to tune

on some radio station if you are surrounded by a dozen of

free FM emitters, the system is more likely to synchronise

on the rich astronomical forcing than on a periodic forcing.

Synchronisation with N = 1 or 2, found for larger c, can be

interpreted as a form of combined synchronisation on both

obliquity and precession.

It is crucial to appreciate that synchronised solutions are

not periodic and that, unlike in the periodic forcing case,

different synchronised solutions for a given set of param-

eters are not time-shifted versions of each other. The idea

that different synchronised solutions coexist is of practical

Time (Arbitrary Units)
5 6 7 8 9 10 11 12

Forcing

x(t) : Locking 1

x(t) : Locking 2

x(t) : Locking 3

Fig. 8 Illustration of the three possible synchronised solutions

(N = 3) existing for the frequency-locking 3:1 on a purely periodic

forcing, in the time series format. The response can be locked on one

of the periods of the forcing

Fig. 9 A careful examination of the lower part (low c) of Fig. 6d

allows an insightful physical interpretation. The underlying structure

of the intermingled series of Arnol’d tongues can be understood: it is

a mixing of several Arnol’d tongues series corresponding to each of

the main components of the spectrum of the astronomical forcing,

yielding a resulting pattern which looks like misaligned combs.

Subscales based on the period of the four main components (�1; p1; p2

and p3) of the insolation highlighted in Fig. 2 allows a clear

recognition of each individual Arnol’d tongues series

9 This statement relies on the system invariance with respect to a

time-shift of one forcing period (Tziperman et al. 2006 show a very

nice illustration of this point).
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relevance for paleoclimate theory. Namely, the set of

parameters used to obtain the fit to the paleoclimatic

records shown in Fig. 3 give two distinct solutions at t = 0

when started from a grid of initial conditions at t0 =

-700 kyr. Sensitivity studies show that the choice of t - t0
is sometimes important for estimating correctly N. How-

ever, tests with t - t0 as large as 200 Myr of astronomical

time suggest that several attracting trajectories may coexist

at the asymptotic limit of t0 ! �1:
A similar numerical cluster analysis plot for b = 0.6 is

shown in Fig. 10 in order to give an idea of the effect of

this parameter (a more detailed analysis is performed in

Sect. 5). The main conclusion about the multistability

remains, but the particular values of N change, as the

intermingled tongue series are different.

4.4 Evolving geometry of the basins of attraction

Each ATi ði ¼ 1. . .NÞ has its own basin of attraction10

(Barnes and Grimshaw 1997), that is defined as the set of

all initial conditions in the (x, y, t) phase space that con-

verge to that ATi as time tends to infinity. For our nonau-

tonomous system Eqs. 4a, 4b, we can study basins of

attraction in the (x, y)-section for different but fixed values

of initial time t0, and observe how they vary with t0. A

given initial condition at time t0 lies in the basin of

attraction of ATi if it approaches ATi as time tends to

infinity. The whole phase space can then be ’painted’ with

several colours, each colour representing a specific basin.

Technical details about the computation of the basins of

attraction by use of the specific classification algorithm

developed (see Fig. 18) are given in ‘‘Appendix 3’’. Basins

of attraction are of major importance because they provide

the information about global or nonlinear stability of syn-

chronisation. If we care about predictability, basin bound-

aries indicate when a change in the attracting climatic

history is likely.

The evolving geometry of the basins of attraction is

shown in Figs. 11 and 12, for the case of 41-kyr periodic

forcing and the quasiperiodic astronomical forcing,

respectively. The evolution is shown as a comic strip,

where each subfigure has an x-axis ranging from -1.5 to

1.5, and a y-axis ranging from -2.5 to 2.5 (the axis labels

have been removed for a better readability).

In the case of a periodic forcing (two basins), the pattern

repeats itself periodically (compare the t0 = 0 kyr to the

t0 = 40 kyr, and to the t0 = 80 kyr subfigures in Fig. 11).

However, in the case of the quasiperiodic forcing (three

basins), the pattern is much more intricate and seems not to

repeat itself for the time horizon considered here, cf.

Fig. 12.

The ratio between the area of a basin of attraction and

the considered area of the phase space can be interpreted as

a probability to converge to the corresponding attracting

trajectory when starting from a randomly chosen initial

condition. In the case of the periodic forcing, the two ATs

are roughly equally likely for all t0 as could be guessed

from Fig. 5c. However, this is not the case for the quasi-

periodic forcing where the probability to reach the same

attracting trajectory may vary significantly in time. For

example, the yellow basin is rather small at t0 = 0 kyr but

becomes much larger at a later time t0 = 90 kyr.

In the multistable regime, if an ATi happens to lie

sufficiently close to its basin boundary, then small pertur-

bations could make the climate jump to another (coexis-

ting) ATj=i, reducing predictability. This phenomenon is

illustrated in Sect. 6.

5 Influence of the symmetry-breaking parameter b

As the parameter b controls the asymmetry11 of the gla-

ciation/deglaciation sawtooth structure (a higher value of b

Fig. 10 Same as Fig. 6d, but now with b = 0.6 instead of b = 0.25.

The particular values of N change, as the pattern of intermingled

tongue series is different, but the main conclusion about the

multistability remains

10 A more formal definition of the basin of attraction for nonauton-

omous dynamical systems is given in Kloeden (2000) and Langa et al.

(2002).

11 A variation of the parameter b may also imply a very fast

transition from a small amplitude limit cycle to a large amplitude

relaxation cycle, explained by the so-called Canard phenomenon,

cycles, and explosion (Benoı̂t et al. 1981; Guckenheimer et al. 2000;

Guckenheimer and Haiduc 2005).
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t
0
 = 0kyr t

0
 = 10kyr t

0
 = 20kyr t

0
 = 30kyr t

0
 = 40kyr

t
0
 = 50kyr t

0
 = 60kyr t

0
 = 70kyr t

0
 = 80kyr t

0
 = 90kyr

Fig. 11 Evolving geometry of the two basins of attraction for system

Eqs. 4a, 4b, with a = 11.11, b = 0.25, c = 3.33 and s = 35.09.

Case of a 41-kyr periodic forcing: the pattern is 82-kyr periodic

(frequency-locking 2:1). The function U0ðyÞ ¼ y3=3� y ¼ x;

corresponding to the slow manifold, is also shown (dashed curve).

The attracting trajectories (symbols) sometimes lie close to the

boundary of their own basin of attraction. Note that one AT is missing

on the 40 and 60 kyr panels, as it stands out of the range of the plot

t
0
 = 0kyr t

0
 = 10kyr t

0
 = 20kyr t

0
 = 30kyr t

0
 = 40kyr

t
0
 = 50kyr t

0
 = 60kyr t

0
 = 70kyr t

0
 = 80kyr t

0
 = 90kyr

Fig. 12 As in Fig. 11, but now for the quasiperiodic insolation forcing case, with c = 0.12. For this choice of parameters, there are three basins

of attraction. The pattern is quasiperiodic, constituting the specific signature of the insolation

Fig. 13 Numerical estimate of the number of attracting trajectories

N plotted as a function of the asymmetry parameter b and the amplitude

of the forcing c for the ice age model Eqs. 4a, 4b with a = 11.11 and

s = 35.09, assuming a 41-kyr periodic forcing and b the quasiperiodic

astronomical forcing given by Eq. 1. Synchronisation occurs in a larger

area of the parameter space in response to the astronomical forcing than

in response to the periodic forcing, and the pattern of different N for

larger c is much richer and more complex; this structure emerges from

the interaction with different harmonics of the astronomical spectrum

and their beatnotes
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leads to an enhanced asymmetry), it is useful to investigate

its effect. We have already indicated in Fig. 10 that mul-

tistability depends on b in the case of the quasiperiodic

insolation forcing. A more systematic approach encom-

passing the whole range of b is shown in Fig. 13a, 13b, for

the case of 41-kyr periodic forcing and the quasiperiodic

astronomical forcing case, respectively.

First consider the 41-kyr periodic forcing (Fig. 13a). To

understand this figure, recall that the unforced oscillator

(i.e., c = 0) has a stable fixed point for jbj[ 1 and a stable

limit cycle for jbj\1.

The system responds almost linearly to the forcing when

jbj is sufficiently large. This explains regions of unique

synchronisation (N = 1) where only one climate response

is possible. The system becomes excitable when jbj is just

slightly greater than one. If the forcing is large enough it

will excite oscillations. In this case, N is equal to the

number of initial conditions if synchronisation is lost, or to

a smaller number if synchronisation occurs.

Consider now the interval -1 \b\ 1. For this, keep in

mind (1) that the period of the unforced oscillation TULC

varies by almost a factor of two within the range 0\jbj\1,

and (2) that synchronisation requires some relation between

the period of the unforced oscillations and the forcing

period. Consequently, synchronisation on the periodic

forcing occurs only for fairly narrow ranges of b that are

symmetric around zero. The figure reminds us of Arnol’d

tongues. The main synchronisation regimes detected here

correspond to 4:1, 3:1 and 5:2 frequency-locking. Outside

these synchronisation regimes, the system fails to converge

to a sufficiently small set of attracting trajectories, meaning

that the forcing is not an efficient pacemaker.

Even if not obvious, Fig. 13a can be partly explained by

considering Fig. 6c. The multistability plot can indeed be

considered here as being 3-dimensional in the parameter

space {TULC, c, b}, but the intricate aspect is that Figs. 13a

and 6c are not straight cuts into this 3-dimensional space,

as the relation between b and TULC is not linear. For

example, if you take the parameters of Fig. 13a, i.e.

s = 35.09, it corresponds to TULC = 100 kyr; so, when

performing the cut in Fig. 6c the yellow region will be

reached in the upper part (pay attention that the y-scale is

different), what is consistent with what is found in Fig. 13a

for low jbj values. Then, when increasing jbj, TULC

increases, i.e. one moves a bit on the right on Fig. 6c,

reaching then the red region, which is again consistent with

what is found in Fig. 13a for higher jbj values. For jbj[ 1,

Fig. 6c is no longer relevant. To have a deeper under-

standing, much more views in the 3-dimensional space

would be required (e.g. Fig. 6c should be done for several

values of b), but it is not the goal of this paper.

Finally, compare the 41-kyr periodic forcing situation

with that obtained with the astronomical forcing (Fig. 13b).

Synchronisation now occurs in a larger area of the

parameter space. Whereas the structure of the periodic

forcing is preserved as long as the forcing amplitude is low

enough, there is a much richer and more complex pattern of

different N for larger c. This pattern emerges from the

interaction with different harmonics and their beatnotes.

Note that Fig. 13a, b have a very high level of symmetry

with respect to b, which was expected as the system Eqs.

4a, 4b is invariant under the transformation

fx; y; b;Fg ! f�x;�y;�b;�Fg:

6 Robustness of synchronisation

Robustness or reliability of synchronisation can be studied

in terms of two properties of an attracting climatic trajec-

tory. Local stability analysis based on the short-term LLE

(kmax
H ) provides information about the short-term local

convergence towards the AT. For example, a temporary

loss of local stability indicated by kmax
H [ 0 will cause a

temporary loss of synchrony and divergence from the AT

even though the trajectory is stable on average (kmax \ 0).

Global stability analysis based on the geometry of the

basins of attraction for different ATs provides information

about the system’s response to external perturbations such

as random fluctuations. For example, an external pertur-

bation may push a climatic trajectory outside of its basin of

attraction. Robustness and uniqueness of synchronisation

become closely linked when there are coexisting attracting

trajectories. Robustness is compromised most when a

temporary loss of local stability coalesces with a weaken-

ing of the global stability. We will now briefly discuss

these two effects that could restrict the prediction horizon

for the evolution of climatic trajectories.

6.1 Temporary desynchronisation via loss

of local stability

Some additional experiments made in our paleoclimatic

framework reveal another strange behaviour in the system

Eqs. 4a, 4b, that can be deduced from a careful inspection

of Fig. 14. In the presence of small additive noise, we

notice that nearby trajectories could diverge for some time,

like those around t & 157 kyr.

Such temporary divergence is similar to desynchroni-

sation bursts (Rulkov et al. 1995) and strongly suggests

to investigate the evolving sign of the short-term LLE

kmax
H along the attracting climatic trajectory. We computed

kH¼50kyr
max along one of the two attracting trajectories of

system Eqs. 4a, 4b, subject to insolation forcing given by

Eq. 1. The value H = 50 kyr has been chosen because it

corresponds to a reasonable short-term timescale with

respect to the length of the glacial/interglacial cycles. The

Is the astronomical forcing a reliable and unique pacemaker 287

123



result is shown in Fig. 15, where the attracting climatic

trajectory has been coloured according to the values of

kH¼50 kyr
max : Although the system is synchronised on a long

term (kmax = -0.2 kyr-1, see Fig. 17), we see here that

there exist episodes with positive values of the short-term

LLE kmax
H , revealing temporary desynchronisation

(Wieczorek 2009). This explains the divergence of nearby

trajectories found in Fig. 14.

These results remain unchanged with respect to the most

important parameters of the model. For example, our main

conclusion about the stability remain qualitatively valid,

even for different values of a (like a = 100), or with a

different type of potential (U05ðyÞ ¼ ðyþ 1:7Þðyþ 1:58Þ

150 155 160 165
−1

0

1

−1

−0.5

0

0.5

1

y

Time [kyr]

x

Fig. 14 The temporary divergence of nearby climatic trajectories

reveals short-term local instabilities (e.g. around t & 157 kyr). This

illustration was obtained by considering a set of 50 random initial

conditions at t0 = 0 within x� y 2 ½�1; 1� � ½�1; 1�; and by adding

some noise of small amplitude (i.e. b = 0.1 in the equation dy ¼
�s�1ðaðU0ðyÞ � xÞÞdt þ bdW ; with W a Wiener-process) in the

system at every time step in order to trigger the instabilities. The

model used is Eqs. 4a, 4b with a = 11.11, b = 0.25, c = 0.39

(quasiperiodic forcing), and s = 3.33

Fig. 15 Short-term largest Lyapunov exponent kH¼50 kyr
max of one of the

two attracting trajectories of system Eqs. 4a, 4b, subject to insolation

forcing given by Eq. 1, and for the same parameters as in Fig. 14. The

attracting climatic trajectory has been coloured according to the

values of kH¼50 kyr
max ; revealing temporary desynchronisation; this

explains the divergence of nearby trajectories found in Fig. 14, e.g.

around t & 157 kyr

Fig. 16 Sensitivity of the climatic system to perturbations. The same

solution of the ice ages model Eqs. 4a, 4b as in Fig. 3 is plotted

(black) along with one sample trajectory of the same system (red), but

with additive fluctuations added to the fast variable: dy ¼
�s�1ðaðU0ðyÞ � xÞÞdt þ b dW ; with b ¼ 0:5

ffiffiffiffiffiffiffi
x�1

p
and W a Wiener-

process. The arrow shows the time of the jumping from one to the

other climatic attracting trajectory, which reduces the predictability of

the timing of the ice ages
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Fig. 17 Convergence of the two LCEs of one of the two attracting

trajectories of the system Eqs. 4a, 4b, subject to the insolation (Eq. 1)

with c = 0.39; some transient is skipped. For s = 3.33, we have

kmax = -0.2 kyr-1 \ 0 (for s = 35.09, the value must be scaled

accordingly, which would give -0.019 kyr-1), so the system is

synchronised on a long term
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ðyþ 0:8ÞðyÞðy� 0:5Þ), even if the shape and size of the

limit cycle and the boundaries of the basins of attraction

are of course different. The effect of the insolation function

F(t) has also been checked: we compared the attracting

trajectories for the insolation given by Eq. 1 to those for the

insolation given by Laskar et al. (2004). As these insola-

tion functions are very similar, the results are also very

similar, and no difference was noticed.

At first glance, it may appear that these episodes of

temporary divergence are not relevant to the robustness of

synchronisation because climatic trajectories converge

back to the attracting trajectory on a long term. However,

other effects may be present that could strongly amplify

such temporary divergence. They are identified below.

6.2 Sensitivity to perturbations: preliminary results

Consider again Fig. 12 showing (x, y)-sections with coex-

isting attracting trajectories in the case of the quasiperiodic

insolation, and their basins of attraction for different values

of t0. Suppose now that the system is subject to additive

fluctuations (for example, these may represent volcanic

eruptions). Under certain conditions, such external pertur-

bations may cause a displacement of the trajectory to a

different basin of attraction, causing a jump12 to another

attracting trajectory.

As a further illustration of this idea we show in Fig. 16

two attracting trajectories (in the time series format) that

coexist for the same system parameters as those used for

the fit of Fig. 3, but with additive fluctuations added to the

fast variable (see legend for details). A jump from one

trajectory to another at around -475 kyr (arrow) may

clearly be identified. This jump suggests that a climatic

trajectory is robust against fluctuations if it stays away

from the basin boundary but its robustness can weaken

significantly due to the weakening of the global stability

near the basin boundary.

Figure 15 indicates the exact location where the ‘‘syn-

chronisation jumps’’ are likely to occur. At first glance, it

seems that the most critical times are those corresponding

to large positive values of x (i.e. to large ice volumes

according to Fig. 3). More precisely, these critical times

are actually ’just before’ the maximum ice volume, and the

jump occurs then at the beginning of the deglaciation. This

is consistent with the stochastic realisation shown in

Fig. 16.

We conjecture that externally triggered jumps between

coexisting attracting climatic trajectories are most likely

when the temporary desynchronisation due to the loss of

local stability coalesces with the weakening of the global

stability due to the proximity to the basin boundary.

Note finally that a related result has been indicated by

Paillard (2001, on Fig. 14), where the model has only one

attracting trajectory, but this AT is very sensitive to chan-

ges in the model parameters. The end result is that very

different trajectories for the ice volume evolution emerge

from small parameter changes (in Paillard 2001, two pos-

sible trajectories depending on a change in the parameter i0
representing an insolation threshold).

7 Conclusions

Previous studies have shown that locking mechanisms

could be found in the ice ages problem (Le Treut and Ghil

1983; Hyde and Peltier 1985; Paillard 1998; Gildor and

Tziperman 2000), but most of the time, the conclusions

rely on a few particular realisations of the models, without

providing a global analysis of the synchronisation phe-

nomenon, like the one provided in this study.

Also, despite some attempts, the actual type of syn-

chronisation has not been clearly identified or demon-

strated to date. For example, (Ashkenazy 2006; Tziperman

et al. 2006) speak of ‘‘nonlinear phase-locking’’ although

they do not define suitable ’’phase variables’’ that can be

used to demonstrate a fixed-in-time relationship between

phases of the forcing and the oscillator response.

In this paper, we have for the first time identified,

illustrated, and provided a systematic study of the phe-

nomenon of generalised and multistable synchronisation

between a simple conceptual model of the climatic glacial/

Fig. 18 Illustration of the classification algorithm, which allows to

compute the basins of attractions. The position of the 70 trajectories

(black circles) with respect to the three attracting trajectories

(symbols) at time t = 550 kyr, starting from t0 = 20 kyr, are shown.

If the trajectory falls into a dotted circle, classification is possible. The

70 trajectories form three highly concentrated clusters, corresponding

to the three attracting trajectories

12 In the periodic forcing case the phenomenon of jumping from one

attracting trajectory to another in response to a perturbation is called a

phase slip (Pikovsky et al. 2001, p. 238).
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interglacial oscillations and the astronomical forcing. A

van der Pol-type relaxation oscillator, designed to repro-

duce the slow-fast dynamics of the paleoclimatic records,

has been used for illustration purposes, but the methodol-

ogy proposed may of course be applied to other paleocli-

matic models.

The dynamical systems approach proposed herein (1)

allows for stability analysis of such synchronisation, (2)

uncovers interesting effects related to the robustness of the

synchronisation with respect to external perturbations, and

(3) uncovers the phenomenon of multistable synchronisa-

tion that has been overlooked by previous studies. We have

shown that, in contrast to claims in Tziperman et al.

(2006), synchronisation needs not be unique.

To study the uniqueness of synchronisation, we pro-

posed a convenient concept of the number of attracting

trajectories in the phase space of the nonautonomous

forced system, each of which corresponds to a synchron-

ised solution. We computed the number of synchronised

solutions using a numerical clustering technique, and

uncovered that in addition to a unique or monostable

synchronisation, there are parameter settings where one

finds a nonunique or multistable synchronisation. At low

forcing amplitude we found regions of mode locking where

the system synchronises on the individual components of

the astronomical forcing in a way that is similar to fre-

quency-locking on periodic forcing (Arnol’d tongues),

giving rise to coexisting synchronised solutions. As the

forcing amplitude is increased, the combined effects of

precession and obliquity restrict the number of possible

synchronised solutions. The emerging stability diagram

consists of a large region of monostable synchronisation

mixed with smaller regions of multistable synchronisation.

A comparison with periodic forcing shows that the system

finds it easier to synchronise to quasiperiodic insolation

forcing. It is therefore conceivable that the climate system

wandered throughout preferential synchronisation regimes

on obliquity, precession, or combinations of both, all over

the history of the Pleistocene.

The robustness of generalised synchronisation was

investigated in terms of the key indicators of stability of

synchronised solutions: the long- and short-term largest

Lyapunov exponent (local stability), and the geometry of the

basins of attraction (global stability). We found that even

though the synchronised solutions are locally stable on a

long term, there exist episodes where the short-term largest

Lyapunov exponent becomes positive, leading to temporary

desynchronisation. As a result, climatic trajectories could

diverge from the synchronised solution for some short per-

iod of time (it is shown here for 50 kyr). Moreover, we

computed the evolving geometry of the basins of attraction

for the coexisting synchronised solutions, and uncovered

that these solutions sometimes approach the basin boundary

where they become very susceptible to external perturba-

tions. As a result, a small perturbation could make the cli-

mate jump from one synchronised solution to another,

reducing predictability. We conjecture that such jumps are

most likely when the temporary loss of the local stability

coalesces with the proximity to the basin boundary. In this

context, we briefly discussed the effect of stochastic per-

turbations on the timing of the ice-ages. We also illustrated

the difference between the evolving geometry of the basins

of attraction for periodic and quasiperiodic insolation forc-

ing. In the case of the insolation forcing, we obtained an

intricate pattern of basins of attraction that does not appear

to repeat itself in time.

In this way, our results contribute to the emerging theory

of predictability of ice ages. Future works will of course

have to take into account the physical constraints like

reproducing satisfactorily enough the so-called Mid-Pleis-

tocene Transition.
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Appendix 1: Insolation model using 35 terms

We give at the Table 1 the numerical values of the 3 9 35

terms for computing the insolation F(t) following Eq. 1 in

Sect. 1.

Table 1 Coefficients for the insolation model described in Eq. 1 used

for the incoming solar radiation anomaly at Summer Solstice and at

65�N

xi [rad/kyr] si [W/m2] ci [W/m2]

0.153249478547167 -11.2287376815124 3.51682075211241

0.158148666238883 -3.82499371467540 -0.761851750263805

0.117190147169570 2.28814805956066 1.80233702684623

0.155061775112933 -1.29770081956440 -0.635152963728496

290 B. De Saedeleer et al.

123



Appendix 2: Technical details about the calculation

of the Lyapunov exponents

We first refer the reader to the seminal papers (Shimada

and Nagashima 1979; Benettin et al. 1980). The methods

for computing the Lyapunov (characteristic) exponents

(LCE) vary depending on the fact whether one wishes to

achieve the full spectrum of the LCE (Wolf et al. 1985), or

only the largest one (Rosenstein et al. 1993). Analytical

derivations of the LCEs of the van der Pol oscillator do also

exist (Grasman et al. 2005). In this research, we computed

kmax using the standard method involving a Gram-Schmidt

reorthonormalisation (GSR) of the ’tangent vectors’ which

is described in the review paper (Ramasubramanian and

Sriram 2000). As the system Eqs. 4a, 4b and the Jacobian

have an analytical form, tangent space methods (Kantz and

Schreiber 2004) can be used.

We remind here the fundamental principles and tools

that were used to achieve the results presented in the

present paper concerning the Lyapunov exponents. Con-

sider an n-dimensional continuous-time dynamical system:

dZ

dt
¼ fðZ; tÞ ð7Þ

where Z and f are n-dimensional vector fields. To

determine the LCEs corresponding to some initial

condition Z(0), we have to find the long term evolution

of the axes of an infinitesimal sphere of states around Z(0).

That is to say that we assume (Ott 2002) dZðtÞ ¼
dZð0Þ eKt; with K ¼ diagðk1; . . .; knÞ; where ki are the

eigenvalues of the system. For this, we consider the

linearisation of Eq. 7, given by:

d dZ

dt
¼ J dZ ð8Þ

where J is the n 9 n Jacobian matrix defined by Jij = qfi /

qZj. Then, starting from a unit vector dZ(0), the original

system given by Eq. 7 is integrated for Z together with the

dZ tangent system given by Eq. 8. The evolution of dZ is

such that it tends to align with the most unstable direction

(the most rapidly growing one). The choice of the initial

vector of the tangent manifold may influence the conver-

gence, but in practice a spin-up phase can be performed in

order to find the good direction.

The largest Lyapunov exponent kmax is then defined as:

kmax ¼ lim
jdZð0Þj!0

lim
t!1

1

t
ln
jdZðtÞj
jdZð0Þj ð9Þ

It is of course impossible in practice to go to infinity13;

so the computation is always truncated to some finite final

time, usually of the order of 104–5 times the period of the

forcing. The convergence can be more rapidly achieved if

some transient behaviour is skipped (like illustrated in

Fig. 17), i.e. we compute the LCEs only when we are quite

sure to be on the attracting trajectory.

But a dynamical system of dimension n has n LCEs and

n eigenvectors (Lichtenberg and Lieberman 1983): there

exists a whole spectrum of Lyapunov exponents ki

(i = 1, 2, …, n). This spectrum can be computed with a

unit vector basis, and with a renormalisation procedure.

Although we are mostly interested in kmax in this article—a

positive kmax is associated with a desynchronisation—, our

subroutine allows to compute all the spectrum of ki’s of

any system. For the sake of flexibility, we used a symbolic

software, so that the model could be very easily changed,

and all functions (like the Jacobian matrix) are automati-

cally derived once the initial system is given.

Table 1 continued

xi [rad/kyr] si [W/m2] ci [W/m2]

0.217333905941751 0.380973541305497 -1.46301711999210

0.150162587421217 1.54904176353302 -0.0883941912769817

0.211709630908568 -0.810768209286259 -0.577980646565494

0.156336369673117 -0.918358442095885 0.196083726889428

0.148350290855451 0.256895610735773 -0.524697312305024

0.206924898030688 -0.335783913402678 -0.0194792150128644

0.212525165090383 0.267659228540196 0.128915417116900

0.229992875969202 0.0696189733188958 0.0746231714061285

0.306498957094334 0.0247349748169616 0.0140464395340974

0.311398144786051 0.0138353727621181 0.0304736668840422

0.004899187691716 -0.160479848721994 0.0594077968934257

0.264933601588513 -15.5490493322904 -9.70406287110532

0.280151350350945 15.4319556361701 4.75247271131525

0.331110950251899 9.0992249352734 -10.6115244887390

0.328024059125949 -7.87065384013669 6.61544246063503

0.326211762560183 0.813786144754451 -4.52641408099246

0.269742342439881 0.0690448504314857 -3.31639260969558

0.332923246817665 1.44050770785967 1.06339286050120

0.371638925683567 0.925324276580528 -1.02066758672154

0.275366617473065 0.997628846513796 -0.362906496840039

0.323124871434233 -0.378637986107629 0.527217891742183

0.259396912994958 0.339477750517033 -0.560509461538342

0.324937167999999 -0.576082669762308 1.18669572739338

0.334197841377850 0.346906064369828 -0.648189701487285

0.274551083291250 -0.441772417569753 0.289576210423804

0.418183080135680 -0.0184884064645011 0.109632390175297

0.111684123041346 -0.428006728186239 0.357006342316690

0.433400828898112 -0.0049199219454561 -0.106148873639336

0.126901871803777 0.257509918217341 -0.377639794223366

0.336010137943616 -0.421809264016129 0.324327509437558

0.177861471704732 -0.161827722328271 -0.362683869407858

The first 15 terms correspond to the obliquity, while the other 20 terms

correspond to the precession

13 The proof of the existence of such a limit has been given by

Oseledec (1968).
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One of the standard and popular methods to compute the

Lyapunov spectrum of a dynamical system involves a

Gram-Schmidt reorthonormalisation (GSR) of the ’tangent

vectors’ (Shimada and Nagashima 1979; Benettin et al.

1980; Wolf et al. 1985); differential versions of this have

also been formulated. Our subroutine includes the GSR

procedure, which is required in order to avoid computa-

tional overflows, and degeneracy into a single vector. The

frequency of reorthonormalisation is not critical; as a rule

of thumb, GSR is usually performed on the order of once

per characteristic period. Here, the normalisation time step

has been chosen optimally, that is to say the largest pos-

sible which preserves the accuracy. Since the GSR never

affects the direction of the first vector in a system, this

vector tends to seek out the direction in tangent space

which is most rapidly growing.

Our subroutine has been validated by comparing our

LCEs to those of Ramasubramanian and Sriram (2000) for

several systems (driven van der Pol, Lorenz ’63, etc.); the

order of the accuracy achieved is 1% for the Lorenz sys-

tem14. One also checked that div f ¼ TrðJÞ ¼ �r� 1�
b ¼ �13:66 ¼

Pn
i¼1 ki holds. Note that div(f) \ 0 for a

dissipative system (hence the system has at least one

negative exponent).

Coming back to our system of Eqs. 4a, 4b, for which the

Jacobian matrix is:

J ¼ � 0 1

�a aU00ðyÞ

� ��

s ¼ Jðy; aÞ ð10Þ

we end up with the following results (Fig. 17): the system

Eqs. 4a, 4b subject to the insolation (Eq. 1) is synchronised

on a long term, since kmax = -0.2 kyr-1 \ 0.

Note finally that the LCEs are very useful in order to

characterise the dynamical behaviour of a system and that

many theorems exist on several interesting properties; local

bifurcations can also be detected by detecting changes of

signs of ki. It is also possible to estimate the LCE of a system

by analysing time series of a single realisation with limited

data, or a system subject to non-negligible stochastic per-

turbation, where the classical methods may provide incorrect

or ambiguous results (Ruelle 1990), hence require specific

methods, like McCaffrey et al. (1992) and Liu et al. (2005).

Appendix 3: Technical details about the computation

of the basins of attraction

The practical computation of a basin of attraction is done

as follows.

Let us for example come back to Fig. 5e, with the three

attracting trajectories ATi(x, y, t) due to the insolation

forcing.

Now, we wonder which initial condition leads ulti-

mately to which of the three ATi. This is the concept of the

basin of attraction of a given ATi, classically defined by the

set of states that leads to a given ATi. Let us more precisely

define the basin of attraction of a given ATi as the locus of

all points in the (x, y) plane which lead to trajectories

which ultimately converge on that ATi.

We initialise many initial conditions on a fine rectan-

gular grid (201 9 121 = 24 321 points here) covering the

phase space. Each initial condition is then integrated for-

ward to see which ATi its trajectory approached. If the

trajectory approaches a particular one of the three ATi’s, a

dot coloured by the colour identifying the ATi is plotted on

the grid. For doing this, we need to define a target time at

which we will do the classification, and a criterion for the

classification.

The classification algorithm is illustrated in Fig. 18,

where a cut has been made at a target time t = 550 kyr.

The three ATi’s are displayed, together with the location of

the trajectories (black circles). To decide if a given tra-

jectory ends up onto a given ATi, we choose a maximum

distance from the ATi (dotted circle); taken here to be 1/4

of the minimum distance between two ATi’s. Trajectories

falling into that dotted circle are classified as ending into

ATi.

We consider a given trajectory starting from t0 = 0 kyr,

integrate it up to t = 550 kyr, and then we examine its

position with respect to the ATi at the same time

t = 550 kyr. If the distance to a given ATk is ’sufficiently

small’ (see the circles around the ATi), then this initial

condition is coloured in the kth colour, associated with the

kth attracting trajectories ATi. Repeating this process for

each initial condition on a fine grid of the whole phase

space gives the geometry of the basins of attraction. Of

course, there are as many basins of attraction as attracting

trajectories.

As we are in the case of a non-autonomous system, we

then have to repeat this procedure for several starting times

t0 (the position of the ATi’s are constantly evolving, hence

the geometry of the basins are also varying with time). This

has been done to produce the evolving geometry of the

basins of attraction in Figs. 11 (41-kyr periodic forcing)

and 12 (quasiperiodic insolation forcing).

Note that if t is too close from t0, transient behaviours

predominate, and not enough time has elapsed in order for

the trajectory to be attracted by a given ATi, hence the

basins of attraction cannot be defined in that case.

The glacial/interglacial cycles do exist since about 3

million years, but only 8 limit cycles of 100 kyr period have

been performed, since the Mid-Pleistocene Transition. This

14 For the Lorenz system, one must pay attention to the spurious

trivial set of LCEs corresponding to the origin (Shimada and

Nagashima 1979; Bryant et al. 1990).
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should however be sufficient to converge onto the attracting

trajectories, because the climatic trajectories are rapidly

attracted on the limit cycle. So, if the ice age model Eqs. 4a,

4b is a realistic one, it would be reasonable to state that the

transient of climate dynamics has gone, and that we are

currently probably somewhere on an attracting trajectory,

if any.
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