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Abstract West African monsoon is one of the most

challenging climate components to model. Five regional

climate models (RCMs) were run over the West African

region with two lateral boundary conditions, ERA-Interim

re-analysis and simulations from two general circulation

models (GCMs). Two sets of daily rainfall data were

generated from these boundary conditions. These simu-

lated rainfall data are analyzed here in comparison to daily

rainfall data collected over a network of ten synoptic

stations in Burkina Faso from 1990 to 2004. The analyses

are based on a description of the rainy season throughout a

number of it’s characteristics. It was found that the two

sets of rainfall data produced with the two driving data

present significant biases. The RCMs generally produce

too frequent low rainfall values (between 0.1 and 5 mm/

day) and too high extreme rainfalls (more than twice the

observed values). The high frequency of low rainfall

events in the RCMs induces shorter dry spells at the

rainfall thresholds of 0.1–1 mm/day. Altogether, there are

large disagreements between the models on the simulate

season duration and the annual rainfall amounts but most

striking are their differences in representing the distribu-

tion of rainfall intensity. It is remarkable that these

conclusions are valid whether the RCMs are driven by

re-analysis or GCMs. In none of the analyzed rainy season

characteristics, a significant improvement of their repre-

sentation can be found when the RCM is forced by the

re-analysis, indicating that these deficiencies are intrinsic

to the models.

Keywords Climate change � Climate modeling �
Rainfall variability � Sahel � Burkina Faso

1 Introduction

Burkina Faso, as all the West African area, is subject to a

continuous rainfall deficit since the beginning of the 1970

decade (Landsberg 1975; Dai et al. 2004). An analysis of

the rainfall data from 1896 to 2006 in West Africa shows

that the mean annual rainfall amount during the last four

decades (1970–2009) remained lower than the mean

annual rainfall recorded during the period 1900–1970

(Mahé and Paturel 2009). This continuous rainfall deficit

is detrimental to the socio-economic situation because the

population’s main activities, agriculture and livestock,

depend strongly on the rainfall amount fallen during the

rainy season. Every rainfall deficit is synonymous with a

drop in crop yields and a deficit of food. Indeed, two

extreme events demonstrate the fragility of the sahelian

natural resources (surface water, groundwater, and eco-

systems), the drought of 1972–1973 and the drought of

1984–1985 (Landsberg 1975; Herceg et al. 2007) which

caused loss of human life and a decimation of livestock

herds in the semiarid zone. One of the characteristics of

this rainfall deficit is a decrease in the number of rainy
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days (Le Barbé and Lebel 1997). The authors showed that

the rainfall deficit is much more due to a decrease of the

rainfall frequency than to a decrease of the rainfall

amounts per event. Another study (Sivakumar 1988) made

over the Niamey area (Niger) on the predictions of the

potentialities of the rainy season demonstrated the

importance of the installation time and the season lengths.

It showed that the season length depends strongly on the

date of its onset, the earlier (later) the season begins, the

longer (shorter) it will be. Also the longer the season, the

more likely it is to have an important number of rainfall

events and a larger total rainfall. The results of these two

studies show that the rainfall deficit can be related to a

shortening of the rainy season and/or a low number of

rainfall events. The results quoted in this paragraph, show

that the rainfall amount recorded during a season and its

potential to satisfy the needs of the societies depend on

several factors which need to be quantified and should be

predicted by models.

Climate models are essential tools for understanding

climatic processes and their evolution at a global scale

(Hulme et al. 2001; Rockel et al. 2008; Vanvyve et al.

2008; Rodrı́guez-Fonseca et al. 2011; Ruti et al. 2011). One

of the first applications of global models were done over

Africa with the experiments of Charney et al. (1977). But

since it has been established that global models lack the

spatial resolution to properly resolve the mesoscale pro-

cesses (such as the life cycle of the convective systems)

essential for controlling the variability in this region (Sylla

et al. 2009). Regional climate models have been developed

in many institutes in order to overcome these problems.

Their higher resolution allows to represent more detailed

local processes relevant to climate, such as orography,

vegetation distribution or land-use.

Several RCMs have already been tested over West

Africa (Vanvyve et al. 2008; Sylla et al. 2010; Paeth et al.

2011) for different purposes. Most of these studies focused

on their skill in representing the annual or seasonal cycle

of critical meteorological variables (rainfall, temperature,

humidity, cloudiness, etc.). Sylla et al. (2009) assess the

ability of the ICTP (International Center for Theoritical

Physics) regional climate model RegCM3 to reproduce the

seasonal temperature and precipitation cycle during the

period of 1981–2000 over West Africa with two sets of

boundaries conditions, reanalysis data and ECHAM5 out-

put. They found that on average, the first run underesti-

mates rainfall amount during the rainy season while the

second run overestimated it even if both runs produced an

annual cycle of rainfall close to the observed one. Paeth

et al. (2011), in a review of recent dynamical downscaling

exercise over West Africa, found that RCMs are subject to

systematic biases for rainfall over the region. Nevertheless

it is of great interest for RCM output users to have a

detailed evaluation of the main characteristics of the rainy

seasons in these models.

The main focus of this study is the evaluation of the

performance of an ensemble of regional climate models

through the dominant rainy season characteristics derived

from daily rainfall data recorded and simulated over a

typical sahelian area. The observed rainfall data come from

a network of ten well spread synoptic stations over Burkina

Faso for the period 1990–2004. The simulated data are

produced by five regional climate models (CCLM, Had-

RM3P, RACMO, RCA and REMO). The climate models

were run, in the context of the collaboration between the

ENSEMBLES and AMMA European Projects, under the

SRES scenario A1B over the period of 1960–2050 with

GCMs boundary condition. In a second set of simulations

the RCMs were driven by ERA-interim reanalysis (Dee and

Uppala 2008) over the period of 1989–2005. We will first

present in more detail the data used and the methods

applied in order to describe all the sub-seasonal charac-

teristics of the rain-season. Then we will evaluate the

ability of the RCMs to reproduce the observed properties of

the rainfall in this sahelian region.

2 Data

Observed rainfall data were obtained through the effort

made by AMMA (African Monsoon Multidisciplinary

Analysis) to ensure data exchange between operational

services and the research community. The present study

focuses on daily rainfall data recorded by the national

meteorology service of Burkina Faso from a network of ten

synoptic stations (Bobo Dioulasso, Bogandé, Boromo,

Dédougou, Dori, Fada N’Gourma, Gaoua, Ouagadougou,

Ouahigouya, and Po) for the time period 1961–2004. These

stations are homogeneously distributed over the country

(Fig. 1). The datasets are complete for nine stations; there

is only one gap, the 1978 season at Bogande.

Burkina Faso is a land locked country which covers a

surface of about 274,200 km2. The country is subdivided

into three main climate zones (Fig. 1): north-Sudanese in

the south (annual rainfall between 900 and 1,200 mm),

sub-Sahelian in the middle (annual rainfall between 600

and 900 mm) and Sahelian zone in the north (annual

rainfall between 400 and 600 mm).

The second type of data comes from the simulations of

five Regional Climate Models performed in the framework

of the EU FP6, ENSEMBLES project (http://ensemblesrt3.

dmi.dk/). The RCMs used here are listed in Table 1. The

boundary conditions are from the ERA-Interim re-analysis

(1989–2005) and from two global climate models

(1960–2050). The GCMs were run under the SRES A1B

scenario (Nakicenovic et al. 2000) which assumes a
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balanced increase in the greenhouse gas (GHG) concen-

trations. We will consider here only the current climate of

these runs. The two GCMs used as boundary conditions

are, HadCM3Q0 a version of the Hadley Centre’s third

generation coupled ocean–atmosphere general circulation

model (Wilson et al. 2010) and ECHAM5 (Roeckner et al.

2003), the MPI (Max Plank Institute of Germany) fifth-

generation of atmospheric general circulation model.

ECHAM5-r1 and ECHAM5-r3 differ only in the initial

conditions which are based on stabilization runs.

The RCM’s resolution is about 50950 km2 and the

same grid is used by all 5 models. The domain covered by

the models is much larger than our study area and it goes

from 35�W to 30�E and 20�S to 35�N. As the periods

covered by the different data sets are not the same, we will

focus our study on the overlay period of 1990–2004.

3 Methods

This study provides a detailed description of the rainy sea-

sons in Burkina Faso from the data sets discussed above in

order to better identify its characteristics and to determine the

ability of models to reproduce them correctly. The main

rainy season characteristics to be analyzed are related to

season duration (onset and end of season), rainfall intensity

(daily rainfall average, annual rainfall number, extreme daily

rainfall intensities), and dry spells (frequency and duration).

The first approach of the analysis is to identify the rainy

seasons at a given station based on its daily rainfall data.

The rainy season is generally identified in the West African

zone according to different methods depending on the

objectives of the studies and the locations. We can distin-

guish two classes of methods which are usually used in the

Sahelian region; the agronomic method and the hydrolog-

ical method (Sivakumar 1988; Balme et al. 2005). The

agronomic method defines the rainy season start after the

first April with a 3 days cumulative rainfall amount higher

than 20 mm and not followed by a dry spell of more than

7 days. The rainy season end of this method is marked by

the last rainfall higher than 5 mm/day after the first Sep-

tember with any rainfall higher than 5 mm/day during the

twenty following days. For the hydrologic method, the

rainy season begins with the first rainfall higher than

Fig. 1 Synoptic stations with the co-located RCMs grid box. The map represents the three climatic zones and the ten stations with the

surrounding RCM mesh. The climate zones are derived from the annual rainfall average over 1961–1990 from CRU rainfall data

Table 1 List of the five RCMs forced by ERA-interim and a GCM

Institute Driving GCM Model (RCM) References

HZG ECHAM5-r1 CCLM 4.8 Rockel (2008)

KNMI ECHAM5-r3 RACMO2.2b Meijgaard et al. (2008)

HC HadCM3Q0 HadRM3P Moufouma-Okia and

Rowell (2009)

SMHI HadCM3Q0 RCA Samuelsson et al. (2011)

MPI ECHAM5-r3 REMO Kotlarski et al. (2010)
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5 mm/day (runoff triggering threshold) and it ends with the

last rainfall higher than 5 mm/day. The limit of these two

methods is that they are empirical and they are based on

some assumptions on the behavior of land surface condi-

tions or the crops.

As this study deals with simulated rainfall data, which

could have systematic biases (Lebel et al. 2000; Frei et al.

2003; Déqué 2007; Jacob et al. 2007), a new method which

does not include any assumption on locally valid rainfall

thresholds or on any specific application is needed. The

proposed approach will be called the statistical method and

it is valid for a rainfall regime of one rainy season within

the year. The criteria used for this method are only based

on the statistical properties of the daily rainfall time series

for a given station or RCM grid point. The criteria are

formulated as follows:

• The season onset is determined after 5% of the total

annual rainfall amount is reached and the end of the

season is determined after 95% of the annual total

rainfall amount has fallen;

• The date of the season onset corresponds to the date of

the rainfall higher than the average of annual first

rainfall events over the entire period. In addition, to be

considered, the rainfall event must not be followed by a

dry spell longer than the median of the mean dry spell

durations at the station or grid point;

• The end of season is marked by a rainfall event

occurring after or completing the 95% of the annual

rainfall amount and followed by a dry spell longer than

the median dry spell duration at the station or grid point.

Secondly, a rainy day is defined by a threshold of 0.1 mm/

day which is the minimum intensity of the observations. From

this low threshold, six rainfall classes are defined for the daily

rainfall amounts analysis: very low (0.1–5 mm/day), low

(5–10 mm/day), moderate (10–20 mm/day), strong (20–

50 mm/day), very strong (50–100 mm/day) and extremes

([100 mm/day).

The ability of RCMs to reproduce the observed char-

acteristics of rainfall time series is assessed with correla-

tion analysis of the inter-annual variability and statistical

tests for average and variance.

The difference between the observations and the simu-

lations assessment is based on the difference in their

averages and the inter-annual variance of the time series.

Non parametric procedures which don’t require any con-

dition on the data distribution are used to assess the sig-

nificance (Wasserman 2006):

• The nonparametric Wilcoxon rank sum test (Ansari and

Bradley 1960) allows assessing the bias between two

series. For two given samples, the difference between

the data are calculated and classified in ascending order

of the absolute value of the differences. With W? the

sum of the positive value rank and W- the sum of the

negative value rank, W??W- = N(N ? 1)/4, N the

number of non zero differences. If N [ 25 as in this

case with 30 values, the W? or W- distribution can be

approximated by N(l; r) with

l ¼ NðN þ 1Þ
4

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN þ 1Þð2N þ 1Þ
24

r

:

The test variable is u ¼ w�l
r with w = min(W?, W-).

At the significant level of a = 5%, ua = 1.96 taken

from the normal distribution N(0, 1). So, the null

hypothesis (no significant difference between the two

time series) is rejected if uj j is greater than ua. As

suggested by Willmott and Matsuura (2005), the mean

absolute error is used to compute the gap magnitude

between the observed data and the simulated data;

• The non parametric median-centering Fligner-Killeen

test for homogeneity of variances (Fligner and Killeen

1976; Conover et al. 1981) is used at the significant

level a = 5% to assess the differences between the

variances of the 2 data sets. For the correlation, the

Pearson test is used to assess the correlation signifi-

cance between the data (Millot 2009).

Furthermore, the Taylor diagram (Taylor 2001) which

displays on one plot the correlation coefficient and the

relative standard deviation (ratio between the simulated

and observed standard deviations) is used to assess the

inter-annual variability of the simulations.

The procedures listed above are applied at the level of

each station but the analysis will not emphasize the inter

station disparities and most reported results are averages

over the 10 stations or the corresponding 10 grid boxes. As

similar errors were found over the 10 stations, the averages

reported are representative of the whole country. In addi-

tion, a comparison between the CRU (New et al. 2000) and

IRD (Paturel et al. 2010) spatial rainfall data over Burkina

Faso and the ten synoptic stations were conducted but

haven’t shown any meaningful differences. The three

annual rainfall averages (CRU, IRD, and stations) are very

similar. We conclude that the ten synoptic stations capture

well the rainfall characteristics over the whole country. All

evaluations are performed on the ERA-Interim driven as

well as the GCM driven simulations.

4 Results

4.1 Rainy season characteristics in Burkina Faso

The dates of the season onset and the end of the season are

discussed first as they are key parameters for defining the
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rainy season period in the region. For this analysis these

dates are measured in days since the first January of the

given year.

The statistical method of rainy season periods charac-

terization has been verified through a comparison with the

agronomic and hydrologic methods (results not shown

here). It was found that the hydrological method produces

earlier start dates and is very sensitive to isolated intense

rainfall events. In contrast, the agronomic method is very

demanding on the rainfall amounts as it ignores rainfall

sequences between 15 and 20 mm/day separated by 4–7

dry days. In order to illustrate this difference we take the

case of the rainy season of 1978 at Ouahigouya as it dis-

plays the largest difference between the 3 methods. While

the hydrological method gives a season onset on the 14th

March, the agronomic method computes a stating date on

the 18th June and the statistic method determines the sea-

son onset on the 24th April. The large difference between

the two first criteria is observed frequently at the ten sta-

tions. It was also noted that the inter-annual variance of the

season onset is higher with the hydrologic and agronomic

methods than with the statistic method indicating a better

stability for the methodology proposed here.

4.2 Rainy season period characteristics

The rainy season in Burkina Faso is governed by the West

African monsoon flux with a northward intrusion in March

and a southward retreat in September (Sultan and Janicot

2000; Ramel et al. 2006).

In the same way as the monsoon flux, the rainy season

onset in Burkina Faso migrates northward and takes more

than 40 days to run along the country, from the beginning

of April on average at Gaoua (the most south station) to the

first decade of June on average at Dori (the most north

station) (Figs. 2, 3). In contrast, form the same figures, the

duration of the southward migration takes around 20 days

to cover the same North–South distance, from the mid-

September on average at Dori to the beginning of October

on average at Gaoua. Thus, the rainy season installation is

about two times slower than it’s withdrawal. This result is

in agreement with the ITF (Inter-Tropical Front) movement

over West Africa. Lélé and Lamb (2010) found that the ITF

is almost twice as fast in its southward retreat than in its

northward advance. All modeled season onsets and end

dates are at around the observed period at each station. So,

the models reproduce the general migrations of season

onset and end of season but most of them have an early

onset and a delayed end (Figs. 2, 3) when compared to

observations. The HadRM3P is the most advanced in sea-

son onset and the most delayed at the end of season in

contrary to the CCLM model which has a late season

onsets and advanced ends of season. Altogether, the models

generally produce too long rainy seasons. Figures 2 and 3

show that the five models keep the same deficiencies for

the season onset and end of season with the two driving

data sets.

The Wilcoxon test, applied at the 5% level at each

station (results not shown), shows that HadRM3P, RAC-

MO, RCA and CCLM present a significant difference with

Fig. 2 Season onset and end of season at Gaoua from 1990 to 2004.

The whisker boxes represent the season onset and end of season dates

from the observations and the models. The season onset boxes are at

the bottom and the end of the season boxes are at the top. The boxes
represent the full time series with the minimum (the bottom dash), the

first quartile (25%), the median, the third quartile (75%) and the

maximum (the top dash). The vertical lines separate the different sets

of data, first column for the observations, the second column for the

GCM driving data and the third column for the ERA driving data.

Gaoua is the southwest station of the synoptic network stations

B. Ibrahim et al.: Characterization of the rainy season in Burkina Faso 1291

123



the observed dates of seasons onset for the two sets of

driving data. We observe a negative bias (advanced dates)

for the two first models and a positive bias (late dates) for

CCLM. REMO doesn’t present any significant difference

with observations for the GCM driven run (Figs. 2, 3). The

same test applied for the end of season, reveals a significant

delay for HadRM3P and RACMO for the two driving data.

The other models do not present any significant differences

with observation at more than seven stations.

The second aspect to be analyzed for these two

parameters (season onset and end of season) is their inter-

annual variance. It was found from observation that the

season onset has a high inter-annual variance (standard

deviation of 16 days) in comparison to the end of season

(standard deviation of 10 days). These values for the sim-

ulations are on average 21 and 11 days respectively for

season onset and the end of the season (Figs. 2, 3). From

the same figures, we can observe that difference between

models is more important for the season onset than for its

end.

As the models have a similar behavior at the majority of

stations for the two driving data and in order to facilitate

the discussion, we will consider in the rest of this discus-

sion the average over all stations when comparing the

characteristics of the simulated rainy season with obser-

vations. Figure 4 which represents the season duration

shows that three models, HadRM3P, RACMO, and RCA

produce long rainy season in contrast to CCLM model

which produces a short rainy season. Using the re-analysis

to drive these RCMs tends to prolong the rainy season and

thus aggravate the deficiency for most models.

The correlation of the inter-annual variability of these

three parameters (season onset, end of season, season

duration) shows a significant anti correlation (coefficient

less than -0.7) between the season duration and the season

onset at the ten stations. The correlation between the sea-

son duration and the end of season, which has a weak inter-

annual variance, is not significant. These relations between

the three parameters were also found on the simulated data.

The season duration is more related to the season onset

Fig. 3 Season onset and end of

season at Dori from 1990 to

2004. The boxes present the

same statistics of the Fig. 2 for

Dori. Dori is the northwest

synoptic network station

Fig. 4 Season durations in

Burkina from the five models

and observations from 1990 to

2004. The boxes represent the

season duration average over

the ten stations for each model

and driven runs
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than on the end of season. Thus the differences of season

duration (Fig. 4) between the models and for the different

driving data can essentially be attributed to deficiencies in

the simulated season onset.

Despite these differences, the inter-annual variability is

assessed to verify whatever the most realistic large scale

forcing of ERA-interim (Sylla et al. 2010) can lead the

models to reproduce the observed inter-annual variability

of season onset and the end of season.

In Fig. 5, the Taylor diagram of the season onset pre-

sents the correlation and standard deviation between the

15 years time series (1990–2004) of observed and modeled

season onset dates at the 10 stations. The diagram shows

low correlations (lower than 0.5) between the simulated

and the observed onset dates. The models miss the inter-

annual variability of season onset with the two lateral

boundary conditions. The relative standard deviation is

closed to 1 (between 0.5 and 1.25) indicating a good

amplitude of the inter-annual variability. This is confirmed

by the Fligner test for variance homogeneity which shows

no case of significant difference at the 5% level for the two

sets of simulations (ERA driving data and GCMs driving

data), even if the models tend to underestimate the variance

(80% of the points are between the curves 0.5 and 1). For

the second parameter (the end of the seasons) the two sets

of simulations (Fig. 6) do not present either any significant

correlation with observations (coefficients less than 0.4).

The two clouds of points for the GCM and ERA driven

simulations are both distant from the reference point but

the relative standard deviation remains close to 1. The

Fligner test for variance shows no significant differences at

the level of 5%. For the end of season date, the barycenters

of the two sets of simulations are well separated and the

ERA driven simulations show clearly a more positive

correlation. Forcing the RCMs by the re-analysis seems to

increase the correlation of the inter-annual variability of the

end of season dates with observations but it is not sufficient

to produce in these runs a realistic year-to-year variation of

season length and intensity. The simulated season duration

of the two driving data, which results from the 2 parame-

ters discussed above do not present any significant corre-

lation with the observed season duration either.

In this part, we have shown that the regional climate

models do not produce a satisfactory inter-annual vari-

ability of the season onset and end dates. The result is not

improved when the models are driven by the ERA re-

analysis, except perhaps for the season’s end dates. One

may wonder if this result is not linked to the high spatial

variability of rainfall in the region and the fact that only 10

stations are used in this assessment. Studies over the square

degree area of Niamey (Niger) have shown with the high-

density rain gauge network that spatial gradients of annual

rainfall of up to 275 mm over 10 km can be found (Lebel

et al. 1997). In order to verify the influence of the network

used on the results, we have performed the same analysis

on annual mean rainfall averaged over Burkina Faso using

the IRD (Paturel et al. 2010) data sets which include more

than 100 stations over the country. In this case as well, the

correlation between the observed and modeled inter-annual

variability is low (below 0.4 for all models). This means

that the results found with ten stations is robust.

In the following sections we will investigate other

important features related to the rainfall amount.

4.3 Rainfall intensity and number of rain days

Several studies (Barron et al. 2003; Graef and Haigis 2001;

Vischel and Lebel 2007) have demonstrated that the annual

Fig. 5 Taylor diagram of the

rainy season onset at the ten

stations for the five models.

Each point of the diagram

represents a gird box co-located

with a station. The coordinates

are the correlation coefficient

(between the RCM data and the

observations) and the relative

standard deviation of the RCM

data (ratio between the

simulated data standard

deviation and the observed data

standard deviation). The arcs
represent the relative standard

deviation and the lines the

correlation coefficients. The two

points represent the barycenters,

blue point for ERA driving data

and red point for GCM driving

data
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agricultural production or the annual quantity of water in

streams on a basin depends more on the frequency of

rainfall events and their average intensity than on the

annual/seasonal mean rainfall. Regular (one event per

week) moderate rainfall events (10–20 mm/day) will be

more beneficial than irregular (spaced by more than

3 weeks) strong rainfall events ([50 mm/day). Thus the

efficiency, in term of agricultural productivity for instance,

of the rainy season depends more on the intensity and

distribution in time of rainfall event than on the total

amount of water provided to the surface.

Figure 7 displaying the annual rainfall amount average

over all stations (the vertical line represents the average of

the observations) shows a systematic annual rainfall

amount overestimation (right shift) for HadRM3P and

REMO for both forcing data sets. The other models are

closer to observation and their biases are more dependent

on the driving data. RCA driven by a GCM and CCLM

driven by ERA tend to underestimate the annual rainfall

amounts at most stations. For three models, CCLM,

HadRM3P and RCA, the bias is more important in the

ERA driven runs than when the large scale forcing is

taken from the GCM. In addition, the Wilcoxon test

performed at a 5% level shows that only HadRM3P

annual rainfall amount, for both driving data sets have a

significant difference with the observations at the ten

stations. CCLM driven by GCM and RACMO driven by

ERA have no significant difference at more than seven

stations. The others simulations have in general significant

difference with observations at most stations. For the

Fig. 6 Taylor diagram of the

end of the rainy season at the

ten stations for the five models.

Same as Fig. 5

Fig. 7 Annual rainfall amount

averages distribution in Burkina

Faso from 1990 to 2004. The

points represent the annual

rainfall amounts average over

the ten stations sorted and

plotted for each model. The

vertical dash represents the

average of the time series data

and the vertical line is the

average of the observation data
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annual rainfall amount, the impact of a change in the large

scale forcing is not as systematic as it was found for the

parameters analyzed previously.

An analysis of the annual rainfall mount using the

Taylor diagram shows that the RCMs miss the inter-annual

variability of annual rainfall for the two driving data. For

the 15 years time series, the correlation coefficients of the

inter-annual variability between the observations and the

simulations are lower than 0.6 over all simulations and

stations. But the models present good variance homoge-

neity with the observations at the ten stations.

The comparison of the annual number of rainfall

events (Fig. 8) shows a systematic and significant (Wil-

coxon test at the 5% level) overestimation for the five

models at the ten stations. Figure 8 shows that Had-

RM3P and RACMO produce more than twice the

observed number of rainfall days. The ERA-driven runs

present for all analyzed RCMs higher rainfall frequencies

than the GCM-driven runs.

Here also, the RCMs miss the inter-annual variability of

annual number of rain days with correlation coefficients

less than 0.6 over all stations.

The repartition of these two characteristics into the

different rainfall classes (defined in Sect. 3) will allow to

better describe the quality of RCMs throughout the rainfall

intensity spectrum.

The observed annual number of rainfall days and annual

rainfall amounts distribution into the six rainfall classes

from 1990 to 2004 is presented in Fig. 9 from the averages

over the ten stations. The inter-station variation of the

distribution is less than 4% points for all classes as indi-

cated by the error bars in Fig. 9. The largest contribution to

the annual rainfall amount comes from the strong rainfalls

class with more than 48% but it represents only 20% of

annual number of rainfall events. In contrast, the very low

class which represents around 40% the annual rainfall

events contributes less than 7% to the annual totals. We can

point out here that the magnitude of the ‘‘very low’’ is not

Fig. 8 Mean annual number of

rainy days (0.1 mm/day). The

whisker boxes represent the

statistics of the average number

over all stations of the seasonal

rainy days from the

observations (OBS) and the five

RCMs

Fig. 9 Proportion of each

rainfall class in total rainfall and

total number of rainy days. The

inter-stations standard deviation

is the spatial standard deviation

within the ten stations
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related to the rainfall threshold of 0.1 mm/day. A sensi-

tivity assessment with 0.5 and 1 mm/day produced very

similar results. The third class of the average rainfall

events, contributes at the same level to the annual number

and annual amount. The extreme class represents less than

1% of the two sums.

As shown previously (Amani et al. 1996; Stroosnijder

1996), the total rainfall distribution into different classes is

different from the one for the annual number of rainfall

events and demonstrates the importance of individual

strong rainfall events.

First the simulated cumulative fraction of total annual

rainfall contributed by each class of event intensity is

analyzed. Figure 10 shows that for all models, except

CCLM driven by the GCM, the cumulative rainfall weight

distribution is higher than the observed for threshold below

20 mm/day. For CCLM, RACMO and REMO, the ERA

driven runs produce much more low intensity events than

the GCM driven runs. RACMO driven by ERA has 90% of

its total rainfall falling in events of less than 20 mm/day

when in the observational data only 40% of total rainfall is

generated in this class. On the other hand 30% of the total

rainfall in the CCLM model driven by GCM comes from

events producing 20 mm/day or less.

For the strong rainfalls class ([20 mm/day), the cumu-

lated weights for three RCMs (CCLM, RCA and REMO)

are lower than the observed cumulative weights. This is

due to the fact that these models produce high extreme

rainfalls which have a considerable weight on the annual

totals. For these three RCMs, the events of intensity lower

than 50 mm/day contribute less than 75% to the annual

amount. So, the rainfall events higher than 50 mm/day

which represents less than 2% of the model’s annual

rainfall number (2.5% for the observations) contribute

more than 25% (13% for the observations) to the annual

rainfall.

In most cases ERA driven simulations produce sys-

tematically more weak events than the GCM driven runs as

illustrated by the average shift of 5% in Fig. 10. Except for

HadRM3P where the application of the re-analysis at the

lateral boundaries does not change the distribution of the

intensity of rainfall events and in RCA where events tend

to weaken.

For the second distribution we will examine (Fig. 11)

the cumulated number of rain events in the season at

different intensities. For instance in this figure we can

read that 40% of days in the season have recorded rainfall

events with an intensity less than 50 mm/day. In contrast,

the models HadRM3P and RACMO have an occurrence

of more than 80% of days of rain with less than 20 mm/

day during the season. Indeed, the five models overesti-

mate the annual number of rainfall events (rainfall higher

than 0.1 mm/day). HadRM3P and RACMO produced

more than twice the observed annual number of events,

even though their simulated seasons are longer than

observed.

Rainfall events lower than 20 mm/day represent more

than 90% of the RCMs number of days in the season

against 75% for the observations. The very low rainfall

events (\5 mm/day) are dominating in RCMs at a weight

from 50% for HadRM3P to 70% for CCLM against 7% for

the observations. For the five models, the rainfalls lower

than 50 mm/day represent more than 95% of the days in

the season. Hence, the models produce too many rainfall

events of low intensity. In all models the situation is

aggravated when they are forced by the re-analysis as more

rainfall events are produced. The only exception to this

result is HadRM3P.

Fig. 10 Average weight of the

total rainfall events at different

intensities over the annual

rainfall amount in Burkina Faso

(continuous line = GCM driven

simulations and dashed
line = ERA driven

simulations). The curves
represent the cumulative weight

of the total rainfall over the

rainfall event intensities. These

distributions are the averaged

over the ten stations (inter-

stations standard deviations is

less than 5% points). The

dashed lines represent ERA

driven runs and the continuous
lines represent the GCM driven

runs
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With regard to season duration, rainfalls higher than

50 mm/day have similar frequency in the models and the

observations but their weight in the annual totals present

significant differences. It can be noted in Fig. 12c, that the

observed average annual maximum rainfall intensities over

the ten stations is lower than that for CCLM and REMO for

the two driving data sets. RACMO driven by ECHAM5

overestimates also the maximum daily rainfalls over all the

stations in contrary to RACMO driven by ERA which

underestimates the maximum daily rainfall. Only Had-

RM3P model produces maximum daily rainfall close to

observations. For daily average rainfall intensity

(Fig. 12a), the five models (for both driving data sets) are

lower than the observations, pointing again to the domi-

nance of the weak events in the models. The 95th rainfall

intensities percentiles (Fig. 12b) are also underestimated

by the models, indicating that a low number of unrealisti-

cally extreme rainfall events explain the result found for

the annual maximum rainfall events.

Altogether, the three rainfall intensity features (the

annual average, the distribution at different intensities and

the extreme events) derived from the RCM data show

significant differences with the observations. Here also,

ERA driven runs present the highest deviation from the

observations; we will now assess how the rainy days are

distributed within the seasons.

4.4 Frequency and duration of dry spells

The rainy season contains small periods of consecutive dry

days called dry spells. Their frequencies and duration in the

sahelian area depend on the large scale synoptic variability

Fig. 11 Average proportion of

rainfall events number over

season duration in Burkina Faso

(continuous line = GCM

drivien runs and dashed
line = ERA driven runs). The

curves represent the cumulative

weight of the daily rainfalls

number at different intensities

over the season duration. These

proportions are the averages

over the ten stations (the inter-

stations standard deviation is

less than 5% points)

Fig. 12 Daily rainfall intensities in Burkina from 1990 to 2004. Each point represents the annual average of the daily rainfall over the ten

stations
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of the monsoon (Janicot et al. 2011). In order to define

these dry spells, rainfall thresholds need to be given in

order to avoid interrupting the sequence with events that

produce too little rainfall to be significant for agriculture

or water resources (Barron et al. 2003; Modarres 2010).

Sivakumar (1992) showed from a study of dry spells with

five rainfall thresholds (1, 5, 10, 20, 25 mm/day) that the

dry spell length and frequency at a given station depend on

the rainfall threshold, the number of dry spells of less than

5 days decrease with rainfall thresholds while the number

of dry spells more than 15 days increase. The author con-

cluded that drought risks in West Africa are strongly related

to mean annual rainfall amount and dry spell frequency. For

increasing annual rainfall, frequencies of dry spells less

than 5 days increased and frequencies of dry spells of more

than 15 days decreased. The increase of the short dry spells

and the decrease of the long dry spells come from an

increase of the rainfall frequency, rainfalls are separated by

few dry days. Lebel et al. (1997) noted in the observations

from a dense rain gauges network in Niger that while the

1991 and 1992 annual rainfall amounts were similar, the

timing of rainfall was very different in both years. During

1992 the rainy season produced more dry spells ([5 days)

leading to reduced millet crop yields in some areas and the

development of the grass layer was very low.

From the observed daily rainfall timing, the average

length of dry spells at each station is about 3 days with the

rainfall threshold of 0.1 mm/day (minimum rainfall) and

5 days with rainfall threshold of 5 mm/day (imbibitions

rainfall and mean daily potential evapotranspiration in

Burkina Faso). The duration of 5 days is considered as the

limit of the first dry spells class. Following the previous

study (Sivakumar 1992), the dry spell lengths are subdi-

vided in three classes, short (\5 days), average (5–10 days)

and long ([10 days).

Based on the above discussion of the systematic biases

in simulated rainfall intensities notably the high frequency

of the very low rainfalls, the selection of rainfall thresholds

for defining dry spells in the RCM simulations requires

some attention. In order to find a minimal rainfall intensity

which makes the diagnostic less dependent on model bia-

ses, a relative rainfall threshold is defined. This value is

taken at the rainfall intensity where the cumulative weight

of the annual rainfall amount reaches 5% (Fig. 10). This

approach can be justified by the fact that 95% sahelian

annual rainfall is provided by Mesoscale Convective Sys-

tems (MCS) which produces generally larger rainfall

intensities (Laurent et al. 1998). The threshold values can

be read in Fig. 10: it is 4 mm for the observations, 2.5 mm

for CCLM-GCM, 1 mm for RACMO-GCM, 0.5 mm for

RACMO-ERA and 1.5 mm for the other models.

Hence for a detailed description of the dry spells timing,

the following analysis focuses on three characteristics, the

number of consecutive dry days, the number of dry spells

in different classes, and the season’s longest dry spell.

Figure 13 shows that the dry days account for 55% of

the season duration in the observed time series. But the

models have too few dry days in the season, each one with

its respective threshold, and only CCLM reaches values

close to 50%. The ERA driven simulations, despite their

longer rainy seasons, have fewer dry days than the runs

driven by GCM data, with the exception again of

HadRM3P.

Another consequence of the too frequent rainfall pro-

duced by the RCMs is the shrinking of the average dry

spells length. As it has been found for the fraction of dry

days, the average duration of the longest seasonal dry spells

of CCLM driven by ECHAM5 is close to observations

(Fig. 14). The other models present significantly shorter

maximum dry spells. RACMO driven by ERA data has the

Fig. 13 Average fraction of dry

days in the rainy season in

Burkina Faso from 1990 to

2004. Number of dry days

(at the corresponding rainfall

threshold of the data) as a

fraction of the rainy season

duration. The fraction represents

the frequency of dry days within

the rainy season. The whiskers
provide the inter-stations

standard deviation
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shortest maximum dry spell length which is consistent with

its low number of dry days in the season.

The dry spells are distributed into the three classes

according to their duration (Fig. 15) in order to demonstrate

that the short dry spells are the most frequent (more than

70%) in the observations and the simulations. But the models

tend to overestimate this feature. The second (5–10 days)

and third (more than 10 days) classes of dry spells are less

frequent during the rainy season and the models represent

this rapid decrease of occurrence. Altogether, the CCLM

model driven by GCM data reproduces best the dry spell

characteristics probably a consequence of the fact that its

cumulative rainfall distribution events is quite realistic for

low intensity events (\30 mm/day, see Fig. 10).

5 Summary and discussion

This analysis has investigated three main rainy season

components: season duration, rainfall intensity and fre-

quency, and dry spells length that are described by several

parameters or characteristics.

Table 2 sums up these parameters from the observations

and the five models in the three climate zones (sahelian,

sub-Sahelian, and sub-Sahelian) of Burkina Faso. The table

shows that the models reproduce the North–South gradients

of the different parameters between the three climatic

zones but underestimate the speed of the northward prop-

agation of the rainy season and overestimate the contrast in

terms of number of rainy days. The North–South difference

in the number of rain events is 20 in the observations while

it is 34 or 36 days for the RCMs, but on a higher average

values.

We have found that the main common deficiency in the

five models for both driving data sets is the important

number of low intensity rain events (lower than 5 mm/

day). It is twice as high as the observed number. The high

frequency of low rainfall values in the models entails fewer

dry days with the relative rainfall thresholds at 5% of the

cumulative distribution of rainfall intensity. The models

generate fewer dry days and shorter dry spells than

observed.

In these diagnostics as well as those presented above

(disparities between models), it is clear that systematic

biases of the regional models dominate (Paeth et al. 2011).

In other words, the deficiencies found are characteristic of

the models even if they can be aggravated by the data used

to force the model at the boundaries of the domain. Nev-

ertheless, it is remarkable that these deficiencies are

affected by the driving data and the RCMs behave better

when the large scales fields of GCMs are used. One can

speculate that the difference in the number of perturbations

fed into the domain by the two sets of large scale fields

Fig. 14 Season longest dry spell length in Burkina Faso from 1990 to

2004. Each point represents the average over the ten stations of the

seasonal longest dry spell of the dataset. The whiskers provide the

inter-stations standard deviation

Fig. 15 Dry spell classes

weight in the total dry spells in

Burkina Faso from 1990 to

2004. The bars represent the dry

spell classes weight (number of

dry spells of the class) over the

total number of dry spells. The

whiskers provide the inter-

stations standard deviation
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play a role here. It can also be hypothesized that the dif-

ferent balance of thermodynamic conditions in the two data

sets may have an impact on the development of the per-

turbations which generate rainfall during the monsoon

season.

The humidity fed into the domain by the large scale

forcing certainly plays an important role in the deficiencies

of the simulated rainfall distributions. But the relation is far

from trivial. The ERA-Interim forcing provides a realistic

precipitable water contents as could be verified with

independent data (Bock et al. 2011). On the other hand

ECHAM has a too moist atmosphere (John and Soden

2007) and feeds about 10% too much water into the domain

(predominantly from the south during the rainy seasons), as

measured at the borders of the domain. Still the distribution

of rainfall intensities is worse when the 3 models (CCLM,

RACMO and REMO) forced by ECHAM use ERA. It has

to be noted here that RACMO uses in this version (Mei-

jgaard et al. 2008) the same physics package as the EC-

MWF model with which the ERA-Interim re-analysis was

performed (Cycle31r2). Clearly the link in the models

between the background moisture and the rain generating

processes needs to be better understood.

The diagnostic of the simulated inter-annual variability

of the rainy season’s characteristics was deceiving. Even

when the models were forced by the more realistic large

scale forcing provided by the re-analysis the year to year

fluctuations were not well reproduced. This seems to

indicate that the internal dynamics generated by the models

within their domains have more weight on the rainfall

generating processes than the tele-connections which are

well documented for this region (Janicot et al. 2011;

Rodrı́guez-Fonseca et al. 2011). Sylla et al. (2010) found in

their analysis of the RegCM3 simulations a better repre-

sentation of the inter-annual variability of rainfall in West

Africa. But it has to be pointed out that their analysis

covered a larger area of West Africa and only seasonal

rainfall averages were used for the inter-annual variability

validation. Thus our result could be due to our choice of

diagnostic variables and models.

6 Conclusion

This assessment of the regional climate models skill over a

sahelian area of West Africa revealed the importance of

looking at the details of the rainy season and how it is

represented by models. An analysis based only on the

annual or monthly rainfall amounts would hide large parts

of the model’s capability or weaknesses. It is particularly

important for this region to look at the frequency of rain

events and the distribution of their intensities. The five

RCMs presented, which used different large scale forcing

data sets, displayed an overestimation of the frequency of

very low rainfall events (between 0.1 and 5 mm/day) and

an underestimation of the mean daily rainfall amounts.

Despite the long duration of the rainy season in the RCMs,

the high rain event frequency lead to shorter dry spells than

those observed. Dry spell length is an important parameter

for applications and quite telling for the quality of the

Table 2 Average and inter-model standard deviation of some the rainy season characteristics at the three climatic zones

Parameters Regions OBS ERA driven GCM driven

Average Average SD Average SD

Season onset (days since the first January) Sahelian 151 127 21 140 21

Sub-Sahelian 131 119 21 132 21

North-Soudanian 124 108 20 123 21

End of season (days since the first January) Sahelian 267 280 11 277 6

Sub-Sahelian 273 289 12 283 10

North-Soudanian 280 296 14 288 12

Annual rainfall amount (mm/year) Sahelian 589 749 243 680 244

Sub-Sahelian 806 981 256 925 196

North-Soudanian 1,013 1,112 312 1,116 210

Annual number of rainfall days (days/year) Sahelian 36 87 39 71 36

Sub-Sahelian 51 106 45 90 40

North-Soudanian 56 121 50 107 45

Longest dry spell length (days) Sahelian 13 9 1.5 10 1

Sub-Sahelian 11 8 1.5 7.5 1.5

North-Soudanian 10 8 1.5 7 1

Sahelian zone (3 stations), Sub-Sahelian zone (4 stations), North-Soudanian (3 stations)

SD inter-model standard deviation
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representation of the physical processes which govern

rainfall generation (Lafore et al. 2011).

The influence of the driving data on the climatology of

RCMs is well known (Frei et al. 2003; Jacob et al. 2007) but

it was unexpected that using atmospheric re-analysis (ERA-

interim in our case) would lead to worse results than driving

the models with GCM outputs. This raises the question on

the role of the lateral boundary conditions for RCM set-up

over tropical continental areas where land surface processes

play an important role (Taylor et al. 2011).

RCMs are an important tool for studying the impacts of

climate change or fluctuations because of their high reso-

lution. In West Africa their outputs are particularly relevant

for water resources, food production and public health

studies. But it is deceiving that for parameters of the rainy

season essential to these applications, the RCMs show such

large biases. Processes such as infiltration or desiccation of

crops cannot be realistically represented if rainfall events

have too weak intensities or are not separated by long

enough dry spells. It is thus essential to bias-correct the

simulated precipitation in order to reduce the impact of

these biases on the application models. It also calls for a

major effort to improve the representation in RCMs of the

atmospheric processes governing the rainfall generation in

the tropics.
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