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Abstract
Background Texture analysis extracts many quantitative image features, offering a valuable, cost-effective, and non-invasive 
approach for individual medicine. Furthermore, multimodal machine learning could have a large impact for precision medi-
cine, as texture biomarkers can underlie tissue microstructure. This study aims to investigate imaging-based biomarkers of 
radio-induced neurotoxicity in pediatric patients with metastatic medulloblastoma, using radiomic and dosiomic analysis.
Methods This single-center study retrospectively enrolled children diagnosed with metastatic medulloblastoma (MB) and 
treated with hyperfractionated craniospinal irradiation (CSI). Histological confirmation of medulloblastoma and baseline 
follow-up magnetic resonance imaging (MRI) were mandatory. Treatment involved helical tomotherapy (HT) delivering a 
dose of 39 Gray (Gy) to brain and spinal axis and a posterior fossa boost up to 60 Gy. Clinical outcomes, such as local and 
distant brain control and neurotoxicity, were recorded. Radiomic and dosiomic features were extracted from tumor regions 
on T1, T2, FLAIR (fluid-attenuated inversion recovery) MRI-maps, and radiotherapy dose distribution. Different machine 
learning feature selection and reduction approaches were performed for supervised and unsupervised clustering.
Results Forty-eight metastatic medulloblastoma patients (29 males and 19 females) with a mean age of 12 ± 6 years were 
enrolled. For each patient, 332 features were extracted. Greater level of abstraction of input data by combining selection of 
most performing features and dimensionality reduction returns the best performance. The resulting one-component radiomic 
signature yielded an accuracy of 0.73 with sensitivity, specificity, and precision of 0.83, 0.64, and 0.68, respectively.
Conclusions Machine learning radiomic-dosiomic approach effectively stratified pediatric medulloblastoma patients who 
experienced radio-induced neurotoxicity. Strategy needs further validation in external dataset for its potential clinical use in 
ab initio management paradigms of medulloblastoma.
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Introduction

Medulloblastoma (MB) is the most common brain malig-
nancy in pediatric patients, which accounts for 20–25% of 
pediatric central nervous system neoplasms [1, 2]. Despite 
the increase in survival rates in recent years, prognosis 
of MB patients remains relatively poor, and it strongly 
depends on clinical and molecular risk factors [3].

In the past, the risk stratification was based on age at 
diagnosis, disease dissemination, and extent of resection. 
Recently, a new proposed classification identifies four risk 
categories (low, standard, high, and very high risk) tak-
ing into account metastatic stage and genetic and cytoge-
netic aberrations characterized by very different clinical 
outcomes and treatment resistance [4]. MB is currently 
treated with surgery, chemotherapy, and craniospinal irra-
diation (CSI). Cure intensification is based on risk stratifi-
cation and despite this multimodal approach, about 30% of 
high-risk patients experience disease relapse [5].

Moreover, due to the aggressive therapies and the young 
age of MB patients, early and late sequelae such as oto-
toxicity, cardiotoxicity, lung toxicity, neurotoxicity, endo-
crine deficiency, and neurocognitive deficits could often 
develop [6–8]. In particular, neurotoxicity could compro-
mise quality of life in pediatric patients; for example, long-
term neurological sequelae imply that children treated with 
high dose chemotherapy and/or radiotherapy for central 
nervous system tumors had lower educational outcomes 
[9]. The factors that concur to develop neurotoxicity in 
pediatric patients are argument of scientific discussion; 
in a recent retrospective review of 113 patients treated 
with CSI for medulloblastoma, the authors showed a dose 
response relationship between radiotherapy and neuro-
cognitive impairment [10]. New radiotherapy technique, 
smaller radiotherapy field, and lower dose are investi-
gated to reduce the impact of radiotherapy on neurotox-
icity in central nervous system tumors in children [11]. 
Furthermore, the improvement of diagnostic imaging led 
to magnetic resonance imaging (MRI) becoming the gold 
standard in central nervous system tumors [12]. Due to the 
high resolution of morphologic images, MRI guides the 
clinician with the differential diagnosis and consequently 
the first approach to the therapeutic path; moreover, mul-
tiparametric MRI is useful to define treatment response 
not only detecting tumor shrinkage but also to distinguish 
pseudo progression and early signs of neurotoxicity [13].

A revolutionary approach to medical imaging has been 
done with radiomics. The imaging analysis allows the extrac-
tion of quantitative features that could be used for clinical 
purposes. Radiomics derived data when used in combination 
with clinical data could offer information not only about can-
cer genotype but also clinical outcome and toxicity treatment 

correlated [14–17]. We hypothesize that non-invasive bio-
markers offer great potential for improving stratification in 
pediatric medulloblastoma. The aim of this study is to ana-
lyze MRI features of metastatic MB patients treated with 
surgery, chemotherapy, and CSI and look for quantitative 
features that correlate with clinical outcome. Moreover, the 
correlation between MRI radiomics features and dosimet-
ric distribution on planning computed tomography (CT) 
are investigated to predict radio-induced neurotoxicity. This 
toxicity has been identified with radio-necrosis, a condition 
characterized by the death of tissue due to exposure to high 
doses of radiation and frequently occurs in the brain. The 
combination of radiomics and dosiomics (i.e., to extract tex-
ture features from dose distribution [18]) analysis is likely to 
provide non-invasive imaging biomarker of clinical outcome 
and radio-induced toxicity.

Methods

Dataset

All procedures performed in this study involving human 
participants were in accordance with the ethical standards 
of the institution and the Declaration of Helsinki (as revised 
in 2013). The study was approved by the Institutional Pedi-
atric Ethics Committee. Since this study is a retrospective 
analysis and the patients have been anonymously processed, 
the need for informed consent was waived.

In this single-center analysis, data of patients referred for 
adjuvant radiotherapy for pathologically confirmed primary MB 
patients were initially analyzed for further inclusion. The inclu-
sion criteria were (i) availability of postoperative MRI with diag-
nostic-quality performed after adjuvant radiotherapy throughout 
the follow-up period, (ii) availability of multi-parametric MRI, 
including axial T1-weighted, T2-weighted, and FLAIR maps, 
(iii) availability of radiotherapy CT, structures set, plan, and 3D 
dose volume. Patients with incomplete clinical data, poor tumor 
tissue quality, and incomplete or poor-quality MR images were 
excluded from the research. Baseline demographic clinical infor-
mation including age, gender, metastasis, histologic subtype, and 
adjuvant therapies (radiation alone, chemotherapy alone or both 
of them) were collected from the medical record system.

Regarding the follow-up data, obtained by medical 
records, the clinical practice requires MRIs to be acquired 
30–45 days within the last day of radiotherapy treatment 
and every 3 months for the first 3 years after surgery and 
every 6 months thereafter. During the follow-up, neuro-
logical and endocrine assessment were recorded. This has 
allowed clinicians to identify whether or not the radio-
induced neurotoxicity has occurred and to obtain the ground 
truth label, hereinafter referred to as “relapse.” While for 
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radiotherapy-treatment, patients treated with craniospi-
nal irradiation received to the entire brain and spine either 
standard-dose (i.e., 39 Gy) or reduced-dose (i.e., 31.2 Gy) 
in patients < 10 years old. In some cases, patients received 
a boost to the entire posterior fossa or a focal conformal 
boost to tumor bed if a residual disease is present; in both 
cases, total boost volume dose was up to 60 and 59.7 Gy in 
patients > 10 or < 10 years old, respectively. Moreover, the 
radiation was delivered with helical Tomotherapy [19].

Radiomic feature extraction

Prior to feature extraction, two fundamental data pre-pro-
cessing steps were carried out across all the patients: reso-
lution adjustment and images co-registration. Three-dimen-
sional tumor contours were obtained free from radiotherapy 
process by co-registration of MR images on the centering 
CTs. Pixels included by the defined tumor contour were 
applied for feature extraction using PyRadiomics (v2.2.0) 
[20], an open-source Python tool. A detailed description 
of the implementation of these steps and radiomic features 
extracted by the software is available in the official docu-
mentation (https:// pyrad iomics. readt hedocs. io/ en/ latest/ featu 
res. html). A diagram illustrating images processing and the 
overall workflow is displayed in Fig. 1.

Features quantifying tumor phenotypic characteristics on 
MR and dose images could be grouped as tumor intensity 
and texture features. In the first category, tumor intensity 
information is quantified using first-order statistics, obtained 
from the histogram of entire tumor voxel intensity values. 

While the second category consists of three-dimensional 
texture features that are able to quantify the intra-tumoral 
heterogeneity within a full tumor volume. Textural features 
were computed based on Gray Level Cooccurrence Matrix 
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray 
Level Size Zone Matrix (GLSZM), Gray Level Dependence 
Matrix (GLDM), and Neighboring Gray Tone Difference 
Matrix (NGTDM).

Feature selection and classifiers

Data mining and machine learning analysis were performed 
in the Colab environment (https:// colab. resea rch. google. com).

To reduce the batch effects, in the feature analysis, the 
quantitative radiomics raw data were normalized across all 
patients. Two different feature selection and ranking method 
were employed in the analysis based on multivariate filter 
approaches and on recursive feature elimination. Filter meth-
ods are feature-ranking methods, which rank the features 
using a scoring criterion, and multivariate methods investi-
gate the multivariate interaction within the features and the 
scoring criterion is a weighted sum of feature relevancy and 
redundancy. Feature relevancy is a measure of feature’s asso-
ciation with the target/outcome variable, whereas feature 
redundancy is the amount of redundancy present in a particu-
lar feature with respect to the set of already selected features 
[21]. The second approach concerns recursive feature elimi-
nation (RFE). It aims to identify the most relevant features 
from a given dataset by iteratively eliminating less important 
features based on their contribution to a model’s performance. 

Fig. 1  Radiomics workflow 
pipeline

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://colab.research.google.com
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Given an external estimator that assigns weights to features, 
the algorithm recursively eliminates least important features 
considering smaller and smaller sets of features. The number 
of features to eliminate at each iteration is a parameter that 
needs to be specified. After removing the least important fea-
tures, the model is retrained on the reduced feature set. That 
procedure is recursively repeated on the pruned set until a 
predetermined number of features remain or until a specific 
stopping criterion is met. We exploited mutual information 
(MI) and RFE in a fivefold cross-validation fashion for fea-
ture selection and ranking, and principal component analysis 
(PCA) as dimensionality reduction.

We implemented three different classification methods: 
Random Forest (RF), Extreme Gradient Boosting (XGB), 
and Hierarchical Clustering (HC), and external cluster vali-
dation method was applied to get the prediction accuracy. 
We want to spend a few words about the last two less com-
mon classifiers and deepen these concepts of data mining.

Extreme Gradient Boosting [22] is designed to solve super-
vised learning problems, and it is an enhanced version of the 
traditional gradient boosting algorithm. An ensemble model 
combines the outputs of multiple weak prediction models 
to create a stronger and more accurate model. The Random 
Forest is a popular ensemble that takes the average of many 
decision trees via bagging. Bagging is short for “bootstrap 
aggregation,” meaning that samples are chosen with replace-
ment (bootstrapping) and combined (aggregated) by taking 
their average. Boosting is a strong alternative to bagging. 
Instead of aggregating predictions, boosters turn weak learn-
ers into strong learners by focusing on where the individual 
models went wrong. In Gradient Boosting, individual models 
train upon the residuals which are the difference between the 
prediction and the actual results. Instead of aggregating trees, 
gradient-boosted trees learn from errors during each boosting 
round. The key idea behind XGB is to optimize a specific loss 
function by iteratively adding weak models and updating the 
model’s predictions based on the residuals. The “eXtreme” 
refers to speed enhancements since it supports parallel com-
puting. In addition, XGB includes a unique split-finding algo-
rithm to optimize trees, along with built-in regularization to 
prevent overfitting and improve generalization and which con-
trols the complexity of the model.

Hierarchical cluster analysis is an unsupervised clustering 
algorithm. The algorithm groups similar objects into groups 
called clusters. The endpoint is a set of clusters or groups, 
where each cluster is distinct from each other cluster, and 
the objects within each cluster are broadly similar to each 
other. Clustering technique is based on measures of similar-
ity between pair of items in the data set. This similarity is 
conceived in terms of distance in a multidimensional space, 
such as the Euclidean distance. Clustering algorithm then 
group the elements on the basis of their mutual distance, 
specifically it works out which observations to group based 

on reducing the sum of squared distances of each observa-
tion from the average observation in a cluster. Therefore, 
whether or not the elements belong to a set depends on how 
far the element under consideration from the set is. The main 
advantage of hierarchical clustering is that the number of 
clusters does not have to be defined a priori. Moreover, this 
technique can be displayed in an attractive, tree-based rep-
resentation of the observations, called a dendrogram. The 
tree is not a single set of clusters, but rather a multilevel 
hierarchy, where clusters at one level are joined as clusters 
at the next level. The distance between data points represents 
dissimilarities, while height of the blocks represents the dis-
tance between clusters.

Concerning cluster validation, external clustering validity 
approach uses prior knowledge and consists in comparing 
the results of a cluster analysis to an externally known result, 
such as externally provided class labels. It measures the 
extent to which cluster labels match pre-existing clustering 
structure (reference labels). We preferred this method since 
we know the “true” cluster number and reference labels in 
advance [23]. Measures of the machine learning classifier 
performance included: accuracy, sensitivity (recall), speci-
ficity, precision, F1-score, and Matthews Correlation Coef-
ficient (MCC).1

Results

From September 2011 to November 2019, data of 48 medullo-
blastoma patients treated with CSI were collected. The mean 
age was 12 ± 6 years (range, 2–23 years); 29 (60.4%) patients 
were males. At a mean follow-up of 54 months (2–96 months), 
37 (77%) patients were alive. Twenty-nine (60.4%) patients 
had a disease recurrence after CSI; the mean time to recur-
rence from the date of the last radiotherapy treatment was 
21 months (range, 1–49). During the follow-up, 26 (54%) 
patients developed a pituitary hypopituitarism; in particular, 
11 (23%) had low cortisol, 7 (14.6%) hypothyroidism, and 
8 (16.7%) pan hypopituitarism. The mean time of pituitary 
hypopituitarism onset was 21 months (range, 12–48). During 
the follow-up, at the neurocognitive evaluation, in 11 (23%) 
patients, neurocognitive deficits were recorded at a mean time 
of 23 months. Indeed, 3 (6%) patients had working memory 
deficit and 8 (16.7%) patients developed attention deficit. At 
the periodic clinical evaluation in 7 (14.6%) patients, neuro-
motor deficits were recorded, 3 patients developed tetraple-
gia, 3 ataxias, and 1 hemiparesis; the neurological deficit was 
diagnosed at the time of radiological progression in 3 patients. 

1 MCC is a measure of the quality of binary classifications in 
machine learning, ranging from + 1 (perfect prediction) to 0 (average 
random prediction) and − 1 (inverse prediction).
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At a mean time of 16 months (range, 3–48), 40 (83%) patients 
developed radiological evidence of neurotoxicity. At last fol-
low-up, two patients had radiological evidence of radionecro-
sis and one patient had cerebral edema. All the patients with 
neurological toxicity had radiological neurodamage. Starting 
from diagnostic radiology, extractions of a total of 332 radi-
omic and dosiomic features have been performed from each 
patient, 83 for each of the four available images series (three 
MRI sequences and dose distribution). Their pairwise cor-
relation cluster map can be found in supplementary file 1. 
Among these, feature selection worked by selecting the k best 
most informative features based on MI statistical test. In our 
case, the 20 best features derived from dose, T1w and T2w 
images, and FLAIR maps are made explicit in Table 1. Their 
univariate and bivariate distribution in our population based 
on relapse occurrence can be found in supplementary file 2.

The first step of our strategy for feature selection was to 
consider the best 20 features (correlation matrix can be find 
in supplementary file 3) based on the explained variance; 
indeed, in Fig. 2, it can be seen how already with only 20 
components (intended as the number of features), it is pos-
sible to maintain as much as 95% of the variability present 
in the data. A higher explained variance indicates a better fit 
and suggests that the model is capturing a significant portion 
of the underlying relationships between the variables. Taking 

into account the second selection and ranking method, in 
RFE, we set the achievement of 20 features as a stopping 
criterion following what we learned a little while ago. The 
process was repeated with four common external estimators 
(Logistic Regression, LR; Decision Tree, DT; Random For-
est, RF; Gradient Boosting, GB), and the selected features 
were compared with those identified by MI statistical test. 
From the histogram in Fig. 3, it is possible to notice how 
certain variables are more frequently present in the subsets 
of 20 features and are also the same ones that are found in 
the first places of the ranking proposed by the MI analysis.

As second step, feature reduction was conducted exploiting 
the PCA technique, which permits a dimensionality reduction. It 
combines input data by projecting them into a lower number of 
components, four and one in our case, following the rule of thumb 
to select 1 feature every 10/15 variables. Thereby, we increase the 
informative power of the remaining features, but we cannot have a 
direct definition of what each single feature describes.

The evaluation metrics according to the various strate-
gies for features selection and features reduction are shown 
in the Table 2. Considering the best performing strategy, its 
accuracy is 0.73 with 35/48 correctly classified patients. In 
particular, analyzing sensitivity and specificity, the model 
demonstrates good prediction power at identifying patients 
who have suffered radio-induced toxicity.

Table 1  Characteristics of each selected feature and relative class according to PyRadiomics official documentation (https:// pyrad iomics. readt 
hedocs. io/ en/ latest/ featu res. html)

Sequence Features Features class Acronym

Dose Small area high gray level emphasis Gray Level Size Zone Matrix SAHGLE_glszm_Dose
Zone entropy ZE_glszm_Dose
Inverse difference moment normalized Gray Level Co-occurrence Matrix IDMN_glcm_Dose
Busyness Neighboring Gray Tone Difference Matrix Busyness_ngtdm_Dose
Small dependence high gray level emphasis Gray Level Dependence Matrix SDHGLE_gldm_Dose

T1w Maximal correlation coefficient Gray Level Co-occurrence Matrix MCC_glcm_T1
Sum square SS_glcm_T1
Gray level variance Gray Level Dependence Matrix GLV_gldm_T1
Gray level variance Gray Level Run Length Matrix GLV_glrlm_T1
Coarseness Neighboring Gray Tone Difference Matrix Coarseness_ngtdm_T1

T2w Gray level variance Gray Level Dependence Matrix GLV_gldm_T2
Difference average Gray Level Co-occurrence Matrix DV_glcm_T2
Difference entropy DE_glcm_T2
Difference variance DA_glcm_T2
Contrast Contrast_glcm_T2
Cluster tendency CT_glcm_T2
Sum squares SS_glcm_T2
Gray level non-uniformity normalized Gray Level Run Length Matrix GLNUN_glrlm_T2
Gray level variance GLV_glrlm_T2

FLAIR Busyness Neighboring Gray Tone Difference Matrix Busyness _ngtdm_FLAIR

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Fig. 2  Cumulative explained 
variance as function of the 
number of features. Already 
with 20 features, it is possible 
to be accounted for 95% of the 
total variance

Fig. 3  Histogram of the frequency of the top features identified with the different selection methods
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Discussion

In recent years, an increasing number of reports demon-
strated the added value of machine learning–based radiomics 
analysis to clinical and conventional MRI characteristics in 
pediatric MB, pointing out the potential to predict molecular 
markers and molecular subtype, to improve survival predic-
tion, to evaluate the intratumoral heterogeneity, and to boost 
prognostic models [24–27]. However, to our knowledge, the 
relationships between the combination of radiomic-dosiomic 
features and radio-induced neurotoxicity of MB patients has 
not been investigated.

The main finding of this study is that our machine learn-
ing approach showed satisfactory stratification perfor-
mance for clustering of pediatric medulloblastoma patients 
who have experienced radio-induced neurotoxicity based 
on radiomic and dosiomic features extracted from MR and 
dose images.

The accurate stratification of pediatric medulloblastoma 
patients is highly desired to select the most appropriate treat-
ment [24], especially in view of a dose de-escalation with 
the same disease control. Indeed, patients treated with higher 
doses are prone to experience radio-induced neurotoxicity 
resulting in a worse intellectual outcome [10].

The machine learning protocol followed in this study 
foresees examining the dose distribution calculated for the 
radiotherapy treatment plans and the MR images of the first 
follow-up after radiotherapy. In this study, clinical outcome 
and neurological sequelae were reported, but the correlation 
between neurological deficits and radiomic and dosiomic 
features will be investigated in subsequent analyses. From 
the quantitative data extracted from these images, it was pos-
sible to establish a radiomic signature that has the potential 
to early highlight patients in whom radio-induced dam-
age will develop. This could have a great clinical impact, 
because it gives the physician the possibility to intervene 

Table 2  Classifier evaluation 
metrics. MCC, Matthews 
correlation coefficient

Explained 
variance

Model Accuracy Sensitivity Specificity Precision F-score MCC

All 1.00 HC 0.56 0.16 1.00 1.00 0.28 0.29
RF 0.58 0.64 0.52 0.59 0.62 0.16
XGB 0.48 0.58 0.38 0.48 0.53 -0.04

20-best 0.95 HC 0.60 0.56 0.65 0.64 0.60 0.21
RF 0.65 0.80 0.48 0.63 0.70 0.29
XGB 0.63 0.68 0.57 0.63 0.65 0.25

4-best 0.67 HC 0.65 0.36 0.96 0.90 0.51 0.39
RF 0.69 0.88 0.48 0.65 0.75 0.39
XGB 0.65 0.68 0.61 0.65 0.67 0.29

20-best → 4-PCA 0.91 HC 0.63 0.54 0.71 0.65 0.59 0.25
RF 0.67 0.81 0.50 0.66 0.72 0.32
XGB 0.67 0.72 0.61 0.67 0.69 0.33

20-best → 1-PCA 0.74 HC 0.63 0.64 0.62 0.58 0.61 0.25
RF 0.65 0.80 0.48 0.63 0.70 0.29
XGB 0.65 0.60 0.70 0.68 0.64 0.30

4-best → 1-PCA 0.67 HC 0.71 0.60 0.83 0.79 0.68 0.44
RF 0.73 0.83 0.64 0.68 0.75 0.47
XGB 0.67 0.61 0.72 0.67 0.64 0.33

20-RFE—LR 0.93 HC 0.63 0.40 0.87 0.77 0.53 0.30
RF 0.60 0.68 0.52 0.61 0.64 0.20
XGB 0.60 0.64 0.57 0.62 0.63 0.21

20-RFE—DT 0.89 HC 0.58 0.24 0.96 0.86 0.38 0.28
RF 0.60 0.76 0.43 0.59 0.67 0.21
XGB 0.58 0.68 0.48 0.59 0.63 0.16

20-RFE—RF 0.91 HC 0.42 0.32 0.52 0.42 0.36 -0.16
RF 0.69 0.88 0.48 0.65 0.75 0.39
XGB 0.71 0.76 0.65 0.70 0.73 0.42

20-RFE—GB 0.92 HC 0.54 0.60 0.48 0.56 0.58 0.08
RF 0.67 0.80 0.52 0.65 0.71 0.34
XGB 0.69 0.64 0.74 0.73 0.68 0.38
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promptly with adequate therapies and reduce complications, 
since the detriments caused by ionizing radiations have a 
medium-to-long latency.

Considering the feature extraction and reduction strat-
egies, it was possible to appreciate that a greater level of 
abstraction of input data by combining the selection of the 
most performing features and the reduction of dimensional-
ity with PCA returns a better prediction performance. The 
best result was obtained by taking into consideration the 
4-best features according to the ranking given by the MI test 
and projecting these four variables into a single component. 
In this scenario, satisfactory results of the various metrics 
were obtained for all three classifiers; in particular, the 
podium was awarded by the RF algorithm with an accuracy 
of 0.73 and an MCC of 0.47. This outcome is remarkable 
given the small number of the database and indicates a good 
agreement between the predicted and actual classifications, 
probably also due to the simplicity of the trained model 
which made it possible to contain overfitting. The resulting 
drawback of this approach is that we no longer have a direct 
definition of what each single feature describes.

Taking a step back and examining the description of the 
four best identified features, it can be seen how they consider 
small size zones with high gray-level values indicating dose 
hot-spots, disparity in intensity among neighboring voxels and 
heterogeneity across intensity levels for T2-weighted maps, 
and texture complexity in T1-weighted maps. All of them can 
be seen as describing two fundamental properties: homogene-
ity and heterogeneity of the underlying tissue and dose micro-
structure [28, 29]. Further, it must be highlighted that features 
extracted from dose images also contribute to the construction 
of the radiomic signature. In addition, following the scores 
presented in Fig. 3, it is confirmed that certain features are 
robust with respect to the various feature selection methods.

Taking into account the classification methods, all three 
techniques showed good results, comparable to each other and 
without running into overfitting. Between the two supervised 
algorithms, RF shows on average slightly better performance 
than XGB, probably due to for its simplicity, scalability, and 
robustness to noise, and therefore, it is possible to train bet-
ter even with small data size available. From the results in 
Table 2, we can say that unsupervised clustering has interme-
diate performance respect to the two systems just described. It 
is necessary to point out that hierarchical clustering does not 
require any prior assumptions, and the classification we found 
arose spontaneously from the data without forcing. The hier-
archical cluster tree may naturally divide the data into distinct, 
well-separated clusters. This can be particularly evident in the 
attractive dendrogram representation created from data where 
groups of objects are densely packed in certain areas and not 
in others (supplementary file 4).

To sum up, we obtained comparable performance 
applying two intrinsically different methods; on one hand, 

supervised learning algorithms learn patterns and relation-
ships between features and target variable, on the other unsu-
pervised learning algorithm groups similar data points into 
clusters based on their distances or similarities discovering 
inherent patterns without any predefined target variable. 
This indicates the goodness of the available data and the care 
taken in creating the database, albeit of modest dimensions.

Moreover, it is necessary to point out that satisfactory 
results were obtained despite the fact that the available data-
base was small. Machine learning can be applied to small 
databases, although there are some considerations and chal-
lenges to keep in mind when working with limited data. Small 
databases may have a limited number of samples respect to 
the parameters to be optimized, which can lead to overfitting 
and make it challenging to build complex models. However, 
there are several techniques and best practices that can help 
address these issues and still achieve meaningful results. While 
applying machine learning to small datasets can be challeng-
ing, it is still possible to obtain valuable insights and predic-
tions. The success of the chosen approach will depend on the 
careful selection of models, features, and techniques that are 
appropriate for the specific dataset and problem [30, 31].

Nonetheless, some limitations of this study need to be 
addressed. First, pediatric MB is a rare tumor, and although 
our research extends over 8 years, the patients’ cohort is 
quite limited. In addition, the data were all from a single 
institution although this peculiarity has allowed us to build a 
homogeneous, complete, and balanced database. Second, an 
external patient population for assessing the radiomics sig-
nature generalizability is not available. Future investigations 
will require data exchange between different institutions to 
obtain a higher volume database thanks to which it could be 
possible to obtain performance more reflective of the real 
predictive power of the current method.

Conclusions

We believe the current imaging techniques may potentially be 
further equipped to better classify and safely diagnose possi-
ble complications and the current study demonstrated proof-
of-concept results for integrating radiomics protocol. In this 
regard, radiomics and dosiomics may prove a valuable and 
cost-effective aid by providing non-invasive quantitative data 
that integrate qualitative image information already available.
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