Skip to main content

Advertisement

Log in

The role of focused ultrasound for pediatric brain tumors: current insights and future implications on treatment strategies

  • Research
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Focused ultrasound (FUS) is an innovative and emerging technology for the treatment of adult and pediatric brain tumors and illustrates the intersection of various specialized fields, including neurosurgery, neuro-oncology, radiation oncology, and biomedical engineering.

Objective

The authors provide a comprehensive overview of the application and implications of FUS in treating pediatric brain tumors, with a special focus on pediatric low-grade gliomas (pLGGs) and the evolving landscape of this technology and its clinical utility.

Methods

The fundamental principles of FUS include its ability to induce thermal ablation or enhance drug delivery through transient blood-brain barrier (BBB) disruption, emphasizing the adaptability of high-intensity focused ultrasound (HIFU) and low-intensity focused ultrasound (LIFU) applications.

Results

Several ongoing clinical trials explore the potential of FUS in offering alternative therapeutic strategies for pathologies where conventional treatments fall short, specifically centrally-located benign CNS tumors and diffuse intrinsic pontine glioma (DIPG). A case illustration involving the use of HIFU for pilocytic astrocytoma is presented.

Conclusion

Discussions regarding future applications of FUS for the treatment of gliomas include improved drug delivery, immunomodulation, radiosensitization, and other technological advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Udaka YT, Packer RJ (2018) Pediatric brain tumors. Neurol Clin 36(3):533–556

    Article  PubMed  Google Scholar 

  2. Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G et al (2022) CBTRUS statistical report: pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 24(Suppl 3):iii1–iii38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collins KL, Pollack IF (2020) Pediatric low-grade gliomas. Cancers (Basel) 12(5):1152

    Article  CAS  PubMed  Google Scholar 

  4. Bale TA, Rosenblum MK (2022) The 2021 WHO Classification of Tumors of the Central Nervous System: an update on pediatric low-grade gliomas and glioneuronal tumors. Brain Pathol 32(4):e13060

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parekh K, LeBlang S, Nazarian J, Mueller S, Zacharoulis S, Hynynen K et al (2023) Past, present and future of focused ultrasound as an adjunct or complement to DIPG/DMG therapy: a consensus of the 2021 FUSF DIPG meeting. Neoplasia 37:100876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N et al (2022) Applications of focused ultrasound for the treatment of glioblastoma: a new frontier. Cancers (Basel) 14(19):4920

    Article  CAS  PubMed  Google Scholar 

  7. Fry WJ, Barnard JW, Fry EJ, Krumins RF, Brennan JF (1955) Ultrasonic lesions in the mammalian central nervous system. Science 122(3168):517–518

    Article  CAS  PubMed  Google Scholar 

  8. Krishna V, Sammartino F, Rezai A (2018) A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol 75(2):246–254

    Article  PubMed  Google Scholar 

  9. Hynynen K, Sun J (1999) Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion. IEEE Trans Ultrason Ferroelectr Freq Control 46(3):752–755

    Article  CAS  PubMed  Google Scholar 

  10. Ebbini ES, Cain CA (1991) A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Trans Biomed Eng 38(7):634–643

    Article  CAS  PubMed  Google Scholar 

  11. Vimeux FC, De Zwart JA, Palussiére J, Fawaz R, Delalande C, Canioni P et al (1999) Real-time control of focused ultrasound heating based on rapid MR thermometry. Invest Radiol 34(3):190–193

    Article  CAS  PubMed  Google Scholar 

  12. Meng Y, Pople CB, Budiansky D, Li D, Suppiah S, Lim-Fat MJ et al (2022) Current state of therapeutic focused ultrasound applications in neuro-oncology. J Neurooncol 156(1):49–59

    Article  PubMed  Google Scholar 

  13. Quadri SA, Waqas M, Khan I, Khan MA, Suriya SS, Farooqui M et al (2018) High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 44(2):E16

    Article  PubMed  Google Scholar 

  14. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E et al (2013) A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369(7):640–648

    Article  CAS  PubMed  Google Scholar 

  15. Hynynen K (1987) Demonstration of enhanced temperature elevation due to nonlinear propagation of focussed ultrasound in dog’s thigh in vivo. Ultrasound Med Biol 13(2):85–91

    Article  CAS  PubMed  Google Scholar 

  16. Guthkelch AN, Carter LP, Cassady JR, Hynynen KH, Iacono RP, Johnson PC et al (1991) Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. J Neurooncol 10(3):271–284

    Article  CAS  PubMed  Google Scholar 

  17. Coluccia D, Fandino J, Schwyzer L, O’Gorman R, Remonda L, Anon J et al (2014) First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang FY, Teng MC, Lu M, Liang HF, Lee YR, Yen CC et al (2012) Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound. Int J Nanomedicine 7:965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toccaceli G, Delfini R, Colonnese C, Raco A, Peschillo S (2018) Emerging strategies and future perspective in neuro-oncology using transcranial focused ultrasonography technology. World Neurosurg 117:84–91

    Article  PubMed  Google Scholar 

  20. Kobus T, Vykhodtseva N, Pilatou M, Zhang Y, McDannold N (2016) Safety validation of repeated blood-brain barrier disruption using focused ultrasound. Ultrasound Med Biol 42(2):481–492

    Article  PubMed  Google Scholar 

  21. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121(4):901–907

    Article  CAS  PubMed  Google Scholar 

  22. Escoffre JM, Piron J, Novell A, Bouakaz A (2011) Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Mol Pharm 8(3):799–806

    Article  CAS  PubMed  Google Scholar 

  23. Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW et al (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255(2):415–425

    Article  PubMed  Google Scholar 

  24. Yu T, Li SL, Zhao JZ, Mason TJ (2006) Ultrasound: a chemotherapy sensitizer. Technol Cancer Res Treat 5(1):51–60

    Article  CAS  Google Scholar 

  25. Song CW, Park HJ, Lee CK, Griffin R (2005) Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia 21(8):761–767

    Article  CAS  PubMed  Google Scholar 

  26. Syed HR, Kilburn L, Fonseca A, Nazarian J, Oluigbo C, Myseros JS et al (2023) First-in-human sonodynamic therapy with ALA for pediatric diffuse intrinsic pontine glioma: a phase 1/2 study using low-intensity focused ultrasound: technical communication. J Neurooncol 162(2):449–451

    Article  PubMed  Google Scholar 

  27. Jeong EJ, Seo SJ, Ahn YJ, Choi KH, Kim KH, Kim JK (2012) Sonodynamically induced antitumor effects of 5-aminolevulinic acid and fractionated ultrasound irradiation in an orthotopic rat glioma model. Ultrasound Med Biol 38(12):2143–2150

    Article  PubMed  Google Scholar 

  28. Wu SK, Santos MA, Marcus SL, Hynynen K (2019) MR-guided focused ultrasound facilitates sonodynamic therapy with 5-aminolevulinic acid in a rat glioma model. Sci Rep 9(1):10465

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suehiro S, Ohnishi T, Yamashita D, Kohno S, Inoue A, Nishikawa M et al (2018) Enhancement of antitumor activity by using 5-ALA-mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. J Neurosurg 129(6):1416–1428

    Article  CAS  PubMed  Google Scholar 

  30. Appolloni I, Alessandrini F, Ceresa D, Marubbi D, Gambini E, Reverberi D et al (2019) Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting. Cancer Lett 442:213–221

    Article  CAS  PubMed  Google Scholar 

  31. Prada F, Kalani MYS, Yagmurlu K, Norat P, Del Bene M, DiMeco F et al (2019) Applications of focused ultrasound in cerebrovascular diseases and brain tumors. Neurotherapeutics 16(1):67–87

    Article  PubMed  Google Scholar 

  32. Gallus M, Kwok D, Lakshmanachetty S, Yamamichi A, Okada H (2023) Immunotherapy approaches in isocitrate-dehydrogenase-mutant low-grade glioma. Cancers (Basel) 15(14):3726

    Article  CAS  PubMed  Google Scholar 

  33. Joiner JB, Pylayeva-Gupta Y, Dayton PA (2020) Focused ultrasound for immunomodulation of the tumor microenvironment. J Immunol 205(9):2327–2341

    Article  CAS  PubMed  Google Scholar 

  34. Chen PY, Wei KC, Liu HL (2015) Neural immune modulation and immunotherapy assisted by focused ultrasound induced blood-brain barrier opening. Hum Vaccin Immunother 11(11):2682–2687

    Article  PubMed  PubMed Central  Google Scholar 

  35. Memari E, Khan D, Alkins R, Helfield B (2024) Focused ultrasound-assisted delivery of immunomodulating agents in brain cancer. J Control Release 367:283–299

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Zhao C, Li S, Wang J, Zhang H (2023) Immune microenvironment and immunotherapies for diffuse intrinsic pontine glioma. Cancers (Basel) 15(3):602

    Article  CAS  PubMed  Google Scholar 

  37. Yuan J, Xu L, Chien CY, Yang Y, Yue Y, Fadera S et al (2023) First-in-human prospective trial of sonobiopsy in high-grade glioma patients using neuronavigation-guided focused ultrasound. NPJ Precis Oncol 7(1):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Z, Zhang C, Li M, Shen Y, Feng S, Liu J et al (2020) Applications of cerebrospinal fluid circulating tumor DNA in the diagnosis of gliomas. Jpn J Clin Oncol 50(3):325–332

    Article  PubMed  Google Scholar 

  39. Finley DS, Pouliot F, Shuch B, Chin A, Pantuck A, Dekernion JB et al (2011) Ultrasound-based combination therapy: potential in urologic cancer. Expert Rev Anticancer Ther 11(1):107–113

    Article  PubMed  Google Scholar 

  40. Czarnota GJ, Karshafian R, Burns PN, Wong S, Al Mahrouki A, Lee JW et al (2012) Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci USA 109(30):E2033–E2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tran WT, Iradji S, Sofroni E, Giles A, Eddy D, Czarnota GJ (2012) Microbubble and ultrasound radioenhancement of bladder cancer. Br J Cancer 107(3):469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tierney TS, Alavian KN, Altman N, Bhatia S, Duchowny M, Hyslop A et al (2022) Initial experience with magnetic resonance-guided focused ultrasound stereotactic surgery for central brain lesions in young adults. J Neurosurg 137:760–767

    Article  Google Scholar 

  43. Veringa SJ, Biesmans D, van Vuurden DG, Jansen MH, Wedekind LE, Horsman I et al (2013) In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS ONE 8(4):e61512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Englander ZK, Wei HJ, Pouliopoulos AN, Bendau E, Upadhyayula P, Jan CI et al (2021) Focused ultrasound mediated blood-brain barrier opening is safe and feasible in a murine pontine glioma model. Sci Rep 11(1):6521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alli S, Figueiredo CA, Golbourn B, Sabha N, Wu MY, Bondoc A et al (2018) Brainstem blood brain barrier disruption using focused ultrasound: a demonstration of feasibility and enhanced doxorubicin delivery. J Control Release 281:29–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishida J, Alli S, Bondoc A, Golbourn B, Sabha N, Mikloska K et al (2021) MRI-guided focused ultrasound enhances drug delivery in experimental diffuse intrinsic pontine glioma. J Control Release 330:1034–1045

    Article  CAS  PubMed  Google Scholar 

  47. Dasgupta P, Balasubramanyian V, de Groot JF, Majd NK (2023) Preclinical models of low-grade gliomas. Cancers (Basel) 15(3):596

    Article  CAS  PubMed  Google Scholar 

  48. Maimbourg G, Houdouin A, Deffieux T, Tanter M, Aubry JF (2018) 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Phys Med Biol 63(2):025026

    Article  PubMed  Google Scholar 

  49. Hu Z, Yang Y, Xu L, Hao Y, Chen H (2022) Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Front Neurosci 16:984953

    Article  PubMed  PubMed Central  Google Scholar 

  50. Montanaro H, Pasquinelli C, Lee HJ, Kim H, Siebner HR, Kuster N et al (2021) The impact of CT image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations. J Neural Eng 18(4):046041

    Article  Google Scholar 

  51. Ferri M, Bravo JM, Redondo J, Jiménez-Gambín S, Jiménez N, Camarena F et al (2019) On the evaluation of the suitability of the materials used to 3D print holographic acoustic lenses to correct transcranial focused ultrasound aberrations. Polymers (Basel) 11(9):1521

    Article  CAS  PubMed  Google Scholar 

  52. Hughes A, Hynynen K (2017) Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range. Phys Med Biol 62(17):L9–L19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.C., G.K, and H.R.S. wrote the main manuscript text and prepared Figs. 1, 2, 3, 4 and 6, 8. N.P. prepared Fig. 5. L.K., A.F., C.W., D.D., C.O., and J.M. reviewed the manuscript. R.P. and R.K. critically reviewed and edited the manuscript. H.R.S. contributed to the conceptualization and critically reviewed and edited the manuscript. All authors reviewed and approved the manuscript for submission.

Corresponding author

Correspondence to Hasan R. Syed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesney, K.M., Keating, G.F., Patel, N. et al. The role of focused ultrasound for pediatric brain tumors: current insights and future implications on treatment strategies. Childs Nerv Syst (2024). https://doi.org/10.1007/s00381-024-06413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00381-024-06413-9

Keywords

Navigation