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sutures [1, 2]. The condition can be subdivided according 
to the specific sutures which prematurely fuse and includes 
the classifications of sagittal, seen in approximately 60% 
of patients, coronal in 25% of patients, metopic in 15% of 
patients, and lambdoid, seen in 2% of patients [3]. In certain 
cases, craniosynostosis can result in serious complications, 
including developmental delay, facial abnormality, sensory, 
respiratory, and neurological dysfunction, anomalies affect-
ing the eye, and psychological disturbances [4]. Due to 
these potentially life-altering outcomes, the early identifica-
tion and diagnosis of craniosynostosis is vital for successful 
treatment.

Because the recognition of craniosynostosis before symp-
toms emerge relies on a physician’s abilities to determine 
whether or not the physical dimensions of a patient’s skull 
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Abstract
Craniosynostosis refers to the premature fusion of one or more of the fibrous cranial sutures connecting the bones of the 
skull. Machine learning (ML) is an emerging technology and its application to craniosynostosis detection and management 
is underexplored. This systematic review aims to evaluate the application of ML techniques in the diagnosis, severity 
assessment, and predictive modeling of craniosynostosis. A comprehensive search was conducted on the PubMed and 
Google Scholar databases using predefined keywords related to craniosynostosis and ML. Inclusion criteria encompassed 
peer-reviewed studies in English that investigated ML algorithms in craniosynostosis diagnosis, severity assessment, or 
treatment outcome prediction. Three independent reviewers screened the search results, performed full-text assessments, 
and extracted data from selected studies using a standardized form. Thirteen studies met the inclusion criteria and were 
included in the review. Of the thirteen papers examined on the application of ML to the identification and treatment of 
craniosynostosis, two papers were dedicated to sagittal craniosynostosis, five papers utilized several different types of 
craniosynostosis in the training and testing of their ML models, and six papers were dedicated to metopic craniosynosto-
sis. ML models demonstrated high accuracy in identifying different types of craniosynostosis and objectively quantifying 
severity using innovative metrics such as metopic severity score and cranial morphology deviation. The findings highlight 
the significant strides made in utilizing ML techniques for craniosynostosis diagnosis, severity assessment, and predictive 
modeling. Predictive modeling of treatment outcomes following surgical interventions showed promising results, aiding 
in personalized treatment strategies. Despite methodological diversities among studies, the collective evidence underscores 
ML’s transformative potential in revolutionizing craniosynostosis management.
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falls outside a normal range of values, there is great hope 
that this kind of diagnosis can be automated and improved 
with the help of machine learning (ML) [5, 6], an area of 
research which is currently showing great merit in the field 
of neurosurgery and neuro-oncology [7–10]. Each type of 
synostosis has characteristic skull measurements that ML 
programs can be trained to recognize by reading the imag-
ing data for a patient and finding the necessary measure-
ments of the skull needed to determine whether or not the 
patient is likely to have a type of synostosis [7]. The end 
goal of this training is to develop a reliable ML model which 
possesses an accuracy and speed of diagnosis of synostosis 
which is greater than that of human physicians.

This systematic review discusses the kinds of ML models 
and methodologies currently being investigated for clinical 
use in the diagnosis of craniosynostosis and also examines 
the advancements of 3D imaging technology in conjunc-
tion with artificial intelligence for greater identification of 
pathologies. Thirteen papers were interrogated to this effect, 
and the collective results of its authors’ work has been 
assembled for a clear and concise overview of the state of 
research on this topic.

Methods

A comprehensive search was conducted on the PubMed and 
Google Scholar databases to identify relevant studies focus-
ing on the application of ML in craniosynostosis. The search 
strategy employed a combination of keywords. The search 
string utilized terms related to “craniosynostosis,” “Machine 
Learning,” “3D Imaging,” and relevant synonyms. Boolean 
operators (AND, OR) were used to refine the search.

Inclusion and exclusion criteria

Studies were considered eligible for inclusion if they met 
the following criteria: (1) Published in peer-reviewed jour-
nals, (2) written in English, (3) investigated the utilization of 
ML algorithms, models, or techniques in the context of cra-
niosynostosis diagnosis, prognosis, treatment, or outcome 
prediction, and (4) included human subjects or clinical data 
related to craniosynostosis Exclusion criteria encompassed 
studies that were conference abstracts, letters, or duplicates, 
as well as those not focused on craniosynostosis or lacking 
ML applications.

Study selection

The initial search results were screened based on titles and 
abstracts to identify potentially relevant studies. Full-text 
assessment was performed for articles meeting the inclusion 

criteria. Three independent reviewers conducted the screen-
ing and selection process, with any discrepancies resolved 
through discussion or consultation with a fourth reviewer if 
needed.

Data extraction

Two independent reviewers performed data extraction from 
the selected studies using a standardized data extraction 
form specifically developed for this systematic review. The 
extraction form was designed to capture key elements rel-
evant to the utilization of ML in craniosynostosis research. 
The key elements include study characteristics (authors, 
publication year), study design, ML algorithms employed, 
dataset descriptions, outcome measures, and key findings 
related to craniosynostosis. Data extraction was cross-
checked for accuracy and completeness by both reviewers, 
with any discrepancies resolved through discussion and 
consensus.

Bias assessment

Risk of bias assessment was performed using the Joanna 
Briggs Institute (JBI) checklists for case series and random-
ized controlled trials [11].

Results

PRISMA flow diagram of the literature search and study 
selection was demonstrated in Fig. 1. Literature search 
yielded 148 citations after removing duplications. 13 of 
these citations were identified as eligible and included in 
the study according to inclusion criteria (Table 1) [12–24]. 
Figure 2 summarizes the applications of ML in the manage-
ment of craniosynostosis.The JBI criteria-based assessment 
for risk of bias revealed that all the studies included had a 
low risk of bias (Supplementary File 1).

Detection of craniosynostosis

Several papers focused on the detection of craniosynostosis 
using ML models. Anderson et al. introduced a model com-
bining parietal angle (PAA) with cranial index (CI), increas-
ing sensitivity in identifying sagittal craniosynostosis. In 
6 of 122 cases, PAA was abnormal while CI was normal, 
highlighting the potential of adding PAA to improve detec-
tion. The model achieved an overall accuracy of 89.3% [12]. 
Bookland et al. developed a telehealth-compatible diagnos-
tic software with 93.3% accuracy, 92.0% sensitivity, and 
94.3% specificity [15]. Paro et al. demonstrated the accuracy 
of pretrained ML models in identifying craniosynostosis in 
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outpatient clinics, with the best-performing model achiev-
ing 94.8% accuracy, 87.0% sensitivity, and 96.0% speci-
ficity. Studies also emphasized radiation-free approaches 
for diagnosis and classification [20]. Schaufelberger et al. 

presented a shape-model-based classification pipeline with 
an accuracy of 97.8% in diagnosing craniosynostosis. Their 
statistical shape model performed similarly to those based 
on CT scans and stereophotogrammetry [23].

Fig. 1 PRISMA flow diagram
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Table 1 Summary of the Studies Utilizing ML Techniques for Craniosynostosis Diagnosis and Classification
Study Number of 

patients
Age of patients Surgical Tech-

nique Used
Metric Used Algorithm

Anderson et 
al. 2023 [12]

1001 (sagittal 
craniosynostosis 
n = 122, other 
cranial deformity
n = 565, normoce-
phalic = 314).

171.2
± 72.7 days.

NR Posterior Arc Angle (PAA) 
[compared to Cephalic Index 
(CI)]

Tree Based ML Model

Anstadt et al. 
2023 [13]

124 (30 with 
MCS, 94 controls)

5–15 months NR Cranial Morphology Deviation 
(CMD)

Unsupervised ML algorithm 
implemented through Shape-
Works software

Bhalodia et 
al. 2020 [14]

17 affected, 65 
non-affected

5–15 months NR Shape Descriptor [compared to 
Interfrontal Angle (IFA)]

Maximum Likelihood Estima-
tion ML

Blum et al. 
2023 [15]

39 7.7 ± 3.4 months Bifrontal orbital 
advancement and 
remodeling

Metopic Severity Score (MSS) 
and Cranial Morphology Devia-
tion (CMD)

CranioRate: a dysmorphology 
quantification tool based on 
unsupervised ML model

Bookland et 
al. 2021 [16]

40 136.7 ± 78.2 days NR Cephalic Index (CI), Cra-
nial Vault Asymmetry Index 
(CVAI), PAA, sagittal Hu

Linear Discriminant Analysis

Bruce et al. 
2022 [17]

16 patients, 11 
controls

0.97 ± 0.28
years

NR MCS Severity Scores Principal Component Analysis
Principal Component Regression

Cho et al. 
2018 [18]

43 (16 underwent 
surgical treatment, 
27 conservative 
treatment)

Surgical treat-
ment group: 5.9 
months
Non-surgical 
Treatment group: 
8.3 months

NR Average mean curvature of: 
the mid-forehead strip and the 
right/left supraorbital areas

K means clustering

Junn et al. 
2021 [19]

194 CT scans 
analyzed (167 
metopic CS and 
27 controls)

Metopic CS: 
7.18 ± 4.70 
months
Controls: 
9.21 ± 7.82 
months

NR Metopic Severity Score Unsupervised ML algorithm

Paro et al. 
2022 [20]

174 160 days NR CI, CVAI, Anterior Arc Angle 
(AAA), Transcanthal Line 
Angle (TCLA)

Random Forest Partition Tree 
model
Classification and Regression tree
Linear Discriminant Analysis

Porras et al. 
2019 [21]

266 controls, 
201 with 
Craniosynostosis

Control: 1.93
± 1.69 years
Craniosynos-
tosis patients: 
0.77 ± 1.29 years

NR Malformations and Curvature 
Discrepancies

Support Vector Machine 
Classifier

Sabeti et al. 
2022 [22]

145 Under 1 year old Minimally 
invasive sutu-
rectomy or open 
cranial vault 
reconstruction

CI, CVAI, Anterior-Midline 
Width Ratio (AMWR), 
Anterior-Posterior Width Ratio 
(APWR), Left-Right Height 
Ratio (LRHR)

Linear Discriminant Analysis
k-Nearest Neighbor
Support Vector Machine
Random Forest
Bagging (Ensemble method)

Schaufel-
berger et al. 
2022 [23]

367 Under 1.5 years 
old

NR Data from 3D photogrammetry 
scans

Support Vector Machine
Linear Discriminant Analysis
Naive Bayes
Bagged Decision Trees
k-Nearest Neighbors

Villavisanis 
et al. 2022 
[24]

124 3.59 ± 0.87 
months

Spring-mediated 
cranioplasty

CI, Spring Length and Width, 
and Parietal Bone Thickness

Stepwise Multiple Regression 
Analysis
Least Absolute Shrinkage and 
Selection Operator
Random Forest
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using digital photos, achieving classification results between 
85% and 92%, statistically higher than handcrafted indi-
ces [22]. Junn et al. assessed the diagnostic concordance 
between a ML-derived algorithm and manually measured 
severity indices, demonstrating a high diagnostic value of 
the ML-derived score comparable to other severity indices 
[19].

Predictive model for Surgical outcomes

Blum et al. studied a total of 39 patients who underwent 
bony fronto-orbital advancement reconstruction (BFOAR) 
at an average age of 9.9 months between 2012 and 2017. 
The average Metopic Severity Score (MSS) of these patients 
was 6.3 out of 10, indicating an average severity relative 
to the larger metopic population. Regarding surgical tech-
nique, most patients (84.6%) received interpositional bone 
grafts to the central bandeau, with 31.4% receiving parietal 
bone grafts. The average width of the interpositional bone 
graft was 17 mm, with wider grafts typically seen in more 
phenotypically severe patients. Esthetic assessment con-
ducted at an average of 5.4 years post-operation revealed the 
presence of vertical indentation (VI) in 87.2% of patients, 
temporal hollowing (TH) in 76.9%, frontal bone irregular-
ity (FBI) in 61.5%, and lateral orbital retrusion (LOR) in 
20.5%. The majority of patients (61.5%) received a median 
Whitaker classification of II, indicating some degree of 

Severity assessment of metopic craniosynostosis

Several studies delved into quantifying the severity of and 
evaluating metopic craniosynostosis. Anstadt et al. and 
Bhalodia et al. utilized unsupervised ML and shape analy-
sis to objectively measure severity, showing correlations 
with clinical assessments [14]. Anstadt’s study included 36 
craniofacial surgeons and found better correlation with 3D 
shape analysis compared to interfrontal angle assessments 
[13]. Blum et al. explored the impact of preoperative pheno-
typic severity on long-term aesthetic outcomes, revealing a 
significant negative correlation between severity scores and 
age at computed tomography [15]. Bruce et al. presented 
3D photography as a valid alternative to CT scans for evalu-
ating metopic craniosynostosis. Their study, including 14 
patients, demonstrated a close correlation between ML algo-
rithm predictions from 3D photographs and CT scans [17].

ML for identification and diagnosis of 
craniosynostosis

ML played a crucial role in identifying and diagnosing 
craniosynostosis across various studies. Cho et al. used an 
unsupervised ML algorithm to differentiate between benign 
metopic ridge and true metopic craniosynostosis, achieving 
96% agreement with surgeons’ decisions [18]. Sabeti et al. 
developed a user-friendly diagnostic system for newborns 

Fig. 2 Flow diagram depicting the method of extracting data, training models, and its use in craniosynostosis
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is slightly harder to identify visually than sagittal craniosyn-
ostosis. Sagittal craniosynostosis results in scaphocephaly, 
in which the skull is elongated and narrowed along the sagit-
tal suture, while metopic craniosynostosis results in trigono-
cephaly, which presents as a triangular-shaped head that is 
narrow at the front of the skull and broader at the back [28, 
29]. Metopic craniosynostosis therefore imitates a natural 
head shape more closely than sagittal craniosynostosis, and, 
as a result, is more difficult to detect on visual inspection. 
This makes the utilization of a computer program which can 
quickly and objectively measure skull shape parameters and 
compare them to values defined as normal quite useful in 
metopic craniosynostosis identification rather than sagittal 
craniosynostosis.

The two sagittal craniosynostosis papers examined in 
this study utilized the head shape parameter of CI as the 
variable of interest for their ML models. CI is an incred-
ibly useful metric in the evaluation of neonatal skull shapes, 
particularly when planning potential surgical procedures 
for children with cranial deformations [26]. It is defined as 
the width of the skull divided by the length of the skull, 
multiplied by one hundred. Villavisanis et al. created an 
algorithm to analyze the changes in CI which occur after 
spring-mediated cranioplasty, one of the four main surgical 
interventions for the treatment of craniosynostosis. Spring 
placement, anterior spring force, and anterior spring length 
were all found to be statistically significant predictors of 
changes in CI upon multivariate analysis [24]. Anderson et 
al. were attempting to improve CI as a variable for the pre-
diction of sagittal craniosynostosis by adding a new variable 
which they called the PAA, which represents biparietal nar-
rowing of the skull, to a tree-based ML model that predicted 
sagittal craniosynostosis. This model was demonstrated to 
have an increased accuracy when operating with both CI 
and PAA as variables than with CI alone, indicating that CI, 
while already a reliable predictor of sagittal craniosynos-
tosis, can be improved with additional parameters in a ML 
model [12].

For the six papers that examined metopic craniosynosto-
sis, three utilized the MSS for their ML models, two utilized 
CMD, and three utilized novel variables designed or chosen 
specifically by those studies. The MSS is actually a com-
posite score assigned by a ML algorithm which represents 
the severity of the patient’s head shape based on character-
istic features of metopic synostosis. All three studies which 
used MSS also all utilized the ShapeWorks software suite 
to construct their ML algorithms for the calculation of their 
MSS scores. CMD is another composite score which can 
be produced by ML programs built in the ShapeWorks soft-
ware suite, and its function is very similar to MSS. The main 
difference between these two metrics is the exact feature of 
the skull that they are examining and the way their scoring 

esthetic irregularity. Secondary operative intervention was 
required in only 5.2% of patients, primarily for relapse, with 
two additional patients considering revision surgery in the 
future. The Metopic Severity Score (MSS) was identified 
as the only independent predictor of vertical indentation 
(VI), while younger age at surgery and increased length 
of follow-up were associated with worse Whitaker scores, 
indicating poorer esthetic outcomes. Operating at a later age 
may potentially lead to better esthetic outcomes, although 
this decision is complex and requires consideration of vari-
ous factors. Additionally, increased length of follow-up 
was linked to worse esthetic outcomes, highlighting the 
importance of continued longitudinal monitoring to assess 
the quality of correction and identify any late-onset esthetic 
issues [15].

Villavisanis et al. explored predictive modeling for sur-
gical outcomes following spring-mediated cranioplasty 
(SMC). The study included 124 patients with nonsyndromic 
sagittal craniosynostosis undergoing SMC between 2014 
and 2021. SMC involved the placement of cranial torsional 
springs along the sagittal suture to facilitate cranial expan-
sion. The springs were positioned anteriorly, posteriorly, 
and sometimes in the middle of the parietal bones to pro-
mote skull reshaping. The majority of patients received 
three springs, with varying forces and lengths. The springs 
remained in place for an average of 3.7 months postopera-
tively. The study reported relatively low estimated blood loss 
during surgery and a low rate of intraoperative transfusion. 
The average duration of the SMC procedure was around 
104 min, and the average length of hospital stay was less 
than 2 days. The cephalic index (CI) increased significantly 
postoperatively, indicating successful cranial reshaping. 
The changes in CI were most pronounced in the immedi-
ate postoperative period and tended to plateau over time, 
with long-term stability observed up to 5 years postopera-
tively. Analysis of preoperative imaging revealed variations 
in parietal bone thickness among patients. While parietal 
bone thickness was implicated in some predictive models, 
it was not a primary factor driving changes in CI. Maximum 
and total spring forces, anterior and posterior spring lengths, 
and duration were identified as the most predictive variables 
for changes in cephalic index, with demographic variables 
being inferior predictors [24].

Discussion

Sagittal and metopic craniosynostosis are the first and third 
most common types of craniosynostosis in infants [25–27]. 
However, the reason that metopic rather than sagittal cranio-
synostosis appears to have a greater area of research in ML 
identification is due to the fact that metopic craniosynostosis 
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and effective pathways of automated craniosynostosis diag-
nosis may be developed in the future.

Applications to treatment

Currently, the majority of research aimed at machine learn-
ing’s application to craniosynostosis targets the diagnosis 
of this condition. None of the papers cited in this study 
attempted to apply artificial intelligence to the question of 
whether or not surgery is appropriate for the patient, and 
only a small selection of the available literature deals with 
the very large issue of surgical outcomes for procedures 
intended to rectify craniosynostosis. The two papers found 
by this study to examine treatment outcomes as a variable of 
interest were Blum et al. and Villavisanis et al. (Sabeti et al. 
recorded the type of treatment received by their patients but 
did not analyze this data in relation to skull measurements 
or other potentially predictive variables) [22]. Blum et al. 
utilized an average Whitaker classification score, calculated 
from the individual scores provided three craniofacial attend-
ings, as their outcome of interest in determining whether or 
not treatment was successful. The Whitaker classification 
score is a system for describing the aesthetic outcome of 
craniofacial surgeries; however, it has been demonstrated 
that this scoring system suffers from low interrater reliabil-
ity and is not predictive of future treatment [30]. As a result, 
the measurement of a patient’s skull aesthetic by a physician 
is not always the best variable to determine whether or not 
surgery is necessary or successful [15].

Villavisanis et al. offer an alternative approach to the 
assessment of craniosynostosis treatment. Their paper used 
the measurable Cephalic Index as the outcome of inter-
est rather than an aesthetic score, and their work was able 
to determine that spring placement, anterior spring force, 
and anterior spring length were all predictive of changes 
in Cephalic Index scores for patients. These results are a 
good indication that machine learning models can be used to 
accurately determine which impact variables of interest will 
have on the outcome of different potential surgical inter-
ventions for patients with craniosynostosis [24]. There is 
also hope that, in the future, models can be designed which 
will predict the changes in measurable skull parameters for 
patients based on their current physical dimensions and the 
surgical options available to them. Physicians would then be 
able to determine which surgical option would provide the 
best possible outcome for the patient on the basis of changes 
in those parameters. However, these are currently entirely 
theoretical models. No such machine learning system 
has been publicized or shared with the scientific commu-
nity with the capability of predicting surgery outcomes or 
assessing the probability of a particular surgical treatment’s 
benefit for the patient.

systems are to be read. MSS evaluates how similar a given 
skull is to a standard metopic skull, with a score of zero 
to ten being reported in each case, zero indicating a nor-
mal skull. CMD measures skull shape abnormality broadly, 
across several different measurements, and as a result, exists 
on a much larger 300 point scale, with 85 representing a 
normal skull. Both of these metrics were demonstrated to 
be effective predictors of metopic craniosynostosis across 
the three studies which used MSS and CMD in this fashion 
[13, 17, 19].

This study also found that there was a high agreement 
among surgeons in their calculated severity rankings for the 
seventeen metopic skulls examined. Cho et al. were con-
cerned with the question of surgeons’ threshold for opera-
tive intervention in metopic craniosynostosis at one tertiary 
care craniofacial center. They used a novel curvature analy-
sis in order to automatically classify cranial deformities as 
being either a benign metopic ridge or a true metopic cra-
niosynostosis to evaluate the 43 patients evaluated by five 
surgeons over a five-year period. The surgeons studied were 
determined to possess a similar threshold for managing 
patients conservatively or surgically [18]. Thus, while no 
broader studies currently exist on the consistency of diag-
nosis and treatment of metopic craniosynostosis by neuro-
surgeons, these two small sample sizes indicate that there 
may be greater consistency among physicians than would 
be expected for such a difficult clinical question.

The final five papers analyzed in this review all deal with 
the identification of many different types of craniosynosto-
sis by ML programs. As a result, these programs all rely on 
a variety of diagnostic data, including scores such as MSS 
and CMD previously discussed. Each of these papers also 
demonstrated a high accuracy for ML’s diagnosis of each 
type of craniosynostosis included in the studies. However, 
the more interesting feature of these papers is that they deal 
with potential further advancements in the solidifying field 
of ML diagnostics. Bookland et al. discussed the application 
of this technology of utilizing past imaging data for patients 
in order to make future diagnoses that did not require further 
imaging studies, while Porras et al. and Schaufelberger et 
al. examined the novel approach of using three-dimensional 
photography rather than traditional CT scans [16]. The 
former is cheap, noninvasive, and requires no exposure to 
x-ray radiation, all of which are advantages over the latter. 
The only disadvantage is that three-dimensional photogra-
phy does not provide a visualization of the cranial bones 
and sutures in the skull [21]. However, the studies cited here 
have demonstrated that ML programs fed with data from 
three-dimensional photography still possess a very high 
accuracy of diagnosis, with Schaufelberger et al. finding 
that this accuracy was comparable to that of methods using 
CT scans [23]. There is therefore hope that even more safe 
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remain, emphasizing the need for continued research and 
refinement in this field. Incorporating ML-based predictive 
models for hydrocephalus and other neurological conditions 
into clinical practice could aid clinicians in optimizing treat-
ment strategies and improving patient outcomes.

Limitations

The papers reviewed in this study represent a diverse range of 
methodologies in attempting to apply ML to the diagnosis and 
identification of craniosynostosis. As a result, this study func-
tions best as a narrative review, rather than a meta-analysis, 
which cannot be performed due to the nature of the cited litera-
ture. Furthermore, retrospective data is difficult to fairly com-
pare without more standardized prospective data in the future. 
As data grows regarding the application of ML to craniosynos-
tosis diagnosis and treatment, more specific topics will be able 
to be evaluated.

Conclusion

This systematic review highlights the significant strides made 
in utilizing ML techniques for the detection, severity assess-
ment, and predictive modeling of craniosynostosis. Key find-
ings underscore the promising accuracy of ML models in 
diagnosing craniosynostosis types, the objective quantifica-
tion of severity using innovative metrics like metopic sever-
ity score and cranial morphology deviation, and the predictive 
modeling of treatment outcomes following surgical interven-
tions. Despite methodological diversities among studies, the 
collective evidence underscores ML’s transformative poten-
tial in revolutionizing craniosynostosis management, offering 
efficient, radiation-free diagnostic approaches, personalized 
treatment strategies, and avenues for further advancements in 
automated diagnosis with technologies like 3D imaging. Con-
tinued research and collaboration are crucial for realizing the 
full clinical impact of ML in improving outcomes for individu-
als affected by craniosynostosis.
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Future directions and potential applications of ML 
in Pediatric Neurosurgery

The use of photogrammetry for 3D modeling of normal 
anatomy and disease-specific 3D modeling, as well as the 
application of artificial intelligence for the diagnosis and 
management of various neurological pathologies, has been 
widely examined in previous literature [31–34]. Addition-
ally, several studies examined the ML’s potential as a means 
of pre-referral identification of and widespread routine 
screening for conditions such as craniosynostosis. Bookland 
et al. investigated a novel telehealth-compatible diagnostic 
software system, with the potential to be used on either a 
phone or computer and found that the program possessed a 
93.3% accuracy in identifying craniosynostosis, with a sen-
sitivity of 92% and specificity of 94.3%, for 339 orthogonal 
top-down cranial images with or without additional facial 
views [35]. These results not only suggest that remote 
screening can indeed be a substitute for optical scanner- or 
CT-based craniometrics, but that software can be developed 
for a mobile platform which will allow for screening by 
telemedicine or in a primary care setting, novel forms of 
delivery which would increase the efficacy and practicality 
of ML’s use in neurosurgery, allowing both families and all 
levels of physicians will be able to use this technology.

In addition to its application in craniosynostosis diagno-
sis and management, ML techniques hold promise for other 
areas of pediatric neurosurgery, including head circumfer-
ence measurement and monitoring. Similar to the use of 
ML algorithms for craniosynostosis, these techniques can 
be trained on large datasets of head circumference mea-
surements to develop models capable of accurately pre-
dicting normal growth patterns and identifying deviations 
indicative of underlying conditions such as microcephaly 
or macrocephaly [36]. By integrating ML-based head cir-
cumference monitoring systems into routine clinical prac-
tice, healthcare providers can potentially improve the early 
detection of neurological abnormalities and facilitate timely 
interventions to optimize patient outcomes.

Furthermore, ML models have demonstrated utility in 
the management of hydrocephalus, another common pedi-
atric neurosurgical condition. A recent systematic review 
of ML models in normal pressure hydrocephalus (NPH) 
highlighted the diversity of approaches utilized, including 
convolutional neural networks trained on various inputs 
such as clinical features, imaging data (CT and MRI), and 
intracranial pulse waveform characteristics. These models 
exhibited high accuracy in diagnosing NPH and predict-
ing patient outcomes, underscoring the potential of ML to 
enhance decision-making and care in hydrocephalus man-
agement [37]. However, challenges such as standardiza-
tion of ML models and adherence to reporting guidelines 

1 3



Child's Nervous System

models to detect sagittal craniosynostosis with 2D photographs. 
Neurosurg Focus 54(6):E9. https://doi.org/10.3171/2023.3.FO
CUS2349

13. Anstadt EE, Tao W, Guo E et al (2023) Quantifying the sever-
ity of Metopic Craniosynostosis using unsupervised ML. 
Plast Reconstr Surg 151(2):396–403. https://doi.org/10.1097/
PRS.0000000000009853

14. Bhalodia R, Dvoracek LA, Ayyash AM, Kavan L, Whitaker R, 
Goldstein JA (2020) Quantifying the severity of Metopic cranio-
synostosis: a pilot study application of ML in Craniofacial sur-
gery. J Craniofac Surg 31(3):697–701. https://doi.org/10.1097/
SCS.0000000000006215

15. Blum JD, Beiriger J, Villavisanis DF et al (2023) ML in Metopic 
craniosynostosis: does phenotypic severity Predict Long-Term 
Esthetic Outcome? J Craniofac Surg 34(1):58–64. https://doi.
org/10.1097/SCS.0000000000008868

16. Bookland MJ, Ahn ES, Stoltz P, Martin JE (2021) Image pro-
cessing and ML for telehealth craniosynostosis screening in new-
borns. J Neurosurg Pediatr 27(5):581–588 Published 2021 Mar 
19. https://doi.org/10.3171/2020.9.PEDS20605

17. Bruce MK, Tao W, Beiriger J et al (2023) 3D photogra-
phy to quantify the severity of Metopic Craniosynosto-
sis. Cleft Palate Craniofac J 60(8):971–979. https://doi.
org/10.1177/10556656221087071

18. Cho MJ, Hallac RR, Effendi M, Seaward JR, Kane AA (2018) 
Comparison of an unsupervised ML algorithm and surgeon diag-
nosis in the clinical differentiation of metopic craniosynostosis 
and benign metopic ridge. Sci Rep 8(1). https://doi.org/10.1038/
s41598-018-24756-7

19. Junn A, Dinis J, Hauc SC et al (2023) Validation of Artifi-
cial Intelligence Severity Assessment in Metopic Craniosyn-
ostosis. Cleft Palate Craniofac J 60(3):274–279. https://doi.
org/10.1177/10556656211061021

20. Paro M, Lambert WA, Leclair NK et al (2022) ML-Driven clini-
cal image analysis to identify craniosynostosis: a pilot study of 
Telemedicine and Clinic patients. Neurosurgery 90(5):613–618. 
https://doi.org/10.1227/neu.0000000000001890

21. Porras AR, Tu L, Tsering D et al (2019) Quantification of 
head shape from three-dimensional photography for presur-
gical and postsurgical evaluation of craniosynostosis. Plast 
Reconstr Surg 144(6):1051e–1060e. https://doi.org/10.1097/
PRS.0000000000006260

22. Sabeti M, Boostani R, Moradi E, Shakoor MH (2022) ML-
based identification of craniosynostosis in newborns. ML Appl 
8:100292. https://doi.org/10.1016/j.mlwa.2022.100292

23. Schaufelberger M, Kühle R, Wachter A et al (2022) A Radiation-
Free Classification Pipeline for Craniosynostosis Using Statisti-
cal Shape Modeling. Diagnostics (Basel). ;12(7):1516. Published 
2022 Jun 21. https://doi.org/10.3390/diagnostics12071516

24. Villavisanis DF, Shakir S, Zhao C et al (2022) Predicting changes 
in Cephalic Index following spring-mediated cranioplasty for 
nonsyndromic sagittal craniosynostosis: a stepwise and ML Algo-
rithm Approach. J Craniofac Surg 33(8):2333–2338. https://doi.
org/10.1097/SCS.0000000000008745

25. Mathijssen IMJ (2021) Updated Guideline on Treatment and 
Management of Craniosynostosis. J Craniofac Surg 32:371–450. 
https://doi.org/10.1097/SCS.0000000000007035

26. Likus W et al (2014) Cephalic index in the first three years of 
life: study of children with normal brain development based 
on computed tomography. Sci World J 502836. https://doi.
org/10.1155/2014/502836

27. Kellogg R et al (2012) Interfrontal angle for characterization of 
trigonocephaly: part 1: development and validation of a tool for 
diagnosis of metopic synostosis. J Craniofac Surg 23(3):799–804. 
https://doi.org/10.1097/SCS.0b013e3182518ad2

Declarations

Disclosures Authors have no personal, financial, or institutional in-
terest in any of the drugs, materials, or devices described in this 
article.

Conflict of interest The authors have no personal, financial, or in-
stitutional interest in materials or devices described in this article.

Competing interests The authors declare no competing interests.

Ethics The study is deemed to be exempt from receiving ethical ap-
proval.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Governale LS (2015) Craniosynostosis. Pediatr Neurol 53:394–
401. https://doi.org/10.1016/j.pediatrneurol.2015.07.006

2. Nagaraja S, Anslow P, Winter B (2013) Craniosynostosis. Clin 
Radiol 68:284–292. https://doi.org/10.1016/j.crad.2012.07.005

3. Ko JM (2016) Genetic syndromes associated with craniosynosto-
sis. J Korean Neurosurg Soc 59:187–191. https://doi.org/10.3340/
jkns.2016.59.3.187

4. Kajdic N, Spazzapan P, Velnar T (2018) Craniosynostosis - rec-
ognition, clinical characteristics, and treatment. Bosnian J Basic 
Med Sci 18:110–116. https://doi.org/10.17305/bjbms.2017.2083

5. Massimi L et al (2019) Imaging in craniosynostosis: when and 
what? Child’s Nerv Syst 35:2055–2069. https://doi.org/10.1007/
s00381-019-04278-x

6. IBM (2023) What is ML? What is ML? | IBM
7. Panchal J, Uttchin V (2003) Management of craniosynostosis. 

Plast Reconstr Surg 111:2032–2048. https://doi.org/10.1097/01.
PRS.0000056839.94034.47

8. Erb TO, Meier PM (2016) Surgical treatment of craniosynostosis 
in infants: open vs closed repair. Curr Opin Anaesthesiol 29:345–
351. https://doi.org/10.1097/ACO.0000000000000324

9. Levy et al (2023) Exploring the landscape of ML applications 
in neurosurgery: a bibliometric analysis and narrative review 
of trends and future directions. World Neurosurg 181:108–115. 
https://doi.org/10.1016/j.wneu.2023.10.042Epub ahead of print

10. Kocher et al (2020) Applications of radiomics and ML for radio-
therapy of malignant brain tumors. Strahlenther Onkol 196:856–
867. https://doi.org/10.1007/s00066-020-01626-8

11. Munn Z, Stone JC, Aromataris E et al (2023) Assessing the risk of 
bias of quantitative analytical studies: introducing the vision for 
critical appraisal within JBI systematic reviews. JBI Evid Synth 
Mar 1(3):467–471. https://doi.org/10.11124/jbies-22-00224

12. Anderson MG, Jungbauer D, Leclair NK et al (2023) Incorpora-
tion of a biparietal narrowing metric to improve the ability of ML 

1 3

https://doi.org/10.3171/2023.3.FOCUS2349
https://doi.org/10.3171/2023.3.FOCUS2349
https://doi.org/10.1097/PRS.0000000000009853
https://doi.org/10.1097/PRS.0000000000009853
https://doi.org/10.1097/SCS.0000000000006215
https://doi.org/10.1097/SCS.0000000000006215
https://doi.org/10.1097/SCS.0000000000008868
https://doi.org/10.1097/SCS.0000000000008868
https://doi.org/10.3171/2020.9.PEDS20605
https://doi.org/10.1177/10556656221087071
https://doi.org/10.1177/10556656221087071
https://doi.org/10.1038/s41598-018-24756-7
https://doi.org/10.1038/s41598-018-24756-7
https://doi.org/10.1177/10556656211061021
https://doi.org/10.1177/10556656211061021
https://doi.org/10.1227/neu.0000000000001890
https://doi.org/10.1097/PRS.0000000000006260
https://doi.org/10.1097/PRS.0000000000006260
https://doi.org/10.1016/j.mlwa.2022.100292
https://doi.org/10.3390/diagnostics12071516
https://doi.org/10.1097/SCS.0000000000008745
https://doi.org/10.1097/SCS.0000000000008745
https://doi.org/10.1097/SCS.0000000000007035
https://doi.org/10.1155/2014/502836
https://doi.org/10.1155/2014/502836
https://doi.org/10.1097/SCS.0b013e3182518ad2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.pediatrneurol.2015.07.006
https://doi.org/10.1016/j.crad.2012.07.005
https://doi.org/10.3340/jkns.2016.59.3.187
https://doi.org/10.3340/jkns.2016.59.3.187
https://doi.org/10.17305/bjbms.2017.2083
https://doi.org/10.1007/s00381-019-04278-x
https://doi.org/10.1007/s00381-019-04278-x
https://doi.org/10.1097/01.PRS.0000056839.94034.47
https://doi.org/10.1097/01.PRS.0000056839.94034.47
https://doi.org/10.1097/ACO.0000000000000324
https://doi.org/10.1016/j.wneu.2023.10.042
https://doi.org/10.1007/s00066-020-01626-8
https://doi.org/10.11124/jbies-22-00224


Child's Nervous System

Neurosurg (Hagerstown) 23(5):345–354. https://doi.org/10.1227/
ons.0000000000000358

34. Gurses ME, Gonzalez-Romo NI, Xu Y, Mignucci-Jiménez G, 
Hanalioglu S, Chang JE, Rafka H, Vaughan KA, Ellegala DB, 
Lawton MT, Preul MC (2024) Interactive microsurgical anatomy 
education using photogrammetry 3D models and an augmented 
reality cube. J Neurosurg. (published online ahead of print 2024 
https://doi.org/10.3171/2023.10.JNS23516

35. Bookland MJ, Ahn ES, Stoltz P, Martin JE (2021) Image process-
ing and machine learning for telehealth craniosynostosis screen-
ing in newborns. J Neurosurgery: Pediatr 27(5):581–588. https://
doi.org/10.3171/2020.9.PEDS20605

36. James HE, Perszyk AA, MacGregor TL, Aldana PR (2015) The 
value of head circumference measurements after 36 months of age: 
a clinical report and review of practice patterns. J Neurosurgery: 
Pediatr PED 16(2):186–194. https://doi.org/10.3171/2014.12.
PEDS14251

37. Pahwa B, Tayal A, Shukla A et al (2023) Utility of Machine 
Learning in the Management of Normal Pressure Hydrocephalus: 
A Systematic Review. World Neurosurg. Published online June 
24, https://doi.org/10.1016/j.wneu.2023.06.080

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations. 

28. Birgfeld CB et al (2013) Making the diagnosis: metopic ridge 
versus metopic craniosynostosis. J Craniofac Surg 24(1):178–
185. https://doi.org/10.1097/SCS.0b013e31826683d1

29. Aryan HE et al (2005) Surgical correction of metopic synosto-
sis. Child’s Nerv Syst 21(5):392–398. https://doi.org/10.1007/
s00381-004-1108-y

30. Wes AM et al (2017) The Whitaker classification of cranio-
synostosis outcomes: an Assessment of Interrater Reliability. 
Plast Reconstr Surg 140(4):579e–586e. https://doi.org/10.1097/
PRS.0000000000003688

31. Kozel G, Gurses ME, Gecici NN, Gökalp E, Bahadir S, Merenzon 
MA, Shah AH, Komotar RJ, Ivan ME (2024) Chat-GPT on brain 
tumors: an examination of Artificial Intelligence/Machine Learn-
ing’s ability to provide diagnoses and treatment plans for exam-
ple neuro-oncology cases. Clin Neurol Neurosurg 239:108238. 
https://doi.org/10.1016/j.clineuro.2024.108238Epub 2024 Mar 9. 
PMID: 38507989

32. Gurses ME, Gungor A, Gökalp E et al (2022) Three-Dimen-
sional modeling and augmented and virtual reality simulations 
of the White Matter anatomy of the Cerebrum. Oper Neuro-
surg (Hagerstown) 23(5):355–366. https://doi.org/10.1227/
ons.0000000000000361

33. Gurses ME, Gungor A, Rahmanov S et al (2022) Three-Dimen-
sional modeling and augmented reality and virtual reality Simula-
tion of Fiber Dissection of the Cerebellum and Brainstem. Oper 

1 3

https://doi.org/10.1227/ons.0000000000000358
https://doi.org/10.1227/ons.0000000000000358
https://doi.org/10.3171/2023.10.JNS23516
https://doi.org/10.3171/2020.9.PEDS20605
https://doi.org/10.3171/2020.9.PEDS20605
https://doi.org/10.3171/2014.12.PEDS14251
https://doi.org/10.3171/2014.12.PEDS14251
https://doi.org/10.1016/j.wneu.2023.06.080
https://doi.org/10.1097/SCS.0b013e31826683d1
https://doi.org/10.1007/s00381-004-1108-y
https://doi.org/10.1007/s00381-004-1108-y
https://doi.org/10.1097/PRS.0000000000003688
https://doi.org/10.1097/PRS.0000000000003688
https://doi.org/10.1016/j.clineuro.2024.108238
https://doi.org/10.1227/ons.0000000000000361
https://doi.org/10.1227/ons.0000000000000361

	Machine learning applications in craniosynostosis diagnosis and treatment prediction: a systematic review
	Abstract
	Introduction
	Methods
	Inclusion and exclusion criteria
	Study selection
	Data extraction
	Bias assessment

	Results
	Detection of craniosynostosis
	Severity assessment of metopic craniosynostosis
	ML for identification and diagnosis of craniosynostosis
	Predictive model for Surgical outcomes

	Discussion
	Applications to treatment
	Future directions and potential applications of ML in Pediatric Neurosurgery
	Limitations

	Conclusion
	References


