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Abstract
Introduction Traumatic brain injury (TBI) remains the commonest neurological and neurosurgical cause of death and sur-
vivor disability among children and young adults. This review summarizes some of the important recent publications that 
have added to our understanding of the condition and advanced clinical practice.
Methods Targeted review of the literature on various aspects of paediatric TBI over the last 5 years.
Results Recent literature has provided new insights into the burden of paediatric TBI and patient outcome across geographi-
cal divides and the severity spectrum. Although CT scans remain a standard, rapid sequence MRI without sedation has 
been increasingly used in the frontline. Advanced MRI sequences are also being used to better understand pathology and 
to improve prognostication. Various initiatives in paediatric and adult TBI have contributed regionally and internationally 
to harmonising research efforts in mild and severe TBI. Emerging data on advanced brain monitoring from paediatric stud-
ies and extrapolated from adult studies continues to slowly advance our understanding of its role. There has been growing 
interest in non-invasive monitoring, although the clinical applications remain somewhat unclear. Contributions of the first 
large scale comparative effectiveness trial have advanced knowledge, especially for the use of hyperosmolar therapies and 
cerebrospinal fluid drainage in severe paediatric TBI. Finally, the growth of large and even global networks is a welcome 
development that addresses the limitations of small sample size and generalizability typical of single-centre studies.
Conclusion Publications in recent years have contributed iteratively to progress in understanding paediatric TBI and how 
best to manage patients.
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Introduction

Traumatic brain injury (TBI) remains the commonest neu-
rological and neurosurgical cause of death and survivor dis-
ability among children and young adults across the world. 
The Global Burden of Disease 2016 study estimated that 
there were about 27 million new cases of TBI across the 
world, and just under 1 million cases of spinal cord injury 
that year [1]. The number of TBI cases may actually be 
much larger, in the region of 50–60 million cases/year [2]. 
To put this into perspective, there were around 10 million 
new cases of tuberculosis in 2015 [3]. Moreover, it is likely 
that the incidence of TBI is under-reported because it is 
not a registrable condition and there is little organized data 

collection for TBI across the world, especially in LMICs. 
Based on the available data, it is estimated that individuals 
living with a TBI-related disability have a global age-stand-
ardized prevalence of 759 per 100,000 people, correspond-
ing to 55 million individuals with TBI [1]. Still, there are 
surprisingly few large international initiatives in the field, 
and funding for organized research remains inexplicably 
small, especially given the potential for research-directed 
clinical care to make a significant difference in outcomes. 
For historical reasons, the funding for organized studies in 
pediatric TBI is dwarfed by funding for infectious, cardio-
vascular, and neurodegenerative diseases.

This current review does not aim to comprehensively 
cover the field of pediatric TBI—several past reviews have 
adequately provided an overview of pediatric TBI clinical 
care and research. Rather, this review aims to provide an 
update on some of the relevant work on the subject in the 
past 5 years and suggest promising areas for future research.
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New insights in the burden of pediatric TBI 
and patient outcome

When evaluating the epidemiology and outcomes of pedi-
atric TBI in published literature, it is important to consider 
the age range in the studies because this affects how we 
should interpret the data. Many centers in the USA report 
data for children and adolescents, up to age 19 or even 21 [4, 
5], whereas other institutions variably have a lower age cut-
off, around 13–14 years old [6]. This is important because 
the mechanisms of injury differ across the age range, and 
the underlying physiology of a young child is very different 
from that of an adolescent, which progressively approxi-
mates adult physiology [7]. How one assesses developmental 
outcomes also differs substantially across the age range and 
requires the use of multiple tools [8]. Sex differences may 
also influence the child’s response to injury, their response 
to interventions, and their overall recovery [9]. Finally, 
where the study was conducted also matters. For exam-
ple, the predominant mechanisms of injury vary across the 
world, mostly influenced by the socio-economic conditions 
of a region. Social determinants of outcome after pediatric 
TBI may have a significant impact on outcome, especially 
in the rehabilitation phase, reflecting the health disparities 
within every community [10]. Furthermore, epidemiology 
within regions may also change over time, due to changes 
in societal organization and pressures, such as increased 
motor vehicle accidents associated with rapid urbanization 
in LMICs. In the USA, other changes, such as an increase 
in suicide among children [11] and increasing incidence of 
firearm injuries, will affect trauma statistics [12].

Although traditionally, the focus on TBI care was largely 
centered on patients with severe TBI, in the last decade, this 
has shifted somewhat to mild TBI and sports-related concus-
sion. Either way, functional outcomes matter at both ends of 
the spectrum and require long-term evaluation for full under-
standing. Tracking measures of executive functioning have 
revealed that even patients with mild TBI may demonstrate 
poorer function at follow-up than controls, and children with 
severe TBI may continue to deteriorate even after plateauing 
for more than a year post-injury [13, 14].

Young children are particularly vulnerable to TBI-related 
developmental delays [14]. The long-term risks for these 
children are not inconsiderable, not only for learning dis-
abilities but also for the development of psychiatric disorders 
[15] and possibly even criminality [16]. When prognosti-
cating and evaluating the effectiveness of interventions, it 
is important to remember that there may be racial/ethnic 
differences in outcome. Much of this difference may be a 
proxy for socio-economic differences in communities, but 
there also may be regional and ethnic differences in cel-
lular responses to injury and disease [17]. Increasingly, the 

influence of population or individual genetics on outcome 
after TBI has been recognized [18, 19].

Increasingly, in the era of large datasets and machine-
learning approaches, outcome prediction models have 
improved over time, with areas under the curve as high 
as 0.9 [20, 21]; however, the degree to which these will 
be used in clinical practice to prognosticate for individual 
patients remains unclear. Still, it is likely that these methods 
will continue to improve and be increasingly used clinically 
in time.

Non-accidental injury (NAI) or abusive head trauma 
(AHT) continues to be a major societal cause of TBI and 
a leading cause of death and disability in the very young. 
Most children who are admitted with a NAI have sustained 
a TBI, and around 70% are under the age of one [22]. An 
analysis of outcomes from a national database of 10,965 
children with TBI found that children with AHT had higher 
mortality compared to TBI due to motor vehicle collision 
after adjustment for relevant confounders [23].

In terms of post-traumatic epilepsy outcomes, a recent 
systematic review found an overall incidence of 10% after 
pediatric TBI, with significant predictors, unsurprisingly, 
being severe TBI classification, intracranial hemorrhage, 
and the occurrence of early seizures [24]. Elsamadicy 
et al. found similar results after analysis of data from a 
large national database [5]. When one examines patients in 
greater depth, post-traumatic epilepsy associates also with 
increased measures of acute care measures: increased ICP, 
increased pressure reactivity index, worse findings on head 
CT, decreased heart rate variability, and the presence of epi-
leptiform discharges and abnormal sleep spindles [25].

Finally, it is important also to remember the psychologi-
cal and financial burden on families of children who have 
suffered a TBI. Extrapolating results from a survey, Nelson 
et al. estimated that pediatric TBI was associated with more 
than 670,000 lost workdays annually over 12 months post-
injury in the USA, translating into more than US $150 mil-
lion in lost productivity [26].

Imaging

CT-based imaging remains the most common form of 
emergency cranial imaging for pediatric TBI, despite 
the growing concerns about radiation risks. This remains 
so largely due to its wide availability, its speed, and its 
sensitivity to detect clinically relevant pathology. Vari-
ous rules, such as from the PECARN group, have been 
introduced to guide clinical decisions about which children 
with mild TBI should undergo imaging [27]. However, 
MRI is being used with increasing frequency, especially 
in the USA. Data from the ADAPT trial showed that MRI 
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was used much more frequently at the US sites compared 
to the international ones (94% of US sites versus 44% of 
international sites performed MRI in at least 70% of chil-
dren with severe TBI, and 40% of sites reported obtaining 
MRI in more than 95% of these cases [28]. In particular, 
rapid sequence MRI without sedation is becoming increas-
ingly popular to avoid CT-radiation. Lindberg et al. [29] 
reported their experience with a fast MRI protocol incor-
porating multiple sequences: their median time to comple-
tion was 6 min in unsedated patients, compared to a 1 min 
completion time with head CT. MRI missed pathology in 
8 out of 111 patients, including 6 isolated fractures and 
2 subarachnoid hemorrhage, all arguably not clinically 
significant. Shope et al. published similar findings: their 
protocol took 7 min to complete with no sedation used; 
in their study, MRI outperformed CT in all pathologies 
other than for skull fractures, for which MRI had a low 
sensitivity [30].

In research, the ENIGMA group has established a 
network of centers engaged with the study of advanced 
MRI sequences to better understand pediatric moderate 
and severe TBI and discover new imaging biomarkers for 
prognostication [31]. It is important to remember that the 
characteristics of TBI imaging are different in children 
than adults: in addition to the greater proportion of diffuse 
injury in children, just because basal cisterns are open 
does not mean that ICP is not elevated [32], and the mani-
festations of pathological ICP on head CT may be different 
to that of adults [33].

Guidelines and consensus documents

Currently, there are no internationally constituted and 
adopted guidelines for pediatric TBI care. The most widely 
cited is the Brain Trauma Foundation–supported guide-
lines for the Management of Pediatric Severe Traumatic 
Brain Injury [34], which has some limitations in gener-
alization and practicality based on regional authorship 
constitution and strict evidence-based approach [35], but 
remains an important contribution to the existing guidance 
on the topic. Being restricted by the evidence-based guide-
line process, the document could make few strong recom-
mendations because the evidence base was weak: there 
were no level I recommendations, only 3 level II recom-
mendations (two of which were negative recommendations 
of what not to do), and the rest were level III, which in the 
old terminology were considered “options”. The level II 
recommendations were as follows: (1) Bolus hypertonic 
saline (3%) is recommended for patients with intracranial 
hypertension (for ICP control), (2) prophylactic moder-
ate (32 to 33 °C) hypothermia is not recommended over 

normothermia to improve overall outcomes, and (3) use 
of an immune-modulating diet is not recommended (to 
improve overall outcomes) [34]. A useful new addition to 
their approach was the development of a proposed algo-
rithm for first and second tier therapies, creating several 
pathways depending on circumstance and the monitoring 
approach used: pathways based on a herniation concern, 
ICP monitoring, CPP-targeting, and brain oxygenation 
monitoring-directed [36].

In 2018, the US–based Centers for Disease and Preven-
tion published a guideline for the diagnosis and manage-
ment of children with mild TBI [37]. This document was a 
North American initiative to develop guidelines for child-
hood mild TBI in line with that which had previously been 
developed for adult TBI. The guidelines recognized the cur-
rent interest in biomarker research but agreed that there is 
insufficient evidence for the use of biomarkers in pediatric 
TBI outside a research setting. There was no single recom-
mendation for tools used in assessment and prognosis of 
mild TBI in children, citing the need for age-appropriate 
rating scales and awareness of the variability in recovery 
across patients. The paper repeats widely held recommen-
dations for some form of cognitive rest after mild TBI with 
gradual return to activity titrated against symptoms, also 
recognizing that return to exercise may be beneficial in 
some patients with prolonged symptoms as long as this did 
not exacerbate those symptoms.

Recently, the Concussion in Sport Group updated recom-
mendations for a tool used in assessment of sports-related 
concussion in the subacute period, the Sports Concussion 
Office Assessment (SCOAT6) [38].

Of parallel interest, because spinal cord injury may occur 
combined with TBI, there is a recently published Delphi 
consensus for the medical management of spinal cord injury 
in children [39].

In the adult literature, the Brain Trauma Foundation pub-
lished their fourth edition of their guidelines in 2017 [40], 
with a commitment to updating this as a living document as 
new research is published. They this did recently for decom-
pressive craniectomy [41] to update their recommendation 
after the RESCUE-ICP trial was published. A new group 
(SIBICC) took a different approach, recognizing the ongo-
ing need for practical recommendations to clinicians which 
formal guidelines often cannot do due to lack of good quality 
data. The work produced a series of consensus statements 
developed from a broadly comprised group of neurosur-
geons, emergency care physicians, and intensivists. Using 
a consensus-based approach, they first published two man-
agement algorithms, one for ICP-only monitored patients 
[42] and one for patients managed with both ICP and brain 
oxygenation monitoring [43]. Both sets of recommenda-
tions were based on a system of interventions divided into 
tiers, with inter-tier considerations and recommendations 
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for neuroworsening. In the ICP management algorithm, 
autoregulation was incorporated for the first time, and they 
produced heatmaps for graded approaches to ICP monitor 
removal and sedation holidays. For patients managed with 
both ICP and brain oxygen monitoring, they produced proto-
cols for patients with intracranial hypertension where brain 
oxygen was normal and when there was brain hypoxia. The 
group later went on to develop recommendations for prog-
nostication and goals of care decisions [44]. Finally, there is 
a current process to develop a new set of recommendations 
for penetrating TBI [45].

Brain monitoring

Autoregulation

Pressure autoregulation is the ability of cerebral arterioles to 
vary their diameter in response to changes in blood pressure, 
thereby maintaining a reasonably constant cerebral blood 
flow. The change in vascular diameter also affects cerebral 
blood volume, and therefore, ICP if intracranial compliance 
is reduced. In patients with TBI, autoregulatory capacity 
may be weakened or even absent, and this is unpredictable 
without formal monitoring. As a consequence, the interac-
tion between blood pressure and intracranial dynamics may 
change. Therefore, variations in autoregulatory capacity 
have implications for the relationship between blood pres-
sure, cerebral blood flow, and ICP. Following on from this, 
it has important implications for what happens to intrac-
ranial dynamics when cerebral perfusion pressure targets 
are pursued using inotropes and fluid boluses. The SIBICC 
consensus discussed above is one of the first to incorporate 
autoregulatory status as a consideration in its algorithm for 
ICP-directed care in adults [42]. Less has been known about 
how autoregulatory status should direct clinical care in pedi-
atric TBI, if at all, because although several studies have 
examined autoregulatory capacity in children, demonstrating 
its variability in severe TBI and association with outcome 
[46–48], cohort sizes have been small. Recently, Smith et al. 
published the largest series to date (196 children) using the 
pressure-reactivity index, a moving correlation co-efficient 
between blood pressure and ICP (as a proxy for cerebral 
blood volume) [49]. Their results showed that impaired 
autoregulation was as strongly associated with mortality as 
high ICP and that the association was independent of both 
ICP and admission Glasgow Coma Score, suggesting that it 
is not merely a proxy for severity of injury. Given that the 
status of autoregulation has implications for what happens to 
intracranial dynamics when blood pressure is manipulated, it 
is plausible that it should be taken into account when making 
decisions about CPP management.

ICP monitoring

The BEST-TRIP trial in adult TBI failed to demonstrate 
a benefit of a specific protocol for ICP monitoring in a 
resource-constrained environment where ICP monitoring 
had not previously been available [50]. For many reasons, 
the results have not thought to be generalizable to more 
established critical care environments or where different 
treatment protocols are employed. Therefore, ICP monitor-
ing remains a cornerstone in adult [40] and pediatric [34] 
guidelines, although the precise indications for initiating 
ICP monitoring remain unclear. A UK survey of practice 
in pediatric ICUs showed little consistency in what indica-
tions were used for ICP monitoring and what cerebral per-
fusion pressures were targeted [51]. A more recent large 
observational study in adult ICUs in a high-income setting 
appears to favor ICP monitoring [52], and new management 
algorithms have been published [42]. In a comparative effec-
tiveness study of adult penetrating TBI, mortality was 31% 
versus 41%, respectively, in patients who received monitor-
ing compared to those who did not [53]. It is likely though 
that intracranial hypertension in TBI is complex and variable 
between patients and therefore cannot be approached as a 
simple protocol targeting a single number [54].

Brain oxygen monitoring

In adult TBI, a phase II trial of ICP-directed versus ICP plus 
brain oxygen-directed care favored the latter [55], and phase 
III studies are now underway. In pediatric TBI, studies of 
brain tissue oxygenation monitoring have been smaller and 
all observational; however, collectively, they suggest that 
brain tissue oxygen monitoring detects cerebral hypoxic 
episodes that would have been otherwise unnoticed, that 
these episodes are associated with poor outcomes, and 
that treatment directed by monitoring may benefit patient 
care [56–60]. It is still uncommonly used though; in North 
America, 90% of surveyed pediatric ICUs used ICP monitoring, 
but just under 20% used brain tissue oxygen monitoring [61].

Non‑invasive brain monitoring

Recent interest in non-invasive methods for measuring ICP 
and CPP has grown, especially for using them as screen-
ing or monitoring tools for patients in whom the indica-
tion for invasive monitoring is not met. Optic nerve sheath 
ultrasound in particular has seen a surge in interest, with 
varied degrees of correlation with measured ICP being 
reported [62–65]. There remain some concerns about inter-
observer agreement, measurement precision, and observer  
bias [66, 67], but it is likely that interest will remain high 
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and techniques will improve. Similarly, there have been 
concerns about the sensitivity and specificity of transcra-
nial Doppler-derived indices for predicting ICP [68], but 
further innovations and experience appear to be improv-
ing its predictive power, especially for CPP [69, 70], and 
overall usage for different conditions in an intensive care 
setting has increased, albeit being used for various purposes 
[71]. In a small cohort of children, Fanelli et al. [72] collected 
data on invasive ICP and arterial blood pressure recordings, 
along with TCD-based determination of cerebral blood flow 
velocity waveforms. From the automated pipeline they devel-
oped using the waveforms, their non-invasive estimates of 
ICP had a receiver operating characteristic curve of 0.83, with 
a sensitivity of 71% and specificity of 86% for ICP greater 
than 15 mmHg. These tests are promising; however, they do 
require training and remain difficult to conduct continuously. 
A North American survey of pediatric intensive care units 
revealed that 8% measured optic nerve sheath diameter, 33% 
used pupillometry, 87% used near-infrared spectroscopy, 100% 
used continuous EEG, and 100% used intermittent TCD (10%  
continuous) [61].

Other monitoring

Continuous EEG is being increasingly used in pediatric 
ICUs and is available in most centers [51]. It is used to 
detect subclinical seizures, to monitor sedation levels, 
and to prognosticate. The detection of subclinical sei-
zures has particular value because seizures may increase 
ICP and increase metabolic demand. It is worth noting, 
however, that scalp EEG may not detect all subclini-
cal seizures: Appavu et al. demonstrated this in using 
intracranial electroencephalography along with scalp 
electrodes [73].

Other monitoring tools used in severe TBI management 
such as microdialysis are still largely considered only at 
research centers, in part because of the expense and infra-
structure required; however, there are many aspects of 
TBI that can be interrogated at the bedside through its 
use [74, 75].

Interest has also grown in measures that may predict 
subtle changes in function that may correlate with brain 
injury severity and prognosis in mild TBI and concussion. 
One such method is eye tracking, for which several new 
devices have been brought to market [76–79] but argu-
ably still need widespread evaluation before adoption as 
a standardized technique. For example, in a cohort of 56 
children with concussion, Zahid et al. found that eye track-
ing metrics correlated with symptoms and detected accom-
modative and convergence abnormalities [79].

Therapies

Hyperosmolar therapy

For various reasons, there has been a trend in pediatric 
circles away from mannitol and towards hypertonic saline 
(HTS) as a hyperosmolar agent in the treatment of intrac-
ranial hypertension in children. The findings of the recent 
ADAPT study were in keeping with this: the comparative 
effectiveness study examined 518 enrolled children with 
severe TBI and ICP monitoring who received bolus hyper-
osmolar therapy [80]. HTS was given around 3 times more 
often than mannitol and was associated with both lower ICP 
and higher CPP, compared to mannitol which was associated 
only with higher CPP. During ICP crises, HTS fared better 
than mannitol. CENTER-TBI studied a similar number of 
adults with TBI who received hyperosmolar therapy [81]. 
Again, HTS was more commonly used but not by as much 
of a difference as was the case in ADAPT. There was no 
difference between patients who received HTS or manni-
tol, and the center in which the patients were treated was a 
stronger predictor of which therapies patients received than 
their injury characteristics.

A recent randomized controlled trial across several cent-
ers in France did not show a benefit of HTS continuous infu-
sion against standard of care [82]; however, this was not tar-
geted as a treatment for intracranial hypertension, which is 
how most centers use the therapy. The standard of care group 
received hyperosmolar therapy anyway if it was indicated for 
intracranial hypertension. Not all patients would have had 
intracranial hypertension; therefore, it can be argued that 
the potential benefits of hyperosmolar therapy in patients 
with clearly documented intracranial hypertension may have 
been different and that there is little value of HTS without 
intracranial hypertension.

CSF drainage

Placement of an external ventricular drain (EVD) is a stand-
ard and common procedure in TBI care because it can be 
used to monitor ICP and reduce ICP by CSF drainage. As 
such, it is often included as an early tier approach in TBI 
management. However, this has never been subject to a con-
trolled trial. On the negative side, not all patients require 
CSF withdrawal, and the use of an EVD is not without 
complications. First, accurate placement of an EVD is not 
straightforward when the ventricles are small, and multiple 
attempts are ill-advised in an already swollen brain. The risk 
of hemorrhage is higher than with an intraparenchymally 
placed monitor, as are the infection risks, given that it is 
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a fluid-coupled device. As such, wide practice variations 
exist. Typically, EVDs are used more commonly in the USA 
than in European centers, but significant differences also 
exist across European countries [83]. A recent important 
comparative effectiveness study from the ADAPT group 
enrolled 1000 children with ICP monitoring for severe TBI, 
314 of whom received CSF drainage [84]. Outcomes were 
slightly worse in the CSF drainage group for mortality and 
functional score (non-significantly), although the ICP was 
lower. This may reflect a selection bias as there were slight 
differences between groups. When propensity matching was 
performed, there was no difference between the two groups; 
however, the numbers in the propensity matched groups 
were small. Although the adult guidelines still support place-
ment of an EVD early in the course, there are a few concerns 
from the literature. The study by Griesedale et al. [85] found 
that CSF drainage was associated with increased mortality 
in 93 adults compared with 73 without CSF drainage. The 
findings from Bales et al. [86] were similar: higher mortality 
and worse functional outcomes occurred in the CSF drain-
age group. It is also possible that, while CSF drainage may 
benefit patients with intracranial hypertension, the routine 
use of EVDs may not benefit patient care. Further clarity 
can be obtained only if the patient groups are similar, as  
in a RCT.

Decompressive craniectomy

There have been no randomized trials of decompressive 
craniectomy in pediatric TBI, other than the small pilot study 
of Taylor et al. more than 20 years ago in which the surgical 
procedure was nothing like that which is currently used [87]. 
The adult trials of DECRA [88], RESCUE-ICP [89], and 
most recently RESCUE-ASDH [90] have shed some light 
on the topic, but in many ways do not clarify the way for-
ward for children. The procedure remains fairly common in 
pediatric TBI—in the ADAPT study of 1000 children with 
ICP monitoring for severe TBI across more than 50 cent-
ers; mostly in the USA and the UK, around 20% of patients 
underwent decompressive craniectomy [84]. Although there 
have been guideline updates for decompressive craniectomy 
in adults as well as consensus statements, recommendations 
for children remain unclear. Similarly, there are less data on 
cranioplasty following craniectomy in children. Although 
a recent consensus document addresses the topic in both 
adults and children [91], there remains much uncertainty, 
especially in young children where bone resorption is higher 
and the use of synthetic material is problematic because the 
cranium is still growing. There is a current prospective study 
in Europe recruiting data on cranioplasty outcomes for chil-
dren [92].

Tracheostomy

The use of tracheostomy after TBI is variable across differ-
ent centers. Recent reports examined the outcomes. Sheehan 
et al. examined early and late tracheostomy outcomes in 127 
children with TBI in a national database; their results sug-
gested the same overall outcomes in the two groups, but a 
decrease in ICU stay and ventilator days in the early trache-
ostomy group [93]. Salik et al. performed a similar analysis 
in a different national database that queried 1956 children 
who underwent tracheostomy for TBI care. Patients who 
underwent tracheostomy were typically older and had more 
severe disease. After propensity matching, early tracheos-
tomy was similarly associated with reduced ICU stay and 
ventilator days compared to late tracheostomy [94]. Finally, 
McLaughlin et al., in 121 propensity matched pairs, also 
found that early tracheostomy is associated with shorter hos-
pital stay and fewer complications [95].

Global pediatric TBI research

There are many reasons why a global approach would ben-
efit pediatric TBI research. First, most centers treat a rela-
tively small volume of patients; large patient cohorts are 
usually needed to adequately power studies. Second, not 
all centers are the same: mechanism of disease, case mix, 
admission policies, acute treatment protocols, and rehabilita-
tion capacity all vary across centers. Therefore, results from 
individual centers may not generalize to centers where cir-
cumstances are different [96]. Third, most published work 
emanates from high income centers but the vast majority 
of cases occur in low- and middle-income countries [97]. 
Therefore, guidelines developed from published data may 
not deliver the same outcomes in places where the condi-
tion predominates. To address this, there have been recent 
attempts to regionally adapt guidelines to resource con-
straints [98].

In recent years, several networked groups have formed to 
address issues directly or indirectly pertinent to TBI care, but 
these remain constrained in their ability to address the above 
limitations. For example, several specialty groups in the 
USA have developed collaborative networks to increase sta-
tistical power and generalizability, including the PECARN 
group [27] and Pediatric Neurocritical Care Research group 
(PNCRG) [61]. However, their data are generated from, and 
their work is focused on, US sites. Data and application 
may be very different elsewhere. The ADAPT trial [99] 
was a novel comparative effectiveness trial that created an 
impressive collaboration across more than 50 centers that 
prospectively collected observational data. However, ICP 
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monitoring was a requirement, and the sites, with the excep-
tion of two, were all based in high-income countries, pre-
dominantly the USA and the UK. CENTER-TBI [100] and 
TRACK TBI [101] were impressive achievements with sub-
stantial funding, but again only addressed care in predomi-
nantly high-income countries and only in adults. Significant 
funding and appropriate global networks are urgently needed 
for the study of pediatric TBI, especially where the condi-
tion is most common and for which relevant results would 
be most impactful. In doing so, we could increase statistical 
power, improve the generalizability of data, and positively 
influence the care of the largest number of children across 
the child suffering from one of the most common causes of 
avoidable death and disability.
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