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Abstract
Objective  The aim of this study is to describe MR imaging appearances of the fetal lumbar spine in vivo at different gesta-
tional ages (GAs).
Methods  This retrospective study was approved by the Third Affiliated Hospital of Zhengzhou University. We collected 
MR images and clinical data of 93 fetuses in our hospital. All the MR images were obtained by 3-T MR. All had the mid-
sagittal plane of steady state free precession sequence (Trufi) of the lumbar spine, which could show the lumbar vertebra 
and conus medullaris (CM). Regression analysis was made between GA and heights of lumbar vertebral body ossification 
center (LVBOC), lengths of LVBOC, and heights of intervertebral gap (IVG).
Results  There were good linear correlations between the heights of LVBOC and GA (P < 0.001), lengths of LVBOC and 
GA (P < 0.001), and heights of IVG and GA (P < 0.001).
Conclusion  We showed the different development of each LVBOC and IVG which caused the difference of the shape of 
LVBOC and IVG.
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Introduction

Because of more detailed information obtained by the MR, 
fetal MR could be very useful for the diagnosis and treat-
ment of fetal disease [1–5]. Before evaluating the fetal spine, 
it is important to understand the development of fetal spine 
at different GAs [4, 6]. We find few of published dates on the 
appearances of vertebrae and intervertebral space, and most 
of them were postmortem [7–13]. The aim of this study is to 
describe MR imaging appearances of the fetal lumbar spine 
in vivo at different GAs [14, 15].

Material and methods

This retrospective study was approved in the Third Affiliated 
Hospital of Zhengzhou University. Between September 2017 
and March 2021, 353 fetuses were examined in our hospital 
which due to the abnormality of the central nervous system 
indicated by ultrasound, which included mild ventriculomeg-
aly and abnormal width of the cavum septum pellucidum, and 
their central nervous system abnormalties were confirmed 
by the MR, and none of them had other positive findings in 
ultrasound and MR, and all of them had MR images of fetal 
head and spine. Mild ventriculomegaly (ventricle width of 
10–12 mm) without other systemic malformations is usually 
considered to have normal neurodevelopmental processes 
[16]. Without of aneuploidy and other associated fetal abnor-
malities, the neurodevelopment appears to be normal in the 
abnormal width of the CSP prenatally [17]. Because of the 
prognosis, these fetuses were considered to be low risk and 
selected in the study. Reasons for exclusion included blurry 
images due to fetal movement (n = 138), no mid-sagittal image 
of fetal lumbar spine images (n = 107), and inability to identify 
the L5 position (n = 15), and 93 fetuses, from 22 to 37 gesta-
tional weeks (median, 27.1 gestational weeks) were collected 
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in our study in the end. The GA was estimated by the date 
of woman’s last menstrual period (n = 82) or the assessments 
made by sonography (n = 11).

All the MR images were obtained by 3-T MR (Skyra, Sie-
mens Medical Systems, Germany) with an eight-channel body 
surface coil. Pregnant women were placed in the supine posi-
tion, and those who were difficult to examine in the supine 
position could be placed in the left lateral position. There was 
no fetal sedation, and if fetal movement was obvious, the preg-
nant woman would have rest, then we continued to examine. 
Three-plane imaging of T2WI of fetal spines was acquired. 
All had the mid-sagittal plane of steady-state free precession 
sequence (Trufi, repetition time/echo time = 740/2.4 ms; field 
of view, 35 × 45 cm; thickness, 3 mm; − 0.6 mm gap; voxel 
size, 1.1 × 1.1 × 3.0 mm; FA, 58°; NEX, 1) of the lumbar 
spine, which could show the lumbar vertebra and CM. The 
other sequences consisted of the T2WI half-Fourier acquisi-
tion single-shot turbo spin echo sequence (HASTE, repeti-
tion time/echo time = 1400/63 ms; field of view, 40 × 40 cm; 
thickness, 4 mm; 0.8-mm gap; FA, 120°; NEX, 1), T1WI fast-
low angle shot (repetition time/echo time = 120/2.4 ms; field 
of view, 35 × 40 cm; thickness, 4 mm; 0.8 mm gap; FA, 70°; 
NEX, 1), and susceptibility-weighted imaging (SWI, repetition 
time/echo time = 10/5 ms; field of view, 35 × 35 cm; thickness, 
3 mm; 0 mm gap; FA, 15°; NEX, 1). All the MR images were 
transferred to PACS (Synapse, Fujifilm medical system, Japan).

All the measurements were carried on the mid-sagittal 
plane of Trufi (Fig. 1). Lumbar ossification centers are defined 
as hypointensity in the spinal vertebral region of the Trufi 
sequence. Localizing the iliolumbar ligament was been used 
to determine the lumbar vertebral level, and counting down 
from C2 might be a supplement, although more difficult since 
cervical vertebral ossification centers were extremely small and 
it was difficult to get the mid-sagittal images of the whole spine. 
If localization was still difficult, the case would be removed. 
Before independent measurements were performed by two 
pediatric radiologists (10 years of clinical work experience in 
our hospital), they had to make an agreement on the location 
of the L5. The mean of the two measurements was then used 
for further analysis. SPSS 20.0 was used for the data analysis. 
Simple linear regression analysis was made between GA and 
heights of lumbar vertebra body ossification center (LVBOC), 
lengths of LVBOC, and heights of intervertebral gap (IVG).

Results

There was a good inter-rater agreement on the measurements 
of heights of LVBOC, lengths of LVBOC, and heights of 
IVG (P < 0.001). There were good linear correlations 

Fig. 1   A total of 26 gestational weeks, Trufi. Measuring of height and 
length of L1 vertebral ossification body center, and height of L3–4 IVP

Table 1   Linear correlation between the heights of LVBOC and GA

R2 P Constant Slope

Height of L1 0.716  < 0.001  − 1.660 0.220
Height of L2 0.667  < 0.001  − 1.580 0.219
Height of L3 0.681  < 0.001  − 1.516 0.215
Height of L4 0.646  < 0.001  − 2.049 0.23
Height of L5 0.585  < 0.001  − 1.209 0.185

Table 2   Linear correlation between the lengths of LVBOC and GA

R2 P Constant Slope

Length of L1 0.670  < 0.001  − 1.488 0.243
Length of L2 0.654  < 0.001  − 1.193 0.241
Length of L3 0.652  < 0.001  − 1.488 0.250
Length of L4 0.674  < 0.001  − 1.366 0.248
Length of L5 0.658  < 0.001  − 2.092 0.267

Table 3   Linear correlation between the heights of lumbar IVG and 
GA

R2 P Constant Slope

Height of L1–2 0.210  < 0.001 1.102 0.038
Height of L2–3 0.333  < 0.001 0.591 0.062
Height of L3–4 0.431  < 0.001 0.423 0.071
Height of L4–5 0.373  < 0.001 0.587 0.067
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Fig. 2   Scatter plot shows a linear relation between the heights of 
LVBOC and GA (a, L1H, L2H, L3H, L4H, and L5H stand for heights 
of LVBOC of L1, L2, L3, L4, and L5), the lengths of LVBOC and 

GA (b, L1L, L2L, L3L, L4L, and L5L stand for lengths of LVBOC of 
L1, L2, L3, L4, and L5), and the heights of IVP and GA (c, L12, L23, 
L34, and L45 stand for heights of IVP of L12, L23, L34, and L45)
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between the heights of LVBOC and GA (P < 0.001), lengths 
of LVBOC and GA (P < 0.001), and heights of IVG and 
GA (P < 0.001). The results of the correlation are shown 
in Tables 1, 2, and 3. Scatter plots are shown in Fig. 2a, b, 
and c.

Discussion

The development of the spine includes 6 periods: (1) for-
mation of the somitic mesoderm and notochord, (2) forma-
tion of the somites, (3) formation of the dermomyotome 
and sclerotome, (4) the membranous phase, (5) vertebral 
chondrification, and (6) vertebral ossification [18, 19]. The 
ossification of the vertebra begins from the thoracolumbar 
junction [18]. Generally, at present, fetal MR is imaged after 
18 gestational weeks, and at this time, all the lumbar ossi-
fication centers could be seen [1, 20]. Many diseases can 
cause changes in the height of the vertebral body, such as 
the wedge vertebra (Fig. 3). Wedge vertebra is a cause of 
scoliosis. Wedge vertebra usually does not cause obvious 
scoliosis [1, 20], but the height of the vertebral body usually 
decreases on one side [19].

The steady-state free precession sequence (Fig. 4) is the 
major sequence for the fetal spine MR, which shows the 
vertebral ossification center better than the single-shot turbo 
spin echo sequence, and the contrast signal to noise ratio 

between the vertebral ossification center and intervertebral 
space is better [1, 21–23]. The single-shot turbo spin echo 
sequence (Fig. 5) shows better of the soft tissue and spinal 
cord [1, 21–23]. SWI sequence (Fig. 3a) shows vertebral 
ossification center is better than the steady state free preces-
sion sequence, especially MIP images can be performed to 
display ossification centers of the spine and thorax, but the 
soft tissue and spinal cord cannot be displayed [4]. Since 
the SWI images are often blurry because of fetal movement 
and maternal respiration, they are only used as a secondary 
means in our hospital [4].

Each centrum is fused by the inferior half and the superior 
half of the sclerotomes, so the intersegmental vessels are located 
in the center of the vertebral bodies [4]. On fetal MR T2WI, the 
vertebral ossification center is usually shown as a hypointensity 
in the spinal vertebral region [24]. The hyperintensity in the cen-
tral vertebral ossification center due to the intersegmental ves-
sels is rare in MR in vivo. The morphology of the fetal vertebral 
ossification center can be manifested as biconvex, bullet-like, 
rectangular hypointensity on T2WI images [24]. The interver-
tebral disc showed uniform hyperintensity on T2WI on MR. In 
the axial images, the ossification centers of the lumbar verte-
brae appear as round-shaped T2 hypointensity. The ossification 
centers of lumbar vertebral arches are distributed on both sides 
and no fusion occurred [6]. Oblique axial scanning was usually 
required to observe the ossification center of the vertebral body 
and the bilateral vertebral arches.

Fig. 3   24 weeks of gestation, 
SWI (a) and Trufi (b) showed 
that T10 (red arrow) was a 
wedged vertebra, and the 
spine was slight scoliosis. The 
chromosome karyotyping and 
chromosome microarray analy-
sis report fetal trisomy 18 (not 
included in study cases)
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Localization of lumbar vertebral is difficult in some cases 
in vivo examinations. Due to the influence of maternal res-
piration and fetal movement in the examination, it cannot 
locate the lumbar vertebral in sagittal position by 12th rib 
in coronal position or L5 nerve in axial image [25]. Local-
izing the iliolumbar ligament is the most commonly used 
method in the sagittal position [26]. This method is not very 
accurate. It is more accurate to count down from C2, and as 
discussed previously, it is more difficult because of the small 
cervical vertebral ossification centers, and it was difficult to 
get the mid-sagittal images of the whole spine.

In our study, we find the linear relationship between the 
heights of LVBOC and GA, lengths of LVBOC and GA, and 
heights of IVG and GA. The slopes of the linear relationship 
between heights of LVBOC from L1 to L4 and GA are very 

similar, and the slop of L5 is the minimum. The slopes of the 
linear relationship between the lengths of every LVBOC and 
GA are very similar. Due to the asynchrony of their develop-
ment, the size and shape of the vertebral bodies are ultimately 
different [11, 12, 18, 27]. The height slope of the lumbar IVG 
is inconsistent, indicating that their development is not synchro-
nized, L3-4 grows the fastest and L1–2 the slowest [12, 18].

There are limitations to our study. Since this is a retro-
spective study and no MR follow-up was performed in our 
cases on the spine after birth, we are unable to evaluate the 
lumbar spine after birth yet. Further studies to evaluate the 
association between prenatal and postnatal study, as well as 
the long-term follow-up, are needed, and we intend to use 
the 3D software to describe values of lumbar vertebra based 
on the 3D sequence in the future.

Conclusion

We demonstrate a good linear relationship between the devel-
opment of the lumbar spine and gestational age in vivo by MR.
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Fig. 4   The same fetus was 
examined at 28 (a) and 36 (b) 
weeks of gestation. Trufi images 
of the mid-sagittal plane of 
the spine showed the develop-
ment of heights and lengths of 
LVBOC and heights of IVP. 
Note the development of the 
cerebral cortex

Fig. 5   Half-Fourier acquisition single-shot turbo spin echo sequence 
(HASTE) of lumbar spine shows the spinal canal, cerebrospinal fluid, 
and lumbar spinal cord (red arrow)
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