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Abstract
Advances in medical care have led to more premature babies surviving the neonatal period. In these babies, germinal matrix
haemorrhage (GMH), intraventricular haemorrhage (IVH) and posthaemorrhagic ventricular dilatation (PHVD) are the most
important determinants of long-term cognitive and developmental outcomes. In this review, we discuss current neurosurgical
management of IVH and PHVD, including the importance of early diagnosis of PHVD, thresholds for intervention, options for
early management through the use of temporising measures and subsequent definitive CSF diversion. We also discuss treatment
options for the evolving paradigm to manage intraventricular blood and its breakdown products. We review the evidence for
techniques such as drainage, irrigation, fibrinolytic therapy (DRIFT) and neuroendoscopic lavage in the context of optimising
cognitive, neurodevelopmental and quality of life outcomes in these premature infants.
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Introduction

About 1 in 10 babies is born preterm, and this number appears
to be increasing in regions with reliable data [1]. The inci-
dence of intraventricular haemorrhage (IVH) in preterm
babies remains high at around 25–30% and increases with
lower gestational ages and birth weights; the incidence in very
premature infants weighing 500–750g is 40% [2, 3]. IVH
occurs secondary to germinal matrix haemorrhage (GMH);
the germinal matrix is still abundant up to 32 weeks’ gestation
and contains fragile and unsupported arterioles and capillaries,

with poor capacity to autoregulate. This pressure-passive cir-
culation is susceptible to haemorrhage when rapid changes in
blood pressure or respiratory distress occur [4].

Improvements in medical care have increased survival be-
yond the neonatal period. In these survivors, the presence of
IVH is one of the most important determinants of cognitive
outcomes and the need for special education [5, 6]. In a cohort
of 75 children with large intraparenchymal echodensities,
68% demonstrated cognitive function below 80% of normal
[7]. Similar outcomes are identified in larger meta-analyses
[8]. Some changes in neonatal care have resulted in effective
prevention of IVH. Historically, the incidence of GMH-IVH
was highest with the introduction of positive pressure ventila-
tion to neonatal intensive care in the 1960s and subsequently
fell as the haemodynamic impact of ventilation was better
understood and the use of antenatal steroids became standard
care in the 1990s [9, 10]. However, postnatal administration of
phenobarbital to control blood pressure fluctuations is associ-
ated with no change in IVH or developmental outcomes, and
meta-analysis has found little evidence for delayed cord
clamping in reducing IVH incidence [11, 12].

Prompt management of IVH and its sequelae is therefore
crucial to optimising long-term developmental outcomes in
this cohort of premature infants. Brain injury results from
the initial GMH itself, the toxic effects of the blood and its
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breakdown products, particularly free iron in the ventricles, an
inflammatory response with influx of activated macrophages
and specific injury to oligodendrocyte precursor cells, and the
effect of raised intracranial pressure on the developing white
matter at a time of rapid brain development [13, 14]. In this
review, we outline the current evidence base for management
of IVH and its sequelae. In particular, we focus on two
aspects—the management of posthaemorrhagic ventricular di-
latation (PHVD) and the evolving paradigm of managing the
intraventricular blood and its breakdown products in the acute
phase.

Initial diagnosis

Currently, most cases of IVH in premature infants are identi-
fied on cranial ultrasound (CrUS), performed soon after birth,
routinely or after a period of systemic instability. Neonatal
units have established protocols for serial CrUS surveillance
following pre-term birth, with closer surveillance at younger
gestational ages. The highest risk for bleeding is within the
first 48 h of life and most IVH is diagnosed by day 7; surveil-
lance can then be performed less frequently.

The CrUS is important for establishing two parameters:

– The grade of IVH: this is assessed by the Volpe Grade
(Fig. 1a). In general terminology, this is commonly re-
ferred to as the synonymous Papile grade, which was
initially derived from CT scan findings.

– The degree of PHVD: this is measured by the Ventricular
Index (VI, Fig. 1b). The VI is measured from the falx to
the lateral wall of the body of the lateral ventricle, mea-
sured in the coronal (or axial) plane at the level of the
foramen of Monro. Levene produced reference ranges
for the VI according to gestational age (weeks 26 to 42).
PHVD is a dynamic process and requires serial monitor-
ing. A VI above the 97th centile for the given gestational
age is considered high, although specific treatment
thresholds are discussed below. Other CrUS measure-
ments such as the anterior horn width (AHW) and
thalamo-occipital distance (TOD) are also helpful in guid-
ing management.

Due to the compliance of the neonatal skull and brain, the
large extracerebral spaces in preterm infants and the high fluid
content of the neonatal brain, VI changes on CrUS precede the
clinical signs of ventriculomegaly and raised intracranial pres-
sure (ICP). Tense fontanelle, splayed sutures and rapidly
growing head circumference were associated with directly
measured mean CSF pressure 9.1 mm Hg ranging up to
34 mm Hg (upper limit of normal neonatal CSF pressure
6 mm Hg) [15]. If left untreated, further signs of progressive

ICP rise develop such as bradycardia, desaturation, sun setting
and engorged scalp veins.

Management of PHVD

Traditionally, the management of premature infants with IVH
has focussed on the treatment of the ensuing PHVD, which
affects about 50% of those with grade 3 or grade 4 IVH. The
rationale is that, at least in part, the ventricular dilatation is due
to a combination of communicating and obstructive hydro-
cephalus, and this hydrocephalus is detrimental to the devel-
oping brain, resulting in cognitive dysfunction, cerebral palsy
and epilepsy. In animal models, the cause of PHVD is multi-
factorial and involves disruption of normal CSF production,
flow and absorption. The accumulation of methaemoglobin
from the intraventricular haemoglobin induces the expression
of proinflammatory cytokines in a preterm rabbit pup model
[16]. Release of transforming growth factor beta from inflam-
matory cells recruited to the ventricular system and from
platelets within the blood clot activates fibroblasts leading to
the deposit of fibrin on ependymal surfaces, interfering with
the flow and absorption of CSF [17]. In a rat model, the in-
flammatory response associated with IVHwas associatedwith
a significant increase in the secretion of CSF at the choroid
plexus epithelium [18].

Definitive treatment of PHVD, in the form of a
ventriculoperitoneal (VP) shunt, is associated with high rates
of morbidity and failure due to a combination of anaesthetic
risk, immunological immaturity, risk of abdominal pathology
including necrotising enterocolitis, risk of skin and wound
breakdown, valve blockage by blood clot and technical factors
associated with operating on such a small neonate. Therefore,
the current treatment paradigms involve the use of
temporising measures during the neonatal period, with defin-
itive management at or around term-equivalent age. There is
currently no role for medical management. A trial of acetazol-
amide and frusemide in the International PHVD Drug Trial
was terminated early as the treatment group had worse out-
comes both in terms of shunt placement and death (RR 1.4,
p=0.03) as well as neurological disability and death (RR 1.4,
p=0.01).

A number of landmark studies have explored the current
thresholds for intervention in PHVD. Meta-analysis of trials
from the 1980s and 1990s has confirmed that lumbar punc-
tures and ventricular taps do not reduce permanent shunt de-
pendence or neurological disability [19]. Equally, waiting un-
til the PHVD becomes clinically significant may be too late
[20]. A retrospective comparative study between Dutch and
Canadian cohorts found lower rates of cognitive (p=0.002)
and motor (p=0.03) disability in a cohort whose treatment
was initiated when the VI exceeded the 97th centile compared
to a cohort whose treatment was initiated in the presence of
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clinical signs of raised ICP [21]. This has recently been eval-
uated in a randomised controlled trial. The ELVIS (Early ver-
sus Late Ventricular Intervention Study) trial has shown that,
despite not affecting the composite primary outcome of VP
shunt or death, early intervention (VI exceeding the 97th

centile or AHW >6mm) is associated with less disability than
late intervention (VI exceeding the 97th centile + 4mm or
AHW >10mm); the composite rate of death or disability at
24 months’ corrected age was 51% in the late intervention
group and 35% in the early intervention group (adjusted OR
0.24, p=0.03) [22, 23].

Temporising measures

Once the need for intervention is established, a number of
temporising measures may be instituted (Fig. 2). These include
lumbar punctures, direct trans-fontanelle ventricular puncture,
external ventricular drainage (EVD), ventricular access device
(VAD) insertion or ventriculosubgaleal shunt (VSGS) inser-
tion. Lumbar punctures often stop being effective after a num-
ber of attempts; ventricular puncture is associated with risks of
parenchymal injury, and infection and EVDs require ongoing
neurosurgical and neonatal intensive care management, making
them unmanageable in many settings.

There is little consensus or standardisation of temporising
procedure to perform with significant variation between sur-
geons and units. This is exemplified in a recent UK survey,
which demonstrated a wide variation in practice where re-
spondents noted a preference for VAD (33%), ventricular

puncture (25%), VSGS (17%) or repeated lumbar puncture
(17%) [24].

Meta-analyses suggest that VAD and VSGS are equivalent
in terms of the risks, rates of subsequent need for permanent
VP shunt and subsequent shunt revision rates, although earlier
treatment is associated with lower rates of VP shunting and
neurological disability [25–27]. Following institution of the
temporising measures, ongoing monitoring with regular
CrUS, head circumference measurement and clinical assess-
ment are important to ensure ongoing control of the PHVD.

Permanent CSF diversion

At or around term-equivalent age or when the infant reaches a
weight of 1.8–2 kg, there then needs to be a subsequent assess-
ment of whether permanent CSF diversion in the form of a VP
shunt is necessary. Individual and institutional practice may
vary but this is largely based on the ongoing need for the
temporising measures (e.g. VAD taps or VSGS drainage) to
control ventricular dimensions [28]. Further information is ob-
tained from clinical assessment, CSF sampling (to ensure pro-
tein levels are <1.5g/L and culture negative) and axial magnetic
resonance imaging (MRI) (Fig. 3). In addition to the clinical
utility, MRI at term-equivalent age, including assessment of the
Kidokoro score and ventricular volumes, has been shown to be
useful in predicting subsequent neurodevelopmental outcomes
[29, 30]. In large series, VP shunt conversion rates in the liter-
ature vary widely from 63 to 95% [31–35]. Occasionally in this
population, in the context of necrotising enterocolitis,

Fig. 1 a CrUS representations of the different IVH grades. b Example measurement of the VI on CrUS
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ventricular–atrial shunts may be required when the peritoneum
is unable to cope with CSF absorption.

There is little evidence with respect to the optimal valve
type to use in this population. Some advocate using low pres-
sure fixed pressure valves to mitigate for the CSF being pro-
teinaceous with the hope of reducing mechanical obstruction.
Others advocate programmable valves as the requirement for

drainage changes over time; adjusting the pressure is purport-
ed to mitigate against potential early (overdrainage) and late
(slit ventricles) complications [36]. In terms of catheter choice,
the recent BASICS study demonstrated a significant 3-fold
reduction in shunt infection using antibiotic impregnated cath-
eters compared to standard or silver impregnated catheters
[37].

Fig. 2 The different temporising measures with accompanying
advantages and disadvantages. This image illustrates the relative
advantages of the VSG in comparison to other measures, having fully

internalised hardware with low infection risk with pseudo-continuous
drainage that can be managed remotely outside the neuroscience centre

Fig. 3 Example MRIs at term-equivalent age with VSG in situ. a
Ongoing ventricular dilatation. A subsequent VP shunt was inserted to
manage this. b Well-controlled ventricles. In combination with clinical

assessment, VP shunt insertion was deemed not necessary in this infant
and, a few weeks later, the VSG was removed
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Beyond the initial haemorrhagic period, the hydrocephalus
associated with PHH is traditionally considered as mainly a
communicating hydrocephalus and therefore not amenable to
treatment with endoscopic third ventriculostomy with choroid
plexus coagulation. This has however been used with limited
success in some published series [38, 39]. Authors argue that,
despite the limited success (37–40%), the demonstrated safety
makes it a worthwhile consideration as it may obviate the need
for permanent VP shunt, especially if imaging reveals some
favourable characteristics, including aqueduct stenosis or a
non-scarred and patent prepontine cistern on preoperative
MRI.

Management of the blood and breakdown
products

Infants with well-controlled PHVD, even with intervention at
an early stage, still suffer from neurological disability [23]. In
addition, infants with grades I and II IVH also develop neu-
rological disability [40]. This can be due to the effect of the
initial haemorrhage itself (that is only modifiable by preven-
tative strategies to reduce the incidence of GMH) or due to the
toxic effects of the blood and blood breakdown products on
the developing brain.

The best evidence of our ability to modify this factor comes
from the drainage, irrigation and fibrinolytic therapy (DRIFT)
studies. DRIFT involved the insertion of two EVDs for drain-
age, intraventricular administration of recombinant tissue
plasminogen activator and irrigation with artificial CSF at a
point when the VI was at least on the 97th centile plus 4 mm.
The procedure was carried out in the neonatal ICU, and irri-
gation was continued for at least 72 h to allow clearance of
blood and its breakdown products from the CSF. The trial was
discontinued prematurely due to the small chance that the
short-term primary outcome (requirement for a VP shunt or
death) at 6 months will be significantly different between the
DRIFT and standard treatment groups. The study however did
demonstrate a significant reduction in the proportion of chil-
dren with severe cognitive disability or death at 2 years in the
DRIFT arm, from 71 to 54% (adjusted OR 0.25) [41, 42]. This
benefit was maintained at 10-year follow-up [43]. The mean
cognitive quotient score was 69.3 in the DRIFT group and
53.7 in the standard treatment group; this improved cognition
at 10 years was equivalent to a 2-year developmental delay
[43]. These results represented the most marked improvement
in cognition and survival with any intervention after IVH and
PHVD. A study that used network meta-analysis methodolo-
gy to evaluate the outcome of ten different trials for PHVD
also demonstrated that DRIFT is the most efficacious and the
most likely treatment to improve outcomes [44]. Despite this,
however, the DRIFT technique has not been widely adopted
and has not changed standard practice due to the resource-

intensive nature of the treatment and the potential risks of
secondary haemorrhage.

An alternative to DRIFT that is less resource intensive is
neuroendoscopic lavage (Fig. 4), which involves the use of an
endoscope to gently irrigate the ventricular CSF, clearing the
ventricles of any large clots and restoring CSF flow via a
septostomy and ensuring patency of the foramina of Monro.
To date, there is no class I evidence of its efficacy but retrospec-
tive evaluations have had encouraging results with the procedure
showing safety, reductions in VP shunt insertion and revision
rates and favourable neurodevelopmental outcome [45–49].
There have been no prospective comparative trials.
Specifically, the neurodevelopmental outcomes have not been
systematically assessed; the only study to do so only assessed
cognitive outcomes in 61% of infants alive at 2 years, with 30%
having cognitive profiles within the normal range [45].

Future directions

There are multiple avenues to improve the long-term out-
comes of premature infants with IVH.

A first important consideration is the selection and measure-
ment of endpoints in clinical studies. Whilst early trials fo-
cussed on VP shunt dependence and revision rates, results from
the DRIFT and ELVIS studies have shown that developmental
outcomes can improve despite unchanged VP shunt dependen-
cy. Patient involvement initiatives have confirmed that cogni-
tive and developmental outcomes are the most important out-
comes for patients, and this should be the focus of future trials
[50, 51]. This may be further strengthened and homogenised by
the development of core sets of outcome measures that will
facilitate cross-study comparisons and the progress of interna-
tional registries such as TROPHY [52, 53]. Whilst the current
standard in these studies has been developmental assessment at
2 years’ corrected gestational age, further work may identify
earlier biomarkers of eventual neurodevelopmental outcome
that will facilitate more rapid investigation [54].

The prevention of GMH, IVH and PHVD is crucial to
improving neurological outcomes. Although detailed discus-
sion of this may be beyond the scope of this review, risk
factors including fetal, maternal, delivery-related and haemo-
dynamic have been reviewed elsewhere and it remains to be
seen whether these can effectively be modified to alter inci-
dence [9].

In terms of managing the PHVD, recent progress has ad-
vocated for early intervention via temporising measures, and it
seems that VAD and VSGS are largely equivalent in efficacy
and long-term outcomes. The impact of adjustable versus
fixed pressure valves for definitive VP shunts is an area that
requires further study, as is the role of non-shunt procedures
such as endoscopic third ventriculostomy with choroid plexus
coagulation, especially in resource-limited settings.
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Further research into the direct management of intraven-
tricular blood and its breakdown products is required. Despite
the incidence and developmental impact of IVH and PHVD,
only about 700 infants have been enrolled into intervention
trials, and fewer than 500 have had long-term developmental
measures reported [44]. The role of surgical and medical ther-
apies in removing the blood and reducing its toxicity on the
developing brain requires robust evaluation and may hold the
potential to further improve developmental outcomes in pre-
mature neonates with IVH.

Conclusion

The management of GMH-IVH and PHVD in premature
infants has evolved considerably over the last few de-
cades. The management of PHVD at an early stage
through temporising devices followed by subsequent
permanent CSF diversion has led to reductions in mor-
bidity and complications. The paradigm of clearing the
blood and its breakdown products is in its relative in-
fancy, with neuroendoscopic lavage showing promise of
being a safe and effective procedure. In conjunction
with prevention of IVH, this holds the key to progress
in optimising cognitive, neurodevelopmental and quality
of life outcomes in these premature infants.
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