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Abstract
There has been an increasing interest in articles reporting on clinical prediction models in pediatric neurosurgery. Clinical
prediction models are mathematical equations that combine patient-related risk factors for the estimation of an individual’s risk
of an outcome. If used sensibly, these evidence-based tools may help pediatric neurosurgeons in medical decision-making
processes. Furthermore, they may help to communicate anticipated future events of diseases to children and their parents and
facilitate shared decision-making accordingly. A basic understanding of this methodology is incumbent when developing or
applying a prediction model. This paper addresses this methodology tailored to pediatric neurosurgery. For illustration, we use
original pediatric data from our institution to illustrate this methodology with a case study. The developed model is however not
externally validated, and clinical impact has not been assessed; therefore, the model cannot be recommended for clinical use in its
current form.
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Introduction

Medical doctors increasingly use prediction models to make
estimations on patient’s prognosis or diagnosis. Pediatric neu-
rosurgical prediction models are mathematical equations
using child-related risk factors—e.g., gender, age, type of
hydrocephalus—to calculate the probability of an outcome
of interest for that particular child such as cerebrospinal fluid
(CSF) diversion revision at 6 months, survival after brain tu-
mor resection, or postoperative cerebellar mutism [1–3].

There has been an increase in the number of articles
reporting on prediction models in pediatric neurosurgery [4].
A well-known and widely used prediction model in pediatric
neurosurgery is the endoscopic third ventriculostomy success
score (EVTSS) [1]. The EVTSS provides an absolute risk

estimate for ETV failure at 6 months by means of logistic
regression analysis.

Many statistical approaches can be used to develop a pre-
diction model, including but not limited to regression analysis
[5]. Detailed statistical output is often presented in the manu-
script or in its appendix which is needed to make an adequate
evaluation of the presented prediction model.

Herein, the methodology of clinical prediction modeling is
presented and illustrated with an original case study.We focus
on prediction models developed with logistic regression anal-
ysis, although the methodology outlined throughout this arti-
cle applies to all prediction models.

Case study

To illustrate the methodology of clinical prediction modeling,
we use a set of pediatr ic patients treated with a
ventriculoperitoneal shunt (VP-Shunt) or endoscopic third
ventriculocisternostomy (ETV) for hydrocephalus. The data
of this set of patients is derived from our own institution and
has not been published previously. A simple prediction model
including age and gender (Model 1) is compared with a more
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complex model adding the neurosurgical technique for CSF
diversion to the simple model (Model 2).

Methodology

The glossary in Box 1 explains some of the terminology often
used in prediction modeling. For the development of predic-
tion models with regression analysis, it is advised to system-
atically follow distinct steps (Fig. 1) [5]. However, prior to the
start of the development of a new prediction model, existing
models should be searched for [5]. It is recommended to val-
idate and/or update existing models instead of developing de
novo prediction models.

Box 1 Glossary for common used terminology in clinical
prediction modeling

Apparent model performance—Performance of the model in the patient
sample used for ist derivation.

Bias-variance trade-off/total error—The resultant of error due to bias and error
due to variance. It is a trade off, because it is impossible to reduce both.

Bias—The ability of the model to capture the data. It is the systematic
difference between estimated parameters and the true parameters.

Calibration—Model performance measure that shows the agreement
between the predictions of the model with the observed outcomes.
Good calibration is essential when using the prediction model for
clinical decision making.

Discrimination—Ability of a prediction model to discriminate between
patients with the event of interest and without the event of interest.
Often quantified using the c-statistic.

EPV—Events per variable: the ratio between the number of outcomes of
interest and the number of degrees of freedom of prognostic variables.
The number of events is the smaller of the number of patients having
the event or not having the event.

External validity—The generalizability (or transportability) of the model
to similar but different patients.

Internal validity—The reproducibility check of the developed model by
assessing optimism in model performance.

Optimism—Truemodel performance minus apparent model performance.

Overfitted model—Overly complex prediction model that does not
generalize well on new sets of patients due to fitting data idiosyncrasies
in the data set used for its derivation.

Stepwise selection procedure—Data-based inclusion of prognostic
variables into the prediction model based on statistical thresholds.

Subject matter knowledge—Inclusion of prognostic variables into the
prediction model is based on expert opinion and/or thorough review of
the literature.

TRIPOD—Guideline to be used for Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis.
Available at https://www.tripod-statement.org/.

True model performance—Performance of the model in the
underlying/source population.

Variance—The statistical uncertainty in the estimated parameters.
Prediction models with high variance can provide widely different
predictions if re-estimated on new data sets.

Description of patient data and data preparation

The objective of the model should be clearly defined at the start,
e.g., what is the clinical decision the model needs to support.
Next, a description on how patients were selected for inclusion
in the prediction analysis is imperative, because data are often
primarily collected for other purposes and different study de-
signs have different consequences on the interpretation of the
results [5]. For example, for a diagnostic prediction model, a
cross-sectional cohort study design is preferred, whereas for a
prognostic prediction model, a longitudinal prospective cohort
study design is preferred. Retrospective cohort study designs are
most often used due to its ease in data collection and time effec-
tiveness. The results derived from retrospective study designs
may be however hampered by selection bias. Data from ran-
domized controlled trials are normally of high quality but the
(potential lack of) generalizability to other patients may delay
clinical uptake of the model. The patient sample should be as
representative as possible for the intended population.

Selection of candidate prognostic variables is ideally done
before the start of the study. Subject matter knowledge and
adequate review of the literature are incumbent to get the
ultimate set of prognostic variables (Fig. 1).

Data sets are rarely complete. In general, there are two
options to deal with missing data. First, a complete case-
analysis can be performed. Patients with missing data are ex-
cluded. This may reduce the sample size in a way that a valid
prediction model cannot be generated. Furthermore, the rea-
son for missing data is likely not completely at random and the
results obtained by the prediction model may be biased ac-
cordingly. A better strategy is to replace the missing entries
with reliable values if missingness is substantial, i.e., more
than 5%[8], to maintain enough statistical power for model
development. Multiple imputation is then often the most sen-
sible method. The available data of the patient and comparable
patients are used to estimate the missing value. This method
should be used sensibly as it makes assumptions on the data
and mechanisms of the occurrence of missing data. More de-
tails on multiple imputation can be found elsewhere [9].

It is vital to ensure a robust sample size relative to the
model complexity. A model can be made overly complex by
considering too many prognostic variables (Fig. 1) [5].
Complexmodels are at high risk of overfitting: the results look
promising but do not generalize to new sets of patients (Fig.
1). To limit overfitting, traditionally, 10 events per prognostic
variable (EPV) as a minimum are suggested. Thus, not the
total sample size but the number of events is the effective
sample size in the of field of prediction modeling.

EPV is a widely used term; however, it should be
noted that the number of variables considered is the
total number of estimated parameters of the considered
variables. As a result, considering surgical resection in-
cluding three categories (total resection, subtotal
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resection, and biopsy) as prognostic variable requires
two parameters to be tested and needs therefore a larger
effective sample size. The EPV ratio is an easy rule-of-
thumb to determine the total sample size required to
develop a prediction model; however, recently, several
approaches have been suggested to base the sample size
calculations on the expected degree of overfitting, tak-
ing into account the number of parameters to be esti-
mated and expected variation to be explained as this
can substantially impact the required sample size be-
yond the EPV [10–12].

Adequate coding of prognostic variables is an important
part of data preparation (Fig. 1). It is not recommended to
dichotomize or categorize continuous variables such as age
to prevent loss of prognostic information [13].

Case study

The case study involves a retrospective analysis of 63 hydro-
cephalic children admitted to our tertiary center for a CSF
diversion procedure. The study focused on sociodemographic
data including age and patient gender, and on the applied

Fig. 1 Guideposts (GP) for several steps for the development of clinical
prediction models in pediatric neurosurgery. The process of clinical pre-
diction consists of three phases: model development (GP A–D), model
validation and/or updating (GP E), and model evaluation by impact stud-
ies (GP F). GP A: It is best to select the candidate prognostic variables by
subject matter knowledge and thorough literature review. Data curation
including coding of variables should be done rigorously. GP B: Be aware
of the risk of overfitted prediction models. GP C: At cross-validation, the
model development set is divided into subsets. For example, subset a

functions as a validation set. In the other subsets (b, c, …, k) the model
is refitted with a as validation set. This process is repeated until each of
the subsets has served as a validation set. GP D: Adherence to the
TRIPOD checklist is recommended, which can be downloaded from
https://www.tripod-statement.org/. GP E: Model performance normally
decreases at internal and external validation. GP F: Impact studies are
considered imperative for clinical uptake. Part of the contents of this
figure is based on previous literature reporting on clinical prediction
models [5–7]
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neurosurgical technique. Ethical approval was obtained from
our local institutional review board (IT-TEMP 50). Fourteen
children needed a revision of the initial procedure at 6 months.
Thus, the number of predictors relative to the number of
events (14 revision procedures) was larger for Model 2. The
variables—identified a priori—were all easy to collect. A de-
scriptive of the patient characteristics can be found in Table 1.

Model specification and estimation

Clinical prediction models should be as simple as possible to
facilitate clinical uptake by neurosurgeons. However, if
models are too simplistic, the performance will be limited,
hampering clinical uptake by neurosurgeons. The ultimate
goal of prediction models is to give valid predictions in new
patients. The expected prediction error of a model can be
decomposed in a bias term and variance term. Relatively sim-
ple models are expected to have high bias, but low variance—
they are at risk of underfitting the data. Complex models (e.g.,
by inclusion of too many predictors) have low bias, but high
variance—they are at risk of overfitting the data. The chal-
lenge in developing a prediction model is to balance bias and
variance to ensure good performance in new patients. The
least total error, i.e., the combination of the bias and variance,
is normally found in a fitted model (Fig. 1).

There are several options to select a combination of
prognostic variables for the prediction model. Ideally,
the set of candidate prognostic variables is defined be-
fore the start of the study by means of subject matter
knowledge or thorough literature review. If many can-
didate prognostic variables are of interest, data-driven
prognostic variable selection is often applied to reduce
the number of candidate prognostic variables. However,
these statistical strategies have many drawbacks,

especially when applied to small data sets. Automated
stepwise selection procedures, mostly backward elimina-
tion, tend to provide too extreme predictor effects due
to repeated significance testing. Another way of statisti-
cal variable selection is to univariably test for signifi-
cance in the prognostic variable—outcome association
and then include the most prominent associations into
the prediction model. However, the strength of a prog-
nostic variable also depends on its distribution in the
data set used for model generation. Thus, a rare prog-
nostic variable having a strong association with the out-
come will likely have less prognostic potential com-
pared with a common prognostic variable with a less
strong association with the outcome. There are more
data-driven strategies of selecting relevant prognostic
variables. These all suffer from risk of overfitting due
to repeated significance testing. A more liberal p-value,
for instance p < 0.20, for variable selection may help
limiting the risk of overfitting.

In the next step, the parameters (i.e., the regression
coefficient of the prognostic variables and the model
intercept) of the model are estimated. It is common to
use linear regression, logistic regression, and Cox sur-
vival analysis for continuous, categorical, and time-to-
event outcomes respectively (Box 2) [5]. These models
are based on assumptions such as the additivity assump-
t ion and propor t iona l i ty assumpt ion (Box 2) .
Modifications of the statistical model to address model
assumptions and predictor-outcome relations may result
in a well-fitting model, with high apparent model
performance in the development set used for its gener-
ation (Fig. 1). Yet, the model has become more com-
plex and may not generalize well to other sets of pa-
tients—i.e., overfitting (Fig. 1). According to the effec-
tive sample size, sample sizes with a low number of
events are therefore at higher risk. Statistical shrinkage
techniques aim to limit overfitting. These methods
shrink the coefficients of the prognostic variables [14].
Uniform shrinkage techniques reveal a shrinkage factor
(determined by a heuristic formula or a bootstrapping
procedure) that should be applied to the regression co-
efficients after the estimation procedure. Regularized re-
gression methods use statistical shrinkage techniques
such as penalized maximum likelihood estimation and
the least absolute shrinkage and selection operator
(LASSO) to limit the risk of overfitting during the mod-
el estimation procedure, although these methods are of
limited use as sample sizes become very small [15]. The
best method is however to minimize the use of statisti-
cal testing by using subject matter knowledge [16].

Table 1 Description of patient characteristics

Revision at 6 months

No (n = 49) Yes (n = 14)

Gender

Male (n, %) 33 (86.8%) 5 (13.2%)

Female (n, %) 16 (64%)) 9 (36%)

Age (mean, SD) 7.1 (6.8) 5.6 (6.4)

CSF diversion

VP-Shunt (n, %) 25 (80.6%) 6 (19.4%)

ETV (n, %) 24 (75.0%) 8 (25%)

CSF cerebrospinal fluid, ETV endoscopic third ventriculocisternostomy,
VP-Shunt ventriculoperitoneal shunt
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Box 2 Risk prediction with statistical regression methods

The type of the outcome of interest determines the regression method that
is used.

Continuous outcomes: linear regression
If the outcome is assessed on a large numerical scale, then the outcome is

likely continuous. Patient-reported outcome measures including qual-
ity of life questionnaire are typically evaluated by linear regression. For
an individual patient, risk prediction may come from

y=α+β1x1+β2x2+⋯+βkxk
Here, y is the outcome of interest. The parameters of this regressionmodel

include the α (intercept) and β (regression coefficient). The prognostic
variables are denoted by the x, and are weighted by their corresponding
regression coefficient (β).

Well-known model assumption: additivity of effects on the outcome.

Categorical outcomes: logistic regression
If a binary (i.e. “yes” or “no”) outcome, for example, revision of a

VP-Shunt, is truly known for all children at a particular time point,
absolute risk prediction can be calculated from a transformation of the
binary logistic regression function:

p ¼ exp αþβ1x1þβ2x2þ⋯þβk xkð Þ
1þexp αþβ1x1þβ2x2þ⋯þβk xkð Þ

Here, p denotes the probability of having the outcome. It should be noted
that the probability given by a logistic regression formula is always
wrong. A probability ranges from 0 to 100%. A patient, however, will
either experience the outcome of interest (100%) or not (0%). If an
outcome has multiple categories, extensions of the logistic regression
formula are available.

Well-known model assumption: multiplicative effect on the odds of the
outcome.

Time-to-event outcomes: survival regression
If the outcome of interest is time until an event occurs, Cox survival

regression is usually applied. These models consider the time between
a starting point such as surgical resection of a brain tumor until death or
another endpoint. Patients that are lost to follow-up are censored,
making this analysis unique. To predict survival the survival proba-
bility of an individual patient (that is, the patient has not experienced
the outcome), a transformation of the Cox model—the survival func-
tion S(t)—is normally used:

S tð Þ ¼ S0 tð Þe β1x1þβ2x2þ⋯þβk xkð Þ

S0(t) represents the baseline hazard. It is vital that the baseline hazard at a
particular time point is always presented in the article.

Well-known model assumption: proportionality of the hazard ratios.

Case study

Binary logistic regression was used to estimate the model
parameters (Table 2). No statistical variable selection proce-
dure was applied. Bootstrapping was used to determine the
shrinkage factor. For the 2-predictor model, we found a
shrinkage factor of 0.87. A shrinkage factor of at least 0.90
is typically aimed for when planning clinical prediction
models [11, 12]. For the 3-predictor model, the shrinkage
factor is 0.71. This indicates that the latter model suffers from
more overfitting. Thus, the regression coefficients should be
multiplied by 0.87 and 0.71, respectively, to obtain more reli-
able predictions in other pediatric patients. We note that

shrinkage methods for prediction models should be applied
sensibly because it may not be a solution to every data set [17].

Model performance

For clinical uptake it is vital that the prediction model discrim-
inates well between children having the event and children not
having the event. The potential to discriminate is given by the
c-statistic. The c-statistic calculates the probability that the
prediction model provides a higher score for a randomly se-
lected child with the outcome compared with a randomly se-
lected child without the outcome [5]. A c-statistic < 0.50
means that model is worse than guessing, a c-statistic of
0.50 means that the model has no discriminative ability, and
a c-statistic of >0.50 shows that the model has predictive po-
tential. A c-statistic of 1.0 represents perfect discrimination by
the model. For a binary outcome, the c-statistic is equivalent to
the area under the curve of the receiver operating characteristic
curve. Despite good discriminative ability, the prediction
model might systematically overestimate or underestimate
the risk of a child.

Calibrationmethods gauge the accuracy of the model. It is
vital for a prediction model that the predicted probabilities by
the model are in line with the observed outcomes. This agree-
ment is illustrated in a calibration plot (Fig. 2). The diagonal
represents perfect calibration. Ideally, the calibration plot cor-
responds to the diagonal, suggesting perfect calibration which
occurs in utopia only [19]. An overfitted model typically un-
derestimates low-risk patients and produces overestimated re-
sults in high-risk patients (Fig. 2).

Even with acceptable discrimination and calibration, clini-
cal utility is not always guaranteed. Decision curve analysis
investigates the potential clinical usefulness of a prediction
model [20]. The clinical usefulness of a prediction model is
then quantified in terms of the net benefit across a range of
clinically relevant decision thresholds (thresholds at which a
neurosurgeon would treat high-risk patients and not treat low-
risk patients) compared with default strategies of treating all
patients or none of the patients. If the net benefit of the model
is higher compared with default strategies, then the model is
suggested to be clinically useful. A more detailed explanation
is beyond the scope of this article, and we refer to more spec-
ified literature [21, 22].

Overall model performance measures are sometimes given;
these measure the overall performance of a prediction model
and hence are a combination of the model’s discriminative
ability and calibration. For example, the explained variance
(R2) index ranges from 0 to 100%. R2 assesses the proportion
of the variability in the outcome that is explained by the pre-
diction model, which is typically below 50%. Other measures
of overall model performance are pseudoR2 values for logistic
regression and survival analysis or the Brier score.
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Case study

As expected, we observed an increasing c-statistic with in-
creasing model complexity: Model 1 yielded a c-statistic of
0.71, whereas Model 2 had a c-statistic of 0.73 [23].
Calibration plots are normally evaluated at external validation
attempts. By lack of an independent validation set, calibration
was not considered.

Model validation

Model validation is a crucial aspect of generating robust predic-
tion models (Fig. 1). Developed prediction models tend to have
too optimistic apparent model performance measures when ap-
plied to the data used for development. Therefore, it is a prereq-
uisite for every single prediction model to proceed with an inter-
nal validation procedure (Fig. 1). Internal validation techniques

Fig. 2 Calibration plot for a
typical overfitted prediction
model: overestimated risks for
high-risk patients and
underestimated risks for low-risk
patients. If such a model calcu-
lates a risk of 90% and thereby
identifies a child as high-risk, the
pediatric neurosurgeon should
taken this caveat into account
when applying this model in
clinical practice. Calibration is the
Achilles heel of predictive ana-
lytics [18]

Table 2 Multivariable prediction models for revision of CSF diversion at 6 months

Model 1 Model 2

Gender (β; OR, 95% CI) 1.42; 4.1 (1.1, 14.8) 1.51; 4.5 (1.2–16.7)

Age (β; OR, 95% CI) −0.05; 0.95 (0.86, 1.05) −0.08; 0.92 (0.82–1.03)
Neurosurgical intervention (β; OR, 95% CI) 0.75; 2.1 (0.5, 8.2)

Intercept −1.60 −1.90
Shrinkage factor (slope) 0.87 0.71

c-statistic 0.71 0.73

Optimism-corrected c-statistic 0.67 0.66

β regression coefficient, CI confidence interval, CSF cerebrospinal fluid, OR odds ratio

The full regression equation for Model 1:

log p
1−p ¼ logit pð Þ ¼ −1:60þ 1:42� Gender ¼ f emaleð Þ þ −0:05� Ageð Þ

The full regression equation for Model 2:

log p
1−p ¼ logit pð Þ ¼ −1:90þ 1:51� Gender ¼ f emaleð Þ þ −0:08� Ageð Þ þ 0:75� Neurosurgical intervention ¼ ETVð Þ
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aim to estimate themodel performance when applying themodel
to similar patients not used for model development and quantify
optimismbetween themodel performancemeasures accordingly.
These techniques use the same data that were used for model
development. A commonly used method, yet inefficient method
as it decreases the sample size, is the split sample approach. Here
the development set is randomly split into a development and a
validation set. In addition, the validation set only differs by
chance from the development set. Therefore, it is highly recom-
mended to perform more efficient resampling methods:
bootstrapping or cross-validation. A bootstrap sample is created
using random sampling of patients with replacement from the
development data set to mimic random sampling from the source
population of the patients. Thus, patients can be selected several
times in one bootstrap sample (Fig. 1). Bootstrap samples are of
the same size as the development data set and are repeatedly
drawn to reveal a large number, for example, 1000, of bootstrap
data sets. On each of the bootstrapped data sets, all model devel-
opment steps are repeated (including variable selection). The
difference in model performance of these developed models
when evaluated on the bootstrapped and original patient set is
called the optimism (Fig. 1). An alternative technique that can be
used is cross-validation. Here, all the data is divided into subsam-
ples.One of these subsamples is used for validation, and the other
is used for development. This procedure is then repeated several
times, e.g., 10 times in a 10-fold cross-validation. To assess the
performance measures of the model, the results from all test sets
are used. A stronger version of cross-validation is internal-
external validation. Here a non-random split of the data is used
to split the data in different subsamples, e.g. center or country.

External validation addresses the generalizability (or trans-
portability) of the model to similar but different patients (Fig. 1).
In contrast to internal validation, external validation is able to
address the heterogeneity in the patients of the population of
interest in real-life. Ideally, the outcome and prognostic variables
of interest are easily to collect and assessed without measure-
ment error. At external validation, the steps for model developed
are not repeated, nor is the model refitted in the external data set.
However, the developed model with its parameters is applied to
the new external set of similar patients and the model perfor-
mance measures are quantified accordingly. Consequently, the
generalizability of the model can be judged. There are three
types of external validation: temporal, geographical, and domain
validation. In temporal external validation, the external set of
patients comes from the same institution but in different time
period. In geographical external validation, the new set of pa-
tients comes from different institutions or countries. In domain
validation, the model is tested on patients very different from the
development patient set. For example, a model has been devel-
oped in adults and validated in children. For a reliable external
validation study, at least 100 events have been considered as
minimum [24], although recent research proposes a more tai-
lored sample size approach [25].

Case study

The two models were internally validated using 1000 bootstrap
samples. The optimism was calculated: The discriminative per-
formance of the 2-predictor model dropped from 0.71 to 0.67.
The drop in c-statistic was larger for the 3-predictor model: from
0.73 to 0.66. An independent set of patients was not available,
and therefore, the model could not be subjected to external val-
idation. Therefore, thismodel is immature in its current form and
cannot be recommended for clinical use accordingly.

Results

Reporting results from prediction models accurately is crucial
for future work (Fig. 1). Without the full prediction model
including all the parameters (model intercept and regression
coefficients), colleagues are unable to use the model properly.
The quality of reporting has generally been poor. Therefore, in
2015 and 2020, the Transparent Reporting of Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) and TRIPOD for Abstracts are published [26,
27]. These guidelines include a checklist authors should ide-
ally follow when reporting their results.

To aid clinical use, prediction models can be presented in
many ways such as score charts and nomograms—however,
again, the full regression equation should always be presented.
If a simplified version of a model is deemed necessary for
presentation, then this new model should be validated as well
to evaluate its performance with respect to the full model [28].
Nowadays, it is relatively easy to create a user-friendly web-
based instrument or nomogram to visualize and calculate the
individual probability of a patient.

Case study

The full prediction model can be derived from Table 2. For
prognostication, the risk score for a 7-year-old boy undergoing
an ETV procedure for hydrocephalus is calculated by the follow-
ing formula:

Risk score ¼ −1:90 interceptð Þ þ 1:51*0 male genderð Þð Þ
þ −0:08*7 age in yearsð Þð Þ þ 0:75*1 ETVð Þð Þ

¼ −1:71:

Consequently, the probability of a 6-month CSF diversion
revision for this child equals:

exp −1:71ð Þ= 1þ exp −1:71ð Þ ¼ 15%:ð
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Discussion

In this paper, the fundamentals of developing a clinical prediction
model are described and illustrated with an original case study.
We focused primarily on the model development stage.

As demonstrated by the case study, overfitting is an important
pitfall to consider when developing a clinical prediction model.
Either the use of a development data set with a low number of
events or the use ofmultiple candidate prognostic variablesmake
a clinical prediction model prone for overfitting. Prior to uptake
in clinical practice (despite a sensible modeling strategy), a pre-
diction model should ideally follow three stages: model devel-
opment, model validation and/or updating, andmodel evaluation
by impact studies (Fig. 1).

Updating a clinical prediction model can help to improve a
poorly performing model at external validation [29, 30]. The
information from the developed model is combined with the
patients from the external validation set. For example, if the event
rate of revision of a CSF diversion procedure is lower in an
external validation set, the predicted risks by the model of the
presented case study may be overestimated. Simply adjusting
one parameter of the model—i.e., the intercept—may then be
enough to get the model tailored to the local circumstances of
the new set of patients. Further, variations in case mix, new
promising biomarkers, or other innovations may cause calibra-
tion drift of the initial developed predictionmodel causing flawed
predictions [31]. To re-balance the equation, it is recommended
to update clinical prediction models regularly. Methods for
updating include but are not limited to modification of baseline
risk, modification of the regression coefficients, and model ex-
tension with new predictors [31–34]. Using updating techniques,
the performance of the prediction model likely increases and
prevents the development ofmultiple de novo predictionmodels.

The last stage includes the implementation of the clinical
predictionmodel with evaluation of its clinical impact (Fig. 1).
The need for a comparative study design—ideally randomized
trials—makes this step unique, albeit difficult to conduct [33].
An intermediate step to clinical implication of a prediction
model can be the application of decision analytic techniques.
These techniques, including net benefit approaches and deci-
sion curves, evaluate the proposed model against the current
standard of care [20–22].

Prediction models cannot take over the decision-making pro-
cess of the pediatric neurosurgeon [35]. No prediction model can
activate an individual treatment plan.However, thesemodels aim
to help in the decision-making process, especially for clinical
conditions in equipoise regarding optimal patient management.
Prediction models may also help to communicate anticipated
future events of diseases to children and their parents. This may
enhance the patient–doctor relation accordingly. Therefore, pedi-
atric neurosurgeons should ideally have a basic knowledge on
how to interpret and use clinical prediction models. Clearly, pre-
diction models may not be always readily understandable by

pediatric neurosurgeons. Therefore, to ensure safe use of predic-
tion models in clinical practice, regulatory standards for predic-
tion models have been proposed recently [36]. For the interested
reader, other explanatory literature provides further and more
detailed information [14, 26, 35, 37–40].

We are aware that other approaches to model development
are available, such as machine learning techniques. Where
statistical regression techniques rely more on subject matter
knowledge and use prespecified mathematical algorithms,
machine learning techniques are more data driven relying on
highly flexible self-learning automatized algorithms [41].
Consequently, opaque models and black boxes may emerge
jeopardizing the interpretability of the results. Machine learn-
ing techniques often do not perform better than statistical re-
gression techniques for predicting outcomes with limited sam-
ple sizes [42]. However, machine learning techniques have
shown great promise in for example imaging interpretation
[43]. It is still believed that regression methods will remain a
default framework for clinical prediction modeling.

Case study

The case study presented here serves as an illustration.
External validation of the score as well as evaluation of its
clinical impact has not been performed. Therefore, this exam-
ple prediction model for revision of a CSF diversion proce-
dure at 6 months is clearly premature and cannot be recom-
mended for use in clinical practice.

To conclude, the process of generating sensible clinical
prediction models warrants a systematic approach with a mul-
tidisciplinary team including experts in the medical, epidemi-
ological, and statistical field since multiple aspects are to be
considered. Therefore, adherence to relevant guidelines is
highly recommended.
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