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Umbilical cord blood CD34+ cells administration improved
neurobehavioral status and alleviated brain injury in a mouse model
of cerebral palsy
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Abstract
Purpose Cerebral palsy (CP) is the most common neuromuscular disease in children, and currently, there is no cure. Several
studies have reported the benefits of umbilical cord blood (UCB) cell treatment for CP. However, these studies either examined
the effects of UCB cell fraction with a short experimental period or used neonatal rat models for a long-term study which
displayed an insufficient immunological reaction and clearance of human stem cells. Here, we developed a CP model by
hypoxia-ischemic injury (HI) using immunodeficient mice and examined the effects of human UCB CD34+ hematopoietic stem
cells (HSCs) on CP therapy over a period of 8 weeks.
Methods Sixty postnatal day-9 (P9) mouse pups were randomly divided into 4 groups (n = 15/group) as follows: (1) sham
operation (control group), (2) HI-induced CP model, (3) CP model with CD34+ HSC transplantation, and (4) CP model with
CD34- cell transplantation. Eight weeks after insult, the sensorimotor performance was analyzed by rotarod treadmill, gait
dynamic, and open field assays. The pathological changes in brain tissue of mice were determined by HE staining, Nissl staining,
and MBP immunohistochemistry of the hippocampus in the mice.
Results HI brain injury in mice pups resulted in significant behavioral deficits and loss of neurons. Both CD34+ HSCs and CD34-

cells improved the neurobehavioral statuses and alleviated the pathological brain injury. In comparison with CD34- cells, the
CD34+ HSC compartments were more effective.
Conclusion These findings indicate that CD34+ HSC transplantation was neuroprotective in neonatal mice and could be an
effective therapy for CP.
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Introduction

Cerebral palsy (CP) is the most common physical disability in
childhood. Children with CP exhibit a complex set of dys-
functions, including behavioral disorders, disturbances in sen-
sation and perception, epilepsy, mental retardation, and lan-
guage deficits[1]. Nowadays, many treatments have been de-
veloped for CP, which include diverse surgeries on muscles,
tendons, bone, and nerves [2]; medications [3]; electrical stim-
ulation, patterning, and conductive education [4]; and orthoses
[5]. However, these treatments only provide symptomatic re-
lief, and some may cause discomfort or severe side effects in
the patients. Overall, CP is still incurable and remains an ur-
gent topic in pediatric neurodevelopmental research.

Recently, cell therapy has attracted huge attention as a new
treatment for CP. For treatments of many disorders, especially
perinatal brain injury, there are many advantages in the use of
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umbilical cord blood (UCB) mononuclear cells, including the
availability, high tolerance to HLA mismatch, and reduced
graft versus host disease [6]. Several studies demonstrated that
UCB cells could migrate to sites of injury within the brain in
CP rats [7], reduced functional deficits [8], and protected
against white matter injury [9]. The analysis indicated that
UCB cells were more effective than any other tested cell types
at treating children with CP, with a significant intervention
effect in a short-term (6 months) follow-up[10]. However,
UCB cells are a variable mix of stem and progenitor cells,
including hematopoietic stem cells (HSCs), endothelial pro-
genitor cells (EPCs), and mesenchymal stem cells (MSCs). It
is still not clear how each of these cell types individually
contributes to neurorepair. It is difficult to quantify the poten-
cy and efficacy of UCB cells in specific clinical circum-
stances. Therefore, it is critical to develop new specific single
cell type therapies.

HSCs defined as CD34+ cells have been shown to signifi-
cantly improve behavioral outcomes and increase
neurogenesis after stroke in both adult and neonatal models[7,
11]. This study mainly aimed to examine the capability of
CD34+ HSCs in brain injury treatment in mice with CP during
a long-term period (8 weeks) in mice with CP, which ap-
proaches to maturity 8 weeks after birth, when the various
organs of the bodies are mature and all functions of them are
basically determined.

Methods

Isolation of human CD34+ cells

All human UCB samples were obtained from Guangdong
Cord Blood Bank. Written informed consent was obtained
from each donor. The use of these samples in this study was
approved by the Committee for the Ethical Review of
Research Involving Human Subjects at Guangdong Cord
Blood Bank. CD34+ cells were collected using human CD34
MicroBead Kit UltraPure (Miltenyi Biotec, 130-100-453).
The purity was > 90%, and the viability of the cells was >
95%. The remaining fraction was identified as CD34- cells.

Animals and surgery

Animal experiments were performed in the Laboratory
Animal Center of the Guangzhou Institutes of Biomedicine
and Health (GIBH), and all animal procedures were approved
by the Animal Welfare Committee of GIBH. NOD-SCID-
IL2Rg−/− (NSI) mice were derived at the GIBH. Mice were
housed in specific pathogen-free cages and provided with
autoclaved food and water. Protocols were approved by the
relevant Institutional Animal Care and Use Committee
(IACUC).

Sixty postnatal day-9 (P9) mouse pups were prepared for
the experiments. P8–12 mice were considered comparable to
human full-term (P0) neonates in regard to brain
maturation[12]. Pups were randomly divided into 4 groups
(n = 15/group) as follows: (1) sham operation (control group),
(2) hypoxic-ischemic injury (HI)-induced CP model, (3) CP
model with CD34+ HSC transplantation, and (4) CP model
with CD34- cell transplantation. Mice were anesthetized with
3.5% isoflurane for induction and 1.5% for maintenance. The
left common carotid artery was dissected and permanently
ligated with a prolene suture. The skin incision was then su-
tured. Pups were returned to their mothers for 1 h and then
placed in a plexiglass hypoxia chamber at 37 °C. A nitrogen-
oxygen mixture of 8.0 % oxygen was injected into the cham-
ber at 1.0–2.0 L/min for 0.5 hour. The pups were then returned
to their cages and fed by their mothers. Sham-operated pups
only underwent a left common carotid artery isolation without
ligation or hypoxia.

Intracerebral transplantation

12 hours after modeling, mice were fixed onto a stereo locator,
followed by disinfection of the scalp, sagittal incision, and
drilling under aseptic operation. The transplantation site was
located on a location of ( AP: −1 mm, ML: −1 mm, DV: −2
mm, 1 mm after the bregma, 1 mm left to the bregma, and
2mmdeep). The needle was slowly inserted 1.5 mmvertically
by using a microsyringe, and 2μl of cell mixture were injected
(about 1×105). The injection process took more than 5 min
and the needle was kept in place for 5 min and then was
gradually pulled out for 5 min. The scalp was sutured and
mice were returned to their cages after warming and
awakening.

Accelerating rotarod

The rotarod apparatus was composed of a horizontal rod, 3 cm
in diameter, separated by opaque plastic dividers in order to
accommodate up to 5 mice per trial (Ugo Basile, 47600). The
rotarod accelerated from 4 to 40 rpm over 5 min. The latency
to fall from the rod was recorded for three consecutive ses-
sions on test day.

Gait dynamic assay

Gait dynamic assays were performed using the DigiGait im-
aging system along with DigiGait 10.0 analysis software
(Mouse Specifics). This imaging system has been described
in greater detail elsewhere [13]. The DigiGait apparatus con-
sists of a clear plastic treadmill with a high-speed under-
mounted digital camera (Basler Technologies Inc.) used for
imaging paw prints. Images were collected at a rate of 140
frames/s and stored as audio video interleaved (AVI) files for
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later analysis. Image analysis software digitally encoded ani-
mal paw area and position relative to the tread-belt. Each paw
of the animal was treated as a unique signature such that later
analysis of foot movement could be performed on separate
limbs. An average of 10 sequential strides per paw was col-
lected from each mouse. This number of strides had been
validated as being sufficient to analyze treadmill walking be-
havior in mice[14]. All settings, i.e., camera, lighting, and belt
speed, were optimized before experimental testing.

Mice were locked into a clear chamber which was placed
on the treadmill serving as the floor. The mice were allowed to
explore the habitation for 1 min with slow treadmill activation
(10 cm/s). On subsequent trials, animals were tasked with
walking at a faster pace (20 cm/s).

Open field

The activity of each mouse on the first day of habituation to
the object recognition test apparatus was recorded as an open
field task to study locomotor and exploratory activities[15].
Individual mice were placed in the square arena and allowed
to explore the region for 10 min. The area was divided in 16
square zones, of which the four central squares were consid-
ered the central zone. The data were presented as average
speed (cm/s), total activity (%), total distance travelled (cm),
distance travelled in the center (%), and time spent in the
center (%).

Histological analyses and immunohistochemical
staining

After neurobehavioral evaluation, mice were perfusion-fixed
intracardially with 4% paraformaldehyde. The brain was re-
moved and fixed in a 4% paraformaldehyde solution for 24 h;
thereafter it was dehydrated, embedded, and sectioned contin-
uously into 4-μm tissues sections for histological examina-
tion. The slices were placed in an incubator at 60 °C for 2 h
and dewaxed, hydrated, and stained with hematoxylin for 5
min; differentiated with 1% hydrochloric acid alcohol; and
immersed for 10 min. Afterward, the slices were stained with
1% water-soluble eosin, dehydrated with 75% alcohol for 3
min, 85% alcohol 3 min, and 95% alcohol for 3 min, followed
by dehydration, clearance, and sealing. The histopathological
condition of brain tissues was observed by the histopatholog-
ical examination and photographs.

Paraffin-embedded sections were deparaffinized and, after
heat-mediated antigen retrieval, sealed by 5% goat serum and
incubated with an antibody against MBP (Abcam, ab40390,
1:200) at 4 °C overnight. The sections were incubated with a
peroxidase-labeled antibody at 37 °C for 20 min. The slides
were then stained with DAB and counterstained with hema-
toxylin, followed by conventional dehydration, clearance, and
sealing. All slides were imaged with a microscope

(DMI6000B; Leica Microsystems). For each specimen, 4
fields were visualized to calculate the mean integrated optical
density (IOD) of MBP protein expression. All the immuno-
chemistry results were analyzed using Image-Pro Plus 6.0
software.

Statistical analysis

Data analysis was performed using GraphPad Prism
(GraphPad Software). A two-way repeated measures
ANOVA was used to establish statistical significance.
Differences were considered significant at P < 0.05. The re-
sults were expressed as the mean ± standard deviation (SD),
unless otherwise noted.

Results

Effect of CD34+ HSC transplantation on sensorimotor
performance in HI-induced mice

Eight weeks after insult, the sensorimotor performance was
analyzed by a rotarod treadmill. A statistically significant dif-
ference was observed between the HI-induced group and the
stem cell therapy groups. Compared with the sham-surgery
group, the performance was significantly impaired in the HI-
induced group, and it was rescued in mice transplanted with
CD34+ HSCs and CD34- cells. It showed a better curative
effect on the CD34+ HSC group than the CD34- cell group
(Fig. 1a).

CD34+ HSC transplantation improves ataxic
perturbation in HI-induced mice

All gait dynamic assays were performed using the DigiGait
imaging system along with DigiGait 10 analysis software to
detect changes in movement patterns.

Propulsion duration indicated a prolonged extension of
both the fore and hind paws in HI-induced mice[16]. CD34+

HSC therapy restored the normal propulsion duration, where-
as CD34- cell treatment had no effect (Fig. 1b).

Swing duration is the time interval between the end of the
propulsion phase and the beginning of the braking phase[16].
The results suggested that HI-induced mice had a longer
swing duration than the control group. CD34+ HSC but not
CD34- cell had efficacy to improve the symptoms (Fig. 1c).

Stride duration is defined as the time from the beginning of
one stance slope to the next [16]. Fore and hind paws perfor-
mance exhibited significant effect of HI. CD34+ HSC treat-
ment recovered normal duration in HI-induced mice and
CD34- cell treatment showed moderate efficacy (Fig. 1d).
Furthermore, HI-induced mice exhibited a significant longer
stride length and lower stride frequency, indicating a longer
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Fig. 1 CD34+ HSC
transplantation improved Rotarod
and gait performance. (A)
Latency to fall from an accelerat-
ed rotarod. Dynamic measure-
ments of gait detected by the
DigiGait apparatus: (B) propul-
sion duration (sec); (C) swing
duration (sec); (D) stride duration
(sec); (E) stride length (cm); (F)
stride frequency (step/sec); (G)
stance duration (sec); (H) stance
width (cm); and (I) paw angle
(degree). CON: sham operated;
HI: hypoxic–ischemic injury;
CD34+: HSC transplantation;
CD34-: CD34- cell transplanta-
tion. *p < 0.05, **p < 0.01, and
***p < 0.001. Error bars represent
± SD

2200 Childs Nerv Syst (2021) 37:2197–2205



pace. Therapy with stem cells, especially CD34+ HSCs, im-
proved motor performance (Fig. 1e-f).

Stance duration is calculated as the total time of both the
braking and propulsion phases of the stance, while the paw
was in contact with the belt [16]. HI-induced mice showed
reduced stance time during walking. CD34+ HSC treatment
regained stance duration in both fore and hind paw perfor-
mance, while CD34- cell treatment exhibited moderate im-
provement (Fig. 1g).

The stance width measured the distance between the cen-
troids of the left and right paws[16]. HI resulted in a decreased
stance width in the hind paws, indicating an unbalanced pos-
ture. CD34+ HSC treatment recovered the impair perfor-
mance, but CD34- cell treatment showed no improvement
(Fig. 1h). No effect was detected in fore paw measurements.

Paw angle indicated the total angle of the left and right
paws[16]. Only fore angle was significantly decreased in HI-
induced mice, and no improvement was showed after stem
cell therapy (Figure 1I).

CD34+ HSC treatment ameliorates HI-induced explor-
atory behavior and locomotion impairment

An open field evaluation was performed to confirm effects of
HI or stem cell treatment on general exploratory behavior or
locomotion of mice. Mice showed reduced speed and distance
travelled in HI-induced group at 8 weeks after insult.
Compared with HI-induced mice, CD34+ HSC or CD34- cell
treatment increased the locomotive speed and distance, indi-
cating that HI impaired general exploratory and locomotor
activities, stem cell therapy restored this impairment, while
CD34+ HSCs had greater efficacy than CD34- cells (Fig. 2a-
b). Furthermore, the distance travelled and time spent in the
center of the arena were decreased in HI-induced mice, indi-
cating that anxiety behavior was induced by the HI procedure.
Also, CD34+ HSC treatment had greater efficacy than CD34-

cells as a stem cell therapy (Figure 2C-D).

CD34+ HSC treatment alleviates brain tissue injury in
HI-induced mice

HE staining results showed that the cells of the hippocampus
were arranged orderly and the shape was normal in the sham
group. In the HI group, the cells in the hippocampus were
swollen, denatured, and disorganized. In the CD34+ HSC
treatment group, the cell morphology in the hippocampus
tended to be normal. In the CD34- cell treatment group, cell
morphology was improved, and the tissue structure in the
hippocampus was alleviated (Fig. 3a). Nissl staining results
indicated that neuronal degeneration has been found to be
prominent in CA1 and CA3 regions with HI. There was no
noticeable neuronal loss in mice with CD34+ HSC adminis-
tration, and an incomplete restoration of neuronal numbers

was observed when treated with CD34- cells (Fig. 3b). Little
staining for MBP was found in HI-induced mice brain, while
in both sham and CD34+HSC groups, strong positive staining
for MBP was observed in the hippocampus. MBP staining in
CD34- cell group was generally weaker than sham and CD34+

HSC groups (Fig. 3c). The results suggested that CD34+ HSC
transplantation could attenuate brain tissue injury in HI-
induced mice.

Discussion

In recent years, numerous methods have been developed for
CP therapy, including occupational and physical therapies[3,
17, 18]. Despite the great advances achieved in obstetric and
neonatal care, CP patients still have poor prognosis due to the
lack of effective therapies. Thus, there is an urgent need to
develop a treatment for this disease. In this present study, a
mice model of CP with HI was established and used to exam-
ine the potential of HSCs in brain injury therapy over a long-
term period.

First, we found that after HSC transplantation in CP mice,
the neurobehavioral was improved. In the accelerating rotarod
paradigm, HI-induced mice had less latency to fall, showing a
deterioration in motor performance, which was improved after
CD34+ HSC administration. The use of digital footprint anal-
ysis was a useful approach for quantifying gait dysfunction in
mouse model. The dynamic assays showed a disparity in
stride, stance, swing, and propulsion duration measurements
between HI-induced CP mice and HSC-treated CP mice, in-
dicating changes in movement patterns. CD34+ HSC treat-
ment reverted these changes. Interestingly, we found that
HI-induced mice may employ a different strategy to maintain
balance. HI-induced mice decreased their hind paw stance
width, which may be attributed to the need for increasing
stability[19]. But HI-induced mice decreased their paw angle,
and this behavior was not in line with stereotypical trial of
human ataxia [20]. As an increase in paw angle would provide
stability, the decreased paw angle may indicate imbalanced
gait in HI-induced CP mice. However, in human, ataxia gait
is defined as a decreased in stride length and stride frequency
[21], and HI-induced mice showed increased in stride length.
Humans are bipedal and the locomotion is more prone to
instability. Thus these comparisons may be viewed in an ap-
propriate context but not taken to be exact replications of the
human condition.

In addition, these findings indicating that HI changed loco-
motive and exploratory behavior of mice is in line with a
previous report that severe HI altered behavior in an open-
field test [22]. But we also found anxiety-like behavior in
HI-induced mice, which is inconsistent with a previous
study[23]. Also, we found decrease immunostaining of
MBP, which is produced by oligodendrocytes, in HI-
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induced mice brain. This is an indication that myelination in
HI-induced mice brain might be impaired. Although the brain
and neurobehavioral impairments mentioned above were re-
stored after CD34+ HSC administration, we could not find
CD34+ cells in mice brain, probably because of the long ex-
perimental period.We also observed that CD34- cell treatment
had moderate effect on repairing brain injury and improving
behavior. It may suggest that other cells, such as MSCs and
EPCs, are contributing to CP therapy. This is supported by
previous studies[24–27]. However, MSCs were present in
USC sample at a low frequency and number [28] and EPC
even lower. With the same dosage, CD34+ HSCs had greater
efficacy for CP therapy than CD34- cells in this study. Thus,
CD34+ HSCs may be the priority of stem cell therapy for CP
treatment.

Recently, a handful of studies have assessed the efficacy of
UCB cells in large animal models (rabbits and sheep) of neo-
natal brain injury[29–31]. But a major limitation to the large
animal trials is they were conducted over a relatively short
experimental period. In part it is due to the challenges of
maintaining these animals in a neonatal intensive care setting
over a prolonged period, and the financial concern of keeping
large animals. Thus, these studies may not to meet the crucial

need for long-term data. Furthermore, both autologous
[32–34] and allogeneic [35–37] UCB cells have been proved
to be therapeutically safe and effective in clinical trials.
However, these clinical trials are all performed over a short-
time period, and the long-term effects of UCB cells adminis-
tration, especially on the behavioral outcomes, have not been
extensively studied [38]. Other studies have used human cells
in rat models for long-term data [39, 40], but they are still
insufficient for an increased risk of immunological reaction
and clearance of stem cells. For these reasons, we established
a CP model with immunodeficient mice to minimize the im-
munological rejection of human cells. We also conducted the
experiment over a relatively long experimental period to con-
firm the improvement after the mice reached adulthood.

In this study, a single dose of CD34+ HSCs improved long-
term behavioral outcomes and restored neuronal numbers.
The result was roughly consistent with the study conducted
by Penny TR et al. (Penny TR et al. 2020) [41] which admin-
istrated SD rats multiple doses of UCB and modulated patho-
logical evidence of long-term brain injury better than the study
conducted by Penny TR et al. (Penny TR et al. 2019) [42]
which administrated SD rats by a single dose of UCB.
According to the above comparisons, we speculated that

Fig. 2 Locomotion and activity in open field test. (A) Average speed (cm/
sec); (B) total distance travelled (cm); (C) distance travelled in the center
(%); and (D) time spent in the center (%). Control: sham operated; HI:

hypoxic–ischemic injury; CD34+: HSC transplantation; CD34-: CD34-

cells transplantation. *p < 0.05, **p < 0.01, and ***p < 0.001. Error bars
represent ± SD
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CD34+ HSCs in UCB could be the main effector cell popula-
tion in the treatment of CP. And we supposed that common

SD rats should resist human cells more intensively than the
immunodeficient mice. This probably implies human UCB

Fig. 3 Pathological changes in
brain tissue of mice. (A)
Pathological observation of hip-
pocampus in mice by HE stain-
ing. (B) Nissl stain of hippocam-
pus in mice. (C) MBP immuno-
histochemistry of hippocampus in
the mice, Strong MBP positive
staining was observed in sham
operated mice brain, staining was
very weak at the same area in the
HI-induced mice brain, strong
positive staining for MBP was
observed in HSCs treated mice
brain,MBP staining in CD34- cell
group was generally weaker than
sham and CD34+ groups. Con:
sham operated; HI: hypoxic–
ischemic injury; CD34+: HSC
transplantation; CD34-: CD34-

cell transplantation. Staining in-
tensity were showed as mean IOD
(4 random sights/sample), data
are presented as the mean ± SD.
One-way ANOVA; ns: no signif-
icant difference; *p < 0.05, **p <
0.01, and ***p < 0.001
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cells, especially CD 34+ HSC, should have a long-term effec-
tiveness in clinical trial for CP.

In conclusion, this present study demonstrated that CD34+

HSCs ameliorated brain injury and improved neurobehavior
in a hypoxic-ischemic mice model. This study would facilitate
the development of CP therapy. However, this study was only
conducted in animal models, prospective future studies would
be needed to demonstrate the safety and the efficacy of CD34+

HSCs and above all to understand the correct doses of these
cells to be administered in the different age groups and also in
human neonate with cerebral palsy.
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