Skip to main content
Log in

Value of computerized shunt infusion study in assessment of pediatric hydrocephalus shunt function—a two center cross-sectional study

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Hydrocephalus shunt malfunction can—also in children—occur insidiously without clear symptoms of raised intracranial pressure (ICP) or changes in ventricular size, imposing a diagnostic challenge. Computerized shunt infusion studies enable quantitative shunt function assessment. We report on feasibility and results of this technique in children in a two center cross-sectional study.

Material and methods

Shunt infusion study (SIS) is performed with two needles inserted into a pre-chamber for ICP recording and CSF infusion. After baseline ICP recording, constant rate infusion is started until a new ICP plateau (ICPpl) is reached. Dedicated software containing the shunt’s resistance characteristics calculates ICP and its amplitude outflow resistance and critical shunt pressure (CSP). Overall, 203 SIS were performed in 166 children. Shunts were defined as functional if ICPpl was <CSP and obstructed if ICPpl was > 5 mmHg above CSP and borderline in between.

Results

Forty-one shunts (20.2%) were found obstructed, 26 (12.8%) had borderline characteristics, and 136 (67%) were functional. Baseline ICP in obstructed shunts was significantly above shunt operating pressure. CSF outflow resistance (Rout) and ∆ICP plateau were significantly elevated in obstructed shunts, with cut-off thresholds of 8.07 mmHg min/ml and 11.74 mmHg respectively. Subgroup analysis showed smaller ventricles in 69% of revised cases.

Conclusion

SIS is a feasible, reliable, and radiation-free technique for quantitative shunt assessment to rule out or prove shunt malfunction. Dedicated software containing shunt hydrodynamic characteristics is necessary and small children may need short-term sedation. Due to the clinical and inherent economic advantages, SIS should be more frequently used in pediatric neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMP:

Fundamental amplitude (1st harmonic) of ICP after Fourier transformation

CSF:

Cerebro spinal fluid (Cerebrospinal fluid)

CSP:

Critical shunt pressure determined by software according to shunt characteristics

EI:

Evans’ index

FOHR:

Fronto-ccipital horn ratio

ICP:

Intracranial pressure

ICPpl:

ICP at plateau phase of infusion study

MRI:

Magnetic resonance imaging

opICP:

Expected intracranial pressure at the operating pressure of the shunt valve

R out :

Resistance to CSF outflow

VP-Shunt:

Ventriculo-peritoneal shunt

ΔICP (mmHg):

Difference between ICP at baseline and ICP plateau

ΔAMP (mmHg:

Difference between AMP at baseline and AMP at plateau

ΔICPop (mmHg):

Difference between theoretical operating pressure according to valve setting and ICP at baseline

ΔCSP (mmHg):

Difference between ICP at plateau and CSP

ΔR out (mmHg min/ml):

Difference between measured Rout and laboratory-tested Shunt Rout

References

  1. Andersson N, Malm J, Backlund T, Eklund A (2005) Assessment of cerebrospinal fluid outflow conductance using constant-pressure infusion--a method with real time estimation of reliability. Physiol Meas 26:1137–1148. https://doi.org/10.1088/0967-3334/26/6/022

    Article  PubMed  Google Scholar 

  2. Arrington CN, Ware AL, Ahmed Y, Kulesz PA, Dennis M, Fletcher JM (2016) Are shunt revisions associated with IQ in congenital hydrocephalus? A meta-analysis. Neuropsychol Rev 26:329–339. https://doi.org/10.1007/s11065-016-9335-z

    Article  PubMed  Google Scholar 

  3. Benzel EC, Mirfakhraee M, Hadden TA (1991) Evaluation of CSF shunt function: value of functional examination with contrast material. AJNR Am J Neuroradiol 12:143–147

    CAS  PubMed  Google Scholar 

  4. Borgesen SE, Albeck MJ, Gjerris F, Czosnyka M, Laniewski P (1992) Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochir 119:12–16

    Article  CAS  Google Scholar 

  5. Bouma GJ, Muizelaar JP, Bandoh K, Marmarou A (1992) Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg 77:15–19. https://doi.org/10.3171/jns.1992.77.1.0015

    Article  CAS  PubMed  Google Scholar 

  6. Boyle TP, Nigrovic LE (2015) Radiographic evaluation of pediatric cerebrospinal fluid shunt malfunction in the emergency setting. Pediatr Emerg Care 31:435–440; quiz 441-433. https://doi.org/10.1097/PEC.0000000000000462

    Article  PubMed  Google Scholar 

  7. Chari A, Czosnyka M, Richards HK, Pickard JD, Czosnyka ZH (2014) Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory. J Neurosurg 120:697–707. https://doi.org/10.3171/2013.11.JNS121895

    Article  PubMed  Google Scholar 

  8. Chiewvit S, Nuntaaree S, Kanchaanapiboon P, Chiewvit P (2014) Assessment lumboperitoneal or ventriculoperitoneal shunt patency by radionuclide technique: a review experience cases. World J Nucl Med 13:75–84. https://doi.org/10.4103/1450-1147.139135

    Article  PubMed  PubMed Central  Google Scholar 

  9. Czosnyka M, Czosnyka Z, Agarwal-Harding KJ, Pickard JD (2012) Modeling of CSF dynamics: legacy of Professor Anthony Marmarou. Acta Neurochir Suppl 113:9–14. https://doi.org/10.1007/978-3-7091-0923-6_2

    Article  PubMed  Google Scholar 

  10. Czosnyka M, Czosnyka Z, Momjian S, Pickard JD (2004) Cerebrospinal fluid dynamics. Physiol Meas 25:R51–R76

    Article  Google Scholar 

  11. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821

    Article  CAS  Google Scholar 

  12. Czosnyka M, Whitehouse H, Smielewski P, Simac S, Pickard JD (1996) Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J Neurol Neurosurg Psychiatry 60:549–558

    Article  CAS  Google Scholar 

  13. Czosnyka Z, Czosnyka M, Owler B, Momjian S, Kasprowicz M, Schmidt EA, Smielewski P, Pickard JD (2005) Clinical testing of CSF circulation in hydrocephalus. Acta Neurochir Suppl 95:247–251

    Article  CAS  Google Scholar 

  14. Czosnyka Z, Czosnyka M, Pickard JD, Chari A (2016) Who needs a revision? 20 years of Cambridge Shunt Lab. Acta Neurochir Suppl 122:347–351. https://doi.org/10.1007/978-3-319-22533-3_68

    Article  PubMed  Google Scholar 

  15. Czosnyka Z, Keong N, Kim DJ, Radolovich D, Smielewski P, Lavinio A, Schmidt EA, Momjian S, Owler B, Pickard JD, Czosnyka M (2008) Pulse amplitude of intracranial pressure waveform in hydrocephalus. Acta Neurochir Suppl 102:137–140

    Article  CAS  Google Scholar 

  16. Czosnyka ZH, Czosnyka M, Pickard JD (2002) Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory. Acta Neurochir Suppl 81:27–30

    CAS  PubMed  Google Scholar 

  17. Dupepe EB, Hopson B, Johnston JM, Rozzelle CJ, Jerry Oakes W, Blount JP, Rocque BG (2016) Rate of shunt revision as a function of age in patients with shunted hydrocephalus due to myelomeningocele. Neurosurg Focus 41:E6. https://doi.org/10.3171/2016.8.FOCUS16257

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goeser CD, McLeary MS, Young LW (1998) Diagnostic imaging of ventriculoperitoneal shunt malfunctions and complications. Radiographics 18:635–651. https://doi.org/10.1148/radiographics.18.3.9599388

    Article  CAS  PubMed  Google Scholar 

  19. Jorgensen J, Williams C, Sarang-Sieminski A (2016) Hydrocephalus and ventriculoperitoneal shunts: modes of failure and opportunities for improvement. Crit Rev Biomed Eng 44:91–97. https://doi.org/10.1615/CritRevBiomedEng.2016017149

    Article  PubMed  Google Scholar 

  20. Kanangi SMR, Balasubramaniam C (2018) Shunt infections: a review and analysis of a personal series. Childs Nerv Syst 34:1915–1924. https://doi.org/10.1007/s00381-018-3890-y

    Article  PubMed  Google Scholar 

  21. Kasprowicz M, Lalou DA, Czosnyka M, Garnett M, Czosnyka Z (2016) Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation. Acta Neurol Scand 134:168–180. https://doi.org/10.1111/ane.12541

    Article  CAS  PubMed  Google Scholar 

  22. Khan AA, Jabbar A, Banerjee A, Hinchley G (2007) Cerebrospinal shunt malfunction: recognition and emergency management. Br J Hosp Med (Lond) 68:651–655

    Article  Google Scholar 

  23. Lalou AD, Czosnyka M, Nabbanja E, Petrella G, Pickard JD, Hutchinson PJ, Czosnyka Z (2018) Outcome and financial implications of shunt infusion studies

    Google Scholar 

  24. Lavinio A, Czosnyka Z, Czosnyka M (2008) Cerebrospinal fluid dynamics: disturbances and diagnostics. Eur J Anaesthesiol Suppl 42:137–141. https://doi.org/10.1017/S0265021507003298

    Article  CAS  PubMed  Google Scholar 

  25. Limbrick DD, Jr., Baird LC, Klimo P, Jr., Riva-Cambrin J, Flannery AM, Pediatric Hydrocephalus Systematic R, Evidence-Based Guidelines Task F (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 4: Cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children. J Neurosurg Pediatr 14 Suppl 1:30–34. https://doi.org/10.3171/2014.7.PEDS14324, 2014

    PubMed  Google Scholar 

  26. Madsen JR, Abazi GS, Fleming L, Proctor M, Grondin R, Magge S, Casey P, Anor T (2011) Evaluation of the ShuntCheck noninvasive thermal technique for shunt flow detection in hydrocephalic patients. Neurosurgery 68:198–205; discussion 205. https://doi.org/10.1227/NEU.0b013e3181fe2db6

    Article  PubMed  Google Scholar 

  27. Marmarou A, Shulman K, Rosende RM (1978) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48:332–344. https://doi.org/10.3171/jns.1978.48.3.0332

    Article  CAS  PubMed  Google Scholar 

  28. Nabbanja E, Pickard JD, Lalou AD, Czosnyka ZH (2018) Use of CSF infusion studies to unblock occluded hydrocephalus ventricular shunt catheters: a preliminary report of two patients. BMJ Case Rep 2018. https://doi.org/10.1136/bcr-2017-223861

  29. Paulsen AH, Lundar T, Lindegaard KF (2015) Pediatric hydrocephalus: 40-year outcomes in 128 hydrocephalic patients treated with shunts during childhood. Assessment of surgical outcome, work participation, and health-related quality of life. J Neurosurg Pediatr 16:633–641. https://doi.org/10.3171/2015.5.PEDS14532

    Article  PubMed  Google Scholar 

  30. Petrella G, Czosnyka M, Keong N, Pickard JD, Czosnyka Z (2008) How does CSF dynamics change after shunting? Acta Neurol Scand 118:182–188. https://doi.org/10.1111/j.1600-0404.2008.01041.x

    Article  CAS  PubMed  Google Scholar 

  31. Petrella G, Czosnyka M, Smielewski P, Allin D, Guazzo EP, Pickard JD, Czosnyka ZH (2009) In vivo assessment of hydrocephalus shunt. Acta Neurol Scand 120:317–323. https://doi.org/10.1111/j.1600-0404.2009.01176.x

    Article  CAS  PubMed  Google Scholar 

  32. Richards HK, Seeley HM, Pickard JD (2009) Who should perform shunt surgery? Data from the United Kingdom Shunt Registry. Cerebrospinal Fluid Res 6. https://doi.org/10.1186/1743-8454-3-S1-S55

  33. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rudd TG, Shurtleff DB, Loeser JD, Nelp WB (1973) Radionuclide assessment of cerebrospinal fluid shunt function in children. J Nucl Med 14:683–686

    CAS  PubMed  Google Scholar 

  35. Sakka L, Chomicki A, Gabrillargues J, Khalil T, Chazal J, Avan P (2016) Validation of a noninvasive test routinely used in otology for the diagnosis of cerebrospinal fluid shunt malfunction in patients with normal pressure hydrocephalus. J Neurosurg 124:342–349. https://doi.org/10.3171/2015.1.JNS142142

    Article  PubMed  Google Scholar 

  36. Simon TD, Butler J, Whitlock KB, Browd SR, Holubkov R, Kestle JR, Kulkarni AV, Langley M, Limbrick DD Jr, Mayer-Hamblett N, Tamber M, Wellons JC 3rd, Whitehead WE, Riva-Cambrin J, Hydrocephalus Clinical Research N (2014) Risk factors for first cerebrospinal fluid shunt infection: findings from a multi-center prospective cohort study. J Pediatr 164:1462–1468 e1462. https://doi.org/10.1016/j.jpeds.2014.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  37. Smalley ZS, Venable GT, Einhaus S, Klimo P, Jr. (2017) Low-pressure hydrocephalus in children: a case series and review of the literature. Neurosurgery 80:439–447. https://doi.org/10.1093/neuros/nyw046

    Article  Google Scholar 

  38. Smielewski P, Czosnyka Z, Kasprowicz M, Pickard JD, Czosnyka M (2012) ICM+: a versatile software for assessment of CSF dynamics. Acta Neurochir Suppl 114:75–79. https://doi.org/10.1007/978-3-7091-0956-4_13

    Article  PubMed  Google Scholar 

  39. Smielewski P, Lavinio A, Timofeev I, Radolovich D, Perkes I, Pickard JD, Czosnyka M (2008) ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice. Acta Neurochir Suppl 102:145–151

    Article  CAS  Google Scholar 

  40. Sorar M, Er U, Ozisik P, Ozeren E, Simsek S (2014) The impact of antibiotic-impregnated catheters on ventriculoperitoneal shunt infection. Turk J Med Sci 44:393–396

    Article  Google Scholar 

  41. Tamber MS, Klimo P, Jr., Mazzola CA, Flannery AM, Pediatric Hydrocephalus Systematic R, Evidence-Based Guidelines Task F (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 8: Management of cerebrospinal fluid shunt infection. J Neurosurg Pediatr 14 Suppl 1:60–71. doi:https://doi.org/10.3171/2014.7.PEDS14328, 2014

    PubMed  Google Scholar 

  42. Weerakkody RA, Czosnyka M, Schuhmann MU, Schmidt E, Keong N, Santarius T, Pickard JD, Czosnyka Z (2011) Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus. Guide to interpretation based on observational study. Acta Neurol Scand 124:85–98. https://doi.org/10.1111/j.1600-0404.2010.01467.x

    Article  CAS  PubMed  Google Scholar 

  43. Widder DJ, Davis KR, Taveras JM (1986) Assessment of ventricular shunt patency by sonography: a new noninvasive test. AJR Am J Roentgenol 147:353–356. https://doi.org/10.2214/ajr.147.2.353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MC is supported by the National Institute of Health Research, Cambridge Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin U. Schuhmann.

Ethics declarations

The retrospective data collection and analysis was approved by the institutional ethics review board of Tübingen (Ref. 160/2018BO2). From Cambridge Institution, no additional ethical approval was required, as SIS is a clinical tool that has been performed after clinical request. Before intervention, parents were informed about the procedure and possible related complications (e.g., infection) and gave a consent.

Conflict of interest

MC receives part of licensing fees for the software ICM+used for data collection and analysis in this study. The other authors have no conflict of interest to report

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, S.F., Lalou, A., Spang, R. et al. Value of computerized shunt infusion study in assessment of pediatric hydrocephalus shunt function—a two center cross-sectional study. Childs Nerv Syst 36, 59–71 (2020). https://doi.org/10.1007/s00381-019-04264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-019-04264-3

Keywords

Navigation