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It is increasingly apparent that the standards for surgical
training are shifting from time-based to criterion-based param-
eters that emphasize obtaining and maintaining competencies
[24]. The formation of a surgeon demands significant dedica-
tion and effort, in addition to time [54]. Current, well-
established methods of surgical training are being challenged
as the environment becomes increasingly competitive and
litigious with greater scrutiny of patient outcomes [14, 17,
40, 44, 50]. In order to increase patient safety and improve
treatment outcomes, several strategies such as problem-based
learning and objective structured clinical examinations have
promoted the development of new curricula in surgical edu-
cation [13, 15, 35, 51, 52].

Some of these changes have been driven by events in the
1980s and 1990s such as medical misconduct and
overworked, unsupervised resident staff that contributed to
patient morbidity and mortality. This also coincided with a
growing medical malpractice crisis. As a result, regulatory
bodies began to initiate new standards of work hour restric-
tions and supervision for residents in training. The New York
Health Code of 1989 compiled regulations restricting resident
work hours (80 h per week) and one day free a week and
placed limits on the number of calls [24, 32]. Concerns arose
about the long-established methods of training surgical resi-
dents, and solutions were sought to reduce preventable errors
and perioperative complications [24, 9].

The airline industry, with the development of flight simu-
lators and pilot coaching methods, proved to be an excellent
precedent for innovation in surgical education. Many surgical
educators believe such methods are keys to accelerating the
acquisition of fundamental skills and the rate of performance
improvement among surgical residents. A Yale University
study demonstrated that criterion-based simulator training
decreased operating time by 30 % and operative errors by
85 % [47, 48].

Neurosurgical trainees in particular face great challenges in
learning to plan and perform increasingly complex procedures
in which there is little room for error [10]. The educator’s task
becomes ever more daunting as the number and complexity of
neurosurgical procedures continue to increase in parallel with
technological developments such as minimally invasive spine
surgery and instrumentation, interventional neuroangiography,
image-guided navigation, and endoscopic surgery.

The necessity of innovative surgical curriculum develop-
ment that incorporates safe learning environments and objec-
tive skill assessments is thus obvious and needs to be led by
trained surgical educators [5].

Adjuvant, non-clinical, surgical training can be grouped
into four broad categories:

1. Cadaver training
2. Animal models
3. Training with synthetic physical models
4. Computerized and virtual reality simulators

Practice with each of these models has particular advan-
tages and disadvantages that are still being elucidated in
various validation processes. The choice of the most appro-
priate training model should take into consideration, among
other qualities, efficacy, validity, cost-effectiveness, and ver-
satility [60]. The demand for new, non-clinical, paradigms for
surgical skills training has led to the development of a variety
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of surgical simulation models and methods that refine tech-
nique while objectively assessing performance [2, 20, 42, 45,
56, 58]. Simulation may be defined as a pool of techniques
used in conjunction to recreate specific aspects of the real
world, thus providing experience in a riskless situation. This
concept has gained popularity over the last 20 years, and its
broad applicability is exemplified in neuroendoscopy training.

Neuroendoscopy has reemerged as an appealing option in
the management of intraventricular lesions and the treatment
of hydrocephalus in children and adults. The use of cadaveric
specimens for developing neuroendoscopy skills is expensive
and increasingly difficult logistically. There are problems with
the potential toxicity of chemicals used for fixation as well as
logistic limitations related to preservation, storage, and viable
utilization time for the specimens [36, 41, 43, 55]. In addition,
cadavers do not recreate a realistic environment for
ventriculoscopic work due to unnatural brain and ventricular
compliance and consistency. Likewise, although laboratory
animals are useful for surgical training, cost, ethical issues,
and the lack of similarity with the human are problematic. The
development of alternative realistic training methods is vital
(Cover figure). The challenge is to provide not only realistic
simulation of various pathologies but also standardized training
milestones that allow a gradual progression in technical diffi-
culty in concert with objective assessments of performance [61].

The use of 3-D renderings and virtual reality settings is still
in the development phase and are quite costly for widespread
use [11, 19]. Examples in neurosurgery include simulators for
ventriculostomy [27, 30, 38], spine needle biopsy [28], pedi-
cle screw placement [26, 31], diagnostic cerebral angiography
[53], and aneurysm clipping. However, there may be limita-
tions in the ability to transfer these “virtual skills” to physical
reality [20, 39]. Further development and evaluation is needed
in regard to touch, tactile, and force feedback (which vary
among simulators) and the complex task of reproducing an
appropriate tridimensional environment for visuospatial task
training [4, 5, 20, 22].

Despite ongoing investment in virtual reality simulator
development, synthetic physical simulators are still generally
considered the most reliable, effective, and cost-efficient [3, 8,
12, 21, 23, 25]. The employment of physical simulators,
designed specifically for surgical training, has become a
promising method for neurosurgery training that provides
effective results at a reasonable cost [1, 34, 57, 59]. Many
permit multiple uses of repetitive practice in order to reach the
desired level of performance. They also provide the opportu-
nity to obtain CT and MRI imaging to incorporate image-
guided navigation into the training program [6]. Moreover,
there is the possibility of developing various surgical environ-
ments (tumor appearance, consistency, bleeding, cystic con-
tent) that require the practice of different tasks with more
realism and unquestionable safety [6, 61]. A very important
feature is the potential for high-fidelity haptic feedback that is

not thus far supported by computer models. In general, these
synthetic surgical simulators are reported to be interesting and
appealing for participants to use [50], can serve as surrogate
patients, and have the potential to enhance the quality of
education in surgical anatomy and the teaching of basic and
advanced open or endoscopic technical skills [24, 61].

It is important to emphasize that there is significant level I
evidence demonstrating that technical skills acquired on sim-
ulated models directly transfer into performance improve-
ments in the operating room, reinforcing their value in surgical
training programs [29, 37]. The ideal simulator has to be
realistic in multiple dimensions. Simulation physics, optical
properties, haptic feedback, and suitability for the required
surgical tasks must be tested to ensure the quality of surgical
training [29, 33]. It is also mandatory to validate the ability of
the simulation exercise to teach the desired skill set or tech-
nique [24]. The identification and measurement of errors
permit assessment of the effectiveness of training that is
specifically intended to reduce their incidence. Additionally,
to be considered a useful tool for training, a simulator should
be further evaluated regarding its overall quality. Despite a
variety of ways to do it, every simulator should meet three
major criteria: validity, reliability, and feasibility [16, 6].

Chopra et al. and Filho FV et al. showed that syn-
thetic physical simulators can improve surgical perfor-
mance [7,16]. Satava has suggested that a standardized
simulator curriculum should include metrics specific to
the skill being taught, common errors for the skill set, a
specific curriculum for training the surgical skill, a
method to capture outcomes, and a validation method-
ology [24, 49]. It has been suggested that when
adopting a new training paradigm such as a simulator-
based curriculum, it is important to utilize the same
language and terminology in order to preserve the stan-
dards of assessment [24, 18].

The development of effective surgical simulators is a
milestone in the evolution of surgical education. Realis-
tic simulators provide a safe and non-threatening learn-
ing context that not only promotes the development of
skills but also allows for objective risk-free testing of a
trainee’s abilities prior to entering the operating room.
Beyond pure technical proficiency, the cognitive skills
of anatomical recognition, decision-making, and contin-
gency planning can also be developed. And, indepen-
dent learners can practice without constant supervision
[50]. Additionally, these same models can be used in
the process of initial certification as well as recertifica-
tion of existing practitioners similar to performance
assessment standards in the airline industry [24, 46].

Although the science of simulation for surgery, and more
specifically pediatric neurosurgery, is still under development,
the potential is very promising. New skill sets, such as those
required for efficient and safe use of flexible endoscopy for
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neurosurgeons already adept with rigid endoscopes, will be
more safely and efficiently transferred without the costs, risks,
and logistical difficulties of learning new techniques in living
patients.
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