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ABSTRACT

Variability in the East Asian summer monsoon (EASM) brings the risk of heavy flooding or drought to the Yangtze
River basin, with potentially devastating impacts. Early forecasts of the likelihood of enhanced or reduced monsoon rainfall
can enable  better  management  of  water  and hydropower resources  by decision-makers,  supporting livelihoods and major
economic  and  population  centres  across  eastern  China.  This  paper  demonstrates  that  the  EASM  is  predictable  in  a
dynamical forecast model from the preceding November, and that this allows skilful forecasts of summer mean rainfall in
the  Yangtze  River  basin  at  a  lead  time  of  six  months.  The  skill  for  May–June–July  rainfall  is  of  a  similar  magnitude  to
seasonal  forecasts  initialised  in  spring,  although  the  skill  in  June–July–August  is  much  weaker  and  not  consistently
significant. However, there is some evidence for enhanced skill following El Niño events. The potential for decadal-scale
variability in forecast skill is also examined, although we find no evidence for significant variation.
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Article Highlights:

•  The East Asian summer monsoon in May–July can be skilfully predicted in a dynamical model initialised in November.
•  This can be used to forecast Yangtze River basin summer rainfall using a simple linear regression model.
•  The skill for May–July rainfall is comparable to seasonal forecasts at shorter lead times, but the skill for June–August is

much lower.
•  No evidence is found of decadal-scale variation in skill.

 

 
 

 1.    Introduction

The  Yangtze  River  basin  is  subject  to  heavy  rainfall
driven  by  the  East  Asian  summer  monsoon  (EASM).  This
can lead to devastating floods, impacting the lives and liveli-
hoods of millions of people, and leading to economic losses
of ~100 bn CNY (~10 bn USD) and hundreds of deaths (e.
g., Podlaha et al., 2016, 2020, 2021). The variability in sea-
sonal and annual rainfall, and the need to take action to miti-

gate  potential  flooding,  also  has  significant  impacts  on  the
provision  of  hydroelectric  power  via  some  of  the  world’s
largest hydropower dams, feeding into the energy supply of
eastern China’s megacities.

In response to an end-user need for improved long-term
prediction  of  this  monsoonal  variability  (Golding  et  al.,
2017b), the UK Met Office, in collaboration with colleagues
in China, has since 2016 been developing a trial seasonal fore-
cast  system for  Yangtze  River  basin  summer  rainfall  (Bett
et al., 2018), based on the GloSea seasonal forecast system
(MacLachlan  et  al.,  2015).  Continued  research  into  user
requirements  for  decision-making  (Golding  et  al.,  2017a;
Golding et al., 2019) and climate predictability (e.g., Liu et
al., 2018), as well as forecast evaluation and model changes,
have led to improvements in the forecasts (Bett et al., 2020).
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Currently,  forecasts  are  produced each  week from late
winter  until  the  summer,  with  forecasts  for  early  summer
(May–June–July,  MJJ)  being  available  from February,  and
forecasts  for  high  summer  (June–July–August,  JJA)  from
March. Forecasts are delivered each month to the China Mete-
orological Administration for use as part of the overall fore-
cast  messages  that  are  communicated  to  stakeholders,  as
well  as  being  sent  directly  to  specific  users  to  elicit  feed-
back.  The  forecasts  are  based  on  dynamical  predictions  of
an EASM index, supplemented by linear regression to pro-
duce calibrated probabilistic forecasts of regional mean rain-
fall. The forecasts are skilful and have performed well even
under near-unprecedented extremes (Bett et al., 2021).

At the lead times currently available, hydropower dam
operators can be given sufficient warning of high flood sea-
sons, enabling them to reduce water levels in the dams and
hence reduce the risk of flooding. Reducing the water levels
over  an  extended  period,  before  the  rainfall  occurs,  limits
the  negative  impacts  on  agriculture  downstream,  which  is
dependent  on  a  steady  availability  of  water,  and  maintains
the  continuous,  stable  provision  of  hydroelectric  power  to
the  electricity  grid  (e.g., Golding  et  al.,  2019).  However,
engagement  with potential  users  has indicated that  a  maxi-
mum lead time of three months limits the value of the forecast
to energy distributors, who plan the supply of electricity to
cities  and  industry  across  eastern  China  up  to  a  year  in
advance,  and  therefore  need  to  make  use  of  longer  lead
times to protect the reliable provision of electricity. Hydro-
electric dam operators are currently required to provide fore-
casts  of  electricity  production  on  these  longer  timescales,
and therefore a  longer lead-time forecast  of  rainfall  for  the
main flood season would support this.

Improvements in interannual-to-decadal climate predic-
tion (e.g., Cassou et al., 2018; Smith et al., 2019; Merryfield
et al., 2020; Meehl et al., 2021) have opened up the possibility
of extending the lead time of seasonal climate services such
as these beyond the periods available from traditional subsea-
sonal-to-seasonal  forecast  systems  (Dunstone  et  al.,  2022).
The Met Office Decadal Prediction System, DePreSys,  has
demonstrated high levels of skill in various features of the cli-
mate  in  the  tropics  and  extratropics  at  lead  times  beyond
those  of  typical  seasonal  forecasts  (Dunstone  et  al.,  2016,
2018, 2020).  DePreSys  has  also  been  shown  to  possess
some skill in forecasting EASM rainfall in the extended sum-
mer, on short timescales [forecasts for June–September ini-
tialised  in  May  (Monerie  et  al.,  2021)]  and  longer
timescales similar to our present investigation [forecasts for
May–September  initialised  in  November  (Dunstone  et  al.,
2020)],  as  well  as  for  the  corresponding  pressure  patterns
over  the  western  North  Pacific.  Other  recent  studies  have
also demonstrated the possibility of long-lead seasonal fore-
casts of summer rainfall in China, or the EASM circulation
more generally ( Lu et al., 2012; Liu et al., 2021; Takaya et
al., 2021).

Exploring  how the  skill  of  DePreSys  in  predicting  the
EASM can be used to extend our Yangtze River basin rainfall

forecasts  to  longer  lead  times  is  a  natural  next  step  in  the
development  of  our  climate  service.  Accordingly,  in  this
paper, we investigate the skill of forecasts of early summer
and  high  summer  rainfall  over  the  Yangtze  River  basin,
using the same method as the existing shorter-term seasonal
forecasts but based instead on dynamical forecasts initialised
in November. This would double the current maximum lead
time from three to six months. In the following section, we
describe the data and methods used for the skill assessment,
and then present our results in section 3. We summarise and
discuss  our  results  in  section  4,  as  well  as  consider  the
prospects for improved climate services.

 2.    Data and methods

 2.1.    Hindcasts and observations

We  use  a  set  of  hindcasts  from  version  3  of  the  Met
Office  Decadal  Climate  Prediction  System  (DePreSys3;
Dunstone et al., 2016, 2018). This is based on the Global Cou-
pled  2  configuration  of  the  HadGEM3  climate  model
(Williams  et  al.,  2015),  which  is  the  same  as  that  used  by
the  Met  Office  seasonal  forecast  system,  GloSea5.  The
DePreSys3  hindcasts  are  initialised  on  1  November  every
year from 1959 to 2018, and here we use the first summer in
each  of  these  forecasts,  covering  the  60-year  period  of
1960–2019. A 40-member ensemble, created by applying ran-
dom  seeds  to  a  stochastic  physics  scheme  (Bowler  et  al.,
2009), is available for each start date.

We use the 850 hPa zonal wind fields from the hindcasts
to calculate the Wang and Fan (1999) EASM index, averaged
over  MJJ  and  JJA  each  year.  This  index  characterises  the
anomalous  circulation  in  the  western  North  Pacific  as  the
mean zonal wind in a box in the South China Sea (5°–15°N,
90°–130°E) minus that in a box in the East China Sea (22.5°
–32.5°N, 110°–140°E) (Wang et al., 2008; Bett et al., 2020).
Low values correspond to anomalously anticyclonic circula-
tion  in  the  western  North  Pacific  [an  enhanced,  i.e.,  west-
ward-extended,  western  Pacific  subtropical  high  (WPSH)],
which acts to enhance the northward progress of the mei-yu
monsoon front,  resulting in  more rainfall  over  the Yangtze
basin. High values of the EASM index correspond to anoma-
lously cyclonic circulation (a reduced WPSH), with moisture
remaining over southern China rather than progressing north-
wards over the Yangtze basin. We have confirmed that our
results are unchanged if we use a WPSH index, so we retain
the  EASM  index  for  consistency  with  previous  work  on
Yangtze basin seasonal forecast skill (Liu et al., 2018; Bett
et  al.,  2020).  We  use  the  ERA5  reanalysis  to  calculate  an
observed EASM index over the same period, using the prelim-
inary back-extension data for the pre-1979 period (Hersbach
et al., 2019; Bell et al., 2020).

We use observed precipitation from the Global Precipita-
tion Climatology Centre(GPCC) Full Data Monthly Product
v2020 (Schneider et al., 2020). We calculate seasonal-mean
regional-mean  precipitation  rates  in  three  areas:  the  whole
Yangtze  River  basin  itself,  and  two  sub-basin  regions
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defined  by  dividing  the  basin  at  111°E  (near  the  Three
Gorges  Dam):  the  Upper  Reaches,  and  the  Middle/Lower
Reaches. This follows the approach of Bett et al. (2020), in
which these regions were defined in response to user require-
ments  for  sub-basin  scale  forecasts  (Golding  et  al.,  2019).
We label  years  as  being El  Niño,  La Niña or  neutral  using
the Niño-3.4 sea surface temperature (SST) anomalies in the
December–January–February (DJF) preceding each summer,
based  on  the  Oceanic  Niño  Index  (ONI; https://origin.cpc.
ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ONI_v5.php) dataset, with a threshold of ±0.5 K.

 2.2.    Measures of skill, and regression-based forecasts

When assessing the skill  of  the DePreSys3 model out-
put, a natural and simple first quantity to examine is the corre-
lation of the ensemble-mean hindcasts with the observations,
r.  This  measure  of  the  standardised  covariability  of  the
model with the observations is directly related to the linear
regression  approach  we  use  for  producing  forecasts  (see
below): the hindcast–observation correlation provides a mea-
sure  of  skill  for  future  forecasts  (e.g., Bett  et  al.,  2018,
2020). The uncertainty in the correlation is characterised by
95% confidence intervals calculated using a Fisher z-transfor-
mation; this corresponds to a two-sided test of statistical sig-
nificance at the 5% level (both positive and negative correla-
tions  can  be  used  to  produce  skilful  forecasts,  e.g.,  the
EASM index is  negatively correlated with Yangtze rainfall
across most of the basin).

In this paper, we also wish to evaluate the skill of the lin-
ear  regression–based  probabilistic  forecasts  themselves,  in
addition to the above measure of model–observations correla-
tion.  The  linear  regression  of  the  observed  precipitation,
against a predictor from the DePreSys3 ensemble-mean hind-
cast (in our case, the EASM index), characterises their mean
historical  relationship.  When a new EASM forecast  is  pro-
duced from DePreSys3, the prediction interval on the regres-
sion at that EASM value provides the rainfall forecast proba-
bility distribution (rather than being provided by the ensemble
spread, for example). This method of producing probabilistic
forecasts corrects for any bias in the mean and variance, and
yields  calibrated  probabilities,  by  construction  (Bett  et  al.,
2022),  within  the  sampling  limits  given  by  the  number  of
years  in  the  hindcast.  This  is  an  important  limitation when
using the operational GloSea5 hindcast, as that only covers
24  years  (1993–2016).  In  contrast,  the  60-year  DePreSys3
hindcast allows statistically significant skill to be discernible
from noise at a higher level of significance.

r̂

To assess the skill  of  forecasts produced by this linear
regression approach, we need to use leave-one-out cross-vali-
dation:  we  produce  forecast  probability  density  functions
(PDFs) for each year in the hindcast period in turn, based on
the regression relationship between the observations and hind-
casts in the remaining 59 years. The correlation of the central
estimates of these 60 cross-validated forecasts with the obser-
vations is a more stringent measure of forecast skill, reflecting
the sensitivity to, and frequency of, outliers in the historical
period.  We will  refer  to this  as  the correlation skill, ,  and

assess  whether  it  is  significantly  greater  than  zero  using  a
one-sided  Fisher z-test  (skilful  regression-based  forecasts
can  only  be  positively  correlated  with  observations),  again
at the 5% level.

S fc

S ref

S perf = 0

The performance of the forecast probability distributions
themselves can be assessed using the continuous ranked prob-
ability  score  (CRPS;  e.g., Wilks,  2019; Hersbach,  2000).
For a given forecast, the CRPS is the integral of the squared
differences between the forecast cumulative distribution func-
tion (CDF) and that of the observation that year (i.e., a step
function  CDF).  The  CRPS  is  therefore  like  a  probabilistic
forecast error: larger values indicate that more forecast proba-
bility is distributed further away from the observation. The
CRPS from a proposed forecast model is compared with the
CRPS  from  a  reference  forecast  strategy:  in  our  case,  we
use the climatology, i.e., the CDF given by the distribution
of  59  observations  available  when  forecasting  each  year
using  cross-validation.  The  difference  between  the  mean
CRPS  from  the  forecasts  ( )  and  that  of  the  reference
( ), with respect to the difference between the perfect fore-
cast score ( ) and the reference, is the corresponding
skill score (CRPSS; e.g., Wilks, 2019): 

CRPSS =
S fc−S ref

S perf −S ref
= 1− S fc

S ref
.

Positive  values  indicate  that  the  forecast  is  better  than
the  reference  strategy,  and  negative  values  mean  that  it  is
worse. We test for the forecast being significantly more skilful
than the climatology by using a one-sided paired t-test at the
5% level to compare the two mean CRPS values.

 3.    Results

 3.1.    Correlations between hindcasts and observations

Figure  1 shows  the  correlation  between  the  hindcast
EASM index and the observed values from ERA5, reflecting
the model skill in predicting the EASM. There is significant
skill  in early summer (MJJ; r = 0.62, with a p-value < 2 ×
10−7),  but  not  in  JJA  (r =  0.21, p-value  =  0.102).  Both  of
these  six-month  lead  correlations  are  significantly  weaker
than those reported by Bett et al. (2020) for one-month lead
forecasts  (0.87  for  MJJ  and  0.76  for  JJA),  as  would  be
expected for longer lead times.

There  is  a  clear  indication  of  the  influence  of  winter
ENSO  on  the  subsequent  EASM:  El  Niño  winters  tend  to
result in negative EASM index values in MJJ, and La Niña
winters tend to result in positive values. However, this rela-
tionship is much stronger for the El Niño side: if we select
the 21 El Niño years only, the correlation barely changes (r =
0.59, p = 0.004),  while for the 22 La Niña years, r = 0.08.
ENSO-neutral years yield r = 0.41, with p = 0.105. Selecting
all  ENSO-active  years  (following  El  Niños  or  La  Niñas)
yields a correlation of r = 0.66 (p < 7 × 10−7), which is also
very  similar  to  selecting  all  years.  Furthermore,  although
there  is  no  significant  skill  overall  for  JJA,  the  skill  in  El
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Niño years is much better: r = 0.50, statistically significant,
with p = 0.02. The JJA monsoon index correlations following
La Niña, ENSO-neutral or ENSO-active winters remain not
statistically  significant  (r =  −0.1,  0.18  and  0.14,  respec-
tively).

In Fig.  2,  we map the correlation between the forecast
EASM  index  and  the  observed  precipitation.  As  expected
from Fig. 1, we can identify some areas of significant correla-

tion in the Yangtze River basin in MJJ, mostly but not exclu-
sively in the Middle/Lower Reaches. In contrast, the correla-
tions are much weaker in JJA.

Building on these results, we show scatter plots describ-
ing  the  relationship  between  the  DePreSys3  EASM  index
and regional-mean MJJ precipitation in Fig. 3. Although the
correlations  in  all  three  regions  are  statistically  significant,
that  for  the Upper  Reaches remains rather  small  (|r| <  0.4)
and may be of marginal use for decision-makers, depending
on their particular requirements.

As  with Fig.  1, Fig.  3 shows  a  clear  relationship  with
ENSO.  For  the  MJJ  results  shown,  picking  out  the  21  El
Niño years only yields significant correlations for the whole
basin  (r =  −0.53, p =  0.011)  and  the  Upper  Reaches  (r =
−0.50, p = 0.021), while the correlation is reduced for the Mid-
dle/Lower Reaches (r = −0.42, p = 0.054). In contrast, none
of  the  regions  shows significant  correlations  for  the  subset
of 22 La Niña years (p > 0.15 in all cases). These results high-

 

Fig.  1. The  relationship  between  the  EASM  index  in
observations,  and  in  the  DePreSys3  hindcasts  initialised  in
November,  for  (a)  MJJ  and  (b)  JJA.  Both  panels  include  the
correlations r,  marked  with  an  asterisk  (*)  where  significant.
Each  point  corresponds  to  a  single  summer,  and  is  coloured
according to ENSO, using the ONI during the preceding DJF:
red points correspond to El Niño, blue to La Niña, and grey to
ENSO-neutral.  The  diagonal  black  lines  indicate  the  linear
regression,  and  the  surrounding  grey  shading  shows  the  75%
and  95%  prediction  intervals  based  on  that  regression.  The
horizontal and vertical dotted lines indicate the mean values.

 

Fig.  2. Correlation  between  observed  rainfall  and  hindcast
EASM index in MJJ and JJA. The Yangtze River is shown as a
blue  line,  with  its  basin  outlined  in  black,  and  the  division
between the Upper and Middle/Lower Reaches is shown with
a  vertical  dashed  black  line.  Stippling  marks  areas  where  the
correlation is significantly different to zero.
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light  the  importance  of  conditional  skill  in  these  cases;  for
example,  although  the  correlation  in  MJJ  for  the  Upper
Reaches might be too low to be useful in most years, the fore-
casts could be much more valuable following an El Niño.

This is also true for the JJA results (not shown). For the
whole basin, the correlation is −0.29 (p = 0.026), i.e., just sig-
nificant at the 5% level. For the sub-basin regions, the correla-
tions are weaker still,  with |r|  < 0.25. However, in the case
of  the  Upper  Reaches,  in  the  summers  following  El  Niño
events the correlation strengthens to −0.49 (p = 0.022), similar
to the values for MJJ.

We have  also  tested  the  impact  of  the  longer  hindcast
period  available  from  DePreSys3  (60  years)  compared  to
GloSea5 (24 years). In Fig. 3, the subset of years comprising
the  GloSea5  hindcast  period  (1993–2016)  are  highlighted,
and  the  correlations  based  on  those  subsets  alone  are
labelled  as rsubs.  Although  the  24-year  correlations  all
appear slightly stronger, these differences are not statistically
significant, and the longer period gives the more robust esti-
mates of skill: for example, the confidence intervals on the
24-year  correlations  are  much  wider,  or  equivalently,  60
years allows weaker correlations to be more robustly deter-
mined  as  statistically  significant  (for  a  given  significance
level).  Again  considering  the  whole-basin  correlation  for
JJA (not shown), the 60-year correlation of −0.29 has a 95%
confidence interval of −0.50 to −0.03, i.e., significant at the
5% level as described above. Using 24 years, the central esti-
mate is relatively unchanged (−0.33), but its confidence inter-
val is now −0.64 to +0.09, i.e., statistically indistinguishable
from zero at the 5% level.

It  seems  clear  from  our  results  that  the  greatest
prospects for significant and usable forecast skill  using our
method  will  be  from  MJJ  for  the  Middle/Lower  Reaches,
and for the basin as a whole, although following an El Niño
event  forecasts  for  rainfall  in  the  Upper  Reaches  of  the

basin should also be considered.

 3.2.    Cross-validated skill from linear regression

r̂

Figure 4 shows the rainfall forecasts produced by linear
regression  with  leave-one-out  cross-validation,  for  the
whole basin in MJJ. The correlation skill of the forecast cen-
tral  estimate  ( ),  and  the  probabilistic  skill  (CRPSS),  are
both  statistically  significant  at  the  5%  level  (p =  0.00002
and 0.03, respectively), showing that the forecasts represent
an improvement over simply using the climatological distribu-
tion. It is important to note that the forecast uncertainty (in
terms of the prediction intervals) remains of a similar size to
the observed interannual variability, and there are two occa-
sions where the observation lies outside the 95% prediction
interval (as expected from 60 forecasts).

The  climatology-based  CRPS  time  series  naturally
shows notable spikes (increased error) in the more extreme
years, as by definition those years are not present in the distri-
bution used for the “forecast”.  The DePreSys3-based fore-
casts  perform  much  better  in  most  of  these  cases  (having
smaller CRPS values), demonstrating the ability of the dynam-
ical model to produce out-of-sample forecasts.

Figure  5 summarises  the  correlation  skill  and  CRPSS
for rainfall in MJJ and JJA across all three regions. Consistent
with our previous results, there is no significant skill in JJA.
The correlation skill for the Upper Reaches in MJJ is statisti-
cally  significant  (p =  0.016)  but  low (0.28),  and the  corre-
sponding CRPSS of 0.068 indicates the forecasts are not sig-
nificantly better than using the climatology (p = 0.07).

r̂ = 0.38

The  cross-validation  of  these  skill  scores  makes  them
more  sensitive  to  the  number  of  contributing  years.  When
we subset the data according to whether the summer follows
an  El  Niño  or  La  Niña  (as  in  the  previous  subsection),  we
find  that  only  the  correlation  skill  in  MJJ  for  the  whole
basin remains significant ( , p = 0.046). All other corre-

 

 

Fig. 3. Relationships between observed regional-mean MJJ rainfall and the hindcast EASM index. Correlations using all 60
years are marked in the top-right of each panel (r), and correlations based on the 24-year subset (1993–2016) are shown in
the  bottom-left  (rsubs;  points  in  that  subset  are  circled).  As  in  Fig.  1,  points  are  colour-coded  according  to  ENSO  in  the
preceding winter: red for El Niño, blue for La Niña. The linear regression is shown by the black line, surrounded by shading
giving the 75% and 95% prediction intervals. Horizontal and vertical dotted lines give the mean values over all 60 years.
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lation  skill  is  worse  under  El  Niño  conditions  (p >  0.1  for
MJJ, p > 0.5 for the JJA cases), and La Niña conditions (p >
0.3 in all cases). None of the CRPSS values are significant
when subselecting by El Niño (p > 0.1) or La Niña conditions
(p > 0.4).

 3.3.    Potential variation in skill

The  length  of  the  hindcast  period  available  from
DePreSys3 raises the question of whether decadal-scale cli-
mate  variability  could  affect  the  forecast  skill,  and  if  there
would  be  a  benefit  in  focusing  on  the  most  recent  20–30-
year  period  as  typically  used  by  seasonal  forecasting  sys-
tems.  In  our  case,  as  in  section  3.1,  we  will  be  comparing
with  the  24-year  period  used  by  GloSea5,  for  consistency
with our earlier results.

Figure  6 shows  the  correlations  between  the  EASM
index  and  Yangtze  basin  rainfall  in  MJJ  for  observations,
and for the EASM hindcasts, using rolling 24-year windows
within the 60-year hindcast period. The observed correlation
appears  to  weaken  slightly  over  time:  it  is  approximately
−0.8 for the earliest window (1960–1983), but approximately
−0.5  for  the  latest  period (1995–2019),  for  example.  How-
ever, the confidence intervals (uncertainty ranges) on correla-
tions based on 24 years are relatively large, and these values
are not significantly different to each other (p = 0.086). It is
unsurprising,  therefore,  that  the  correlation  between  the
model  hindcast  and  observations  does  not  show  similar
changes.

There is an apparent sudden weakening in the correlation
between the hindcast EASM index and the observed precipita-
tion for two periods (1973–1996 and 1974–1997). This is sim-
ply due to the inclusion/exclusion of particular years in the
different periods. The inclusion of 1996 weakens the correla-
tion, as it has a positive hindcast EASM index but above-aver-
age  rainfall.  In  contrast,  1972  and  1973  have  positive
EASM index values with negative rainfall anomalies, follow-
ing the overall anticorrelated relationship; losing them from
the sample therefore also weakens the correlation. Following
these two periods, the introduction of 1998, with its strongly
negative  EASM  index  and  positive  rainfall  anomalies,
restrengthens  the  subsequent  correlations.  Using  longer  or
shorter  rolling  periods  would  result  in  more  or  fewer  brief
changes in the correlation such as these.

The results for the Middle/Lower Reaches in MJJ (not
shown) are similar to those seen in Fig. 6, but with some peri-
ods  where  the  observed  correlation  was  not  significant  at
the 5% level. The results for the Upper Reaches in MJJ, and
for  all  regions  in  JJA,  show  much  more  variability  and
fewer periods of significance, particularly for the correlations
between  the  hindcast  and  observations,  as  expected  from
there being little/no significant skill overall.

These results do not show convincing evidence of varia-
tion in skill, which gives us confidence in our use of the full
60-year hindcast period in our forecasts. It also further illus-
trates the benefit of longer hindcast periods when assessing
and calibrating seasonal-to-interannual forecasts.

 

 

r̂

Fig. 4. Time series showing the forecast skill, using forecasts of MJJ rainfall in the Yangtze River basin: (a)
time series of the forecast PDFs (pink, in terms of the forecast mean, and 75% and 95% prediction intervals)
and observations (black), showing the correlation skill , marked with an asterisk (*) if significantly greater
than zero; (b) time series of CRPS values based on using the model PDF for the forecast (red), or using the
observed climatology as  the  forecast  (black).  The corresponding skill  score  is  shown (CRPSS),  comparing
the mean CRPS from the two forecast  strategies (red and black dashed lines).  An asterisk (*) indicates the
model-based forecast is significantly better than using the climatology.
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Fig. 5. Summary of the regional skill for MJJ and JJA. Coloured points indicate the skill is significantly
greater  than  zero  at  the  5% level,  i.e.,  the  forecasts  are  significantly  better  than  using  the  climatology;
grey points indicate the skill is statistically indistinguishable from zero at that level. Long, medium and
short horizontal ticks on each line indicate the lower limits of the one-sided confidence intervals at  the
90%, 95% and 99% levels, respectively.

 

 

Fig. 6. The variability in the relationship between the EASM and Yangtze River basin rainfall  in MJJ, in terms of
correlations  in  24-year  rolling  windows.  The  black  line  shows  the  observed  EASM–rainfall  correlation,  with  grey
shading indicating the 95% confidence intervals.  The red line and shading show the same, but for hindcasts of the
EASM correlated with the observed rainfall (cf. Fig. 3). The window length is indicated by a grey box, as labelled.
Points  are plotted at  the final  year  of  each window. The correlations based on the full  60-year  hindcast  period are
marked as dashed horizontal lines.

2088 SUMMER YANGTZE FORECASTS FROM NOVEMBER VOLUME 40

 

  



 4.    Discussion and conclusions

We  have  shown  that  DePreSys3  can  skilfully  forecast
the EASM index in MJJ from November, and that this leads
to  skilful  forecasts  of  rainfall  in  MJJ  in  the  Middle/Lower
Reaches of the Yangtze River basin, and for the basin as a
whole. In contrast to similar seasonal forecasts initialised in
the spring, we find no significant levels of skill in forecasting
the EASM index, or Yangtze rainfall, in JJA. However, we
do  find  some  indications  of  enhanced  skill  in  the  Upper
Reaches of the basin in both MJJ and JJA following El Niño
events.

The  EASM  index  we  use  captures  the  influence  of
SSTs in both the Pacific and Indian Ocean on monsoon circu-
lation and rainfall (Wang et al., 2008; Liu et al., 2018; Li et
al., 2021; Takaya et al., 2021). As the Indian Ocean is able
to  store  the  impact  of  El  Niño  events,  helping  to  continue
their  influence  over  an  additional  year  [the  Indian  Ocean
“capacitor ”  effect  (e.g.,  Xie  et  al.,  2016; Takaya  et  al.,
2021)], it is perhaps no surprise that the EASM retains pre-
dictability  at  very  long  lead  times.  Indeed,  Takaya  et  al.
(2021)  demonstrated  forecast  skill  for  the  EASM  index  in
JJA  from  April  in  the  preceding  year,  using  a  dynamical
model similar to ours.

As our forecast model is based solely on the relationship
between rainfall and predicted EASM index, it is also unsur-
prising that there is more skill for MJJ than JJA. The EASM
index,  measuring  the  westward  extension  of  the  WPSH,  is
only  related  to  monsoon  rainfall  in  the  early  summer,
whereas in the later summer (July–August) the monsoon rain-
fall is driven by different processes, such as tropical cyclone
activity (Wang and LinHo, 2002; Su et al., 2014). Martin et
al.  (2020)  demonstrated  this  when  examining  the  forecast
skill for rainfall in individual months using the GloSea5 sea-
sonal forecast system (based on the same climate model we
use here). They tested using model precipitation directly, as
well as a regression based on the EASM index. They found
high  levels  of  skill  in  June,  but  not  in  July  or  August.
Although  we  gain  skill  from  averaging  over  three  months
instead of one, we would still expect MJJ to be a more optimal
season  for  capturing  the  relationship  between  the  EASM
and Yangtze rainfall, with JJA having limited skill, which is
indeed what we find.

A possibility for further improving our seasonal forecasts
is to expand the statistical model component to use multiple
predictors,  which  might  retain  predictability  at  longer  lead
times, or capture additional variability at lead times already
explored. Obvious choices are SST indices like a combination
of  Niño-3.4  and  the  Indian  Ocean  Dipole  or  Basin-wide
indices.  For  example,  Dunstone  et  al.  (2020)  have  already
shown  that  DePreSys3  retains  skill  in  forecasting  ENSO
into  the  second  winter  after  initialisation.  Liu  et  al.  (2021)
took a very similar approach to us, using November initialisa-
tions to forecast JJA rainfall over southern China (overlapping
the Yangtze basin), but used two predictor indices: SSTs in
the western North Pacific, and mean sea-level pressure over
a  large  area  stretching  from  the  tropical  western  North

Pacific down to Australia. This suggests that our poor skill
for  JJA  might  be  improved  by  including  better  predictors.
Pan and Lu (2022)  produced a  detailed study of  predictors
based  on  Pacific  and  Indian  Ocean  temperature  and  atmo-
spheric  circulation,  which  may  help  with  the  predictability
of the WPSH in July.

Another possibility, albeit more speculative, is to intro-
duce  extratropical  predictors.  The  extreme  rainy  season  of
2020 highlighted the capacity of midlatitude climate features
such as the East Asian Jet to enhance the effect of the monsoon
circulation  captured  by  the  EASM  index  (e.g.,  Bett  et  al.,
2021;  Li  et  al.,  2021;  and references therein).  The summer
North Atlantic Oscillation (NAO), for example, has a well-
known teleconnection to the EASM (e.g., Linderholm et al.,
2011), but it is also known that extratropical dynamical cli-
mate features such as this remain largely unpredictable in cur-
rent  forecasting systems (Dunstone et  al.,  2018).  However,
Han and Zhang (2022) have shown that the winter NAO has
an  impact  on  April/May  rainfall  in  the  Middle/Lower
Reaches of  the Yangtze basin,  so including the NAO from
the first or even second winter (Dunstone et al., 2016) may
improve the forecasts for MJJ.

Our results show clear benefits from having a long, 60-
year  hindcast  period,  as  the  assessed  skill  when  using  a
shorter period can be notably affected by the inclusion/exclu-
sion  of  particular  extreme  years.  A  longer  hindcast  also
allows a more robust assessment of probabilistic skill scores
like the CRPSS, which require more data to demonstrate a sig-
nificant level of skill, and has also allowed us to assess the
conditional skill  of forecasts following El Niño or La Niña
years.

However, when using such long periods, it is important
to consider whether the skill varies over that period, particu-
larly  in  the  context  of  a  changing  climate.  For  example,
many studies have shown decadal-scale variability in ENSO,
and  its  predictability  (e.g., Tang  et  al.,  2008; Hou  et  al.,
2022; Weisheimer et al., 2022; and references therein), and
similarly  for  the  EASM  and  WPSH  (e.g.,  Li  et  al.,  2016;
Zhang et  al.,  2018, 2022).  Several  studies have shown that
summer rainfall in eastern China is itself subject to decadal-
scale  variability  (e.g.,  Zhu  et  al.,  2016; Yang  et  al.,  2017;
Zhang et  al.,  2018).  However,  we have shown that,  for the
specific  case  of  EASM-based  Yangtze  summer  rainfall,
there is no significant variability in skill in our model. This
is  not  inconsistent  with  previous  results,  as  the  uncertainty
in correlations over the rolling 24-year sub-periods we have
analysed could mask more subtle changes in predictability,
and of course longer-term changes over the course of a cen-
tury would still not be seen. Our results emphasise the need
to evaluate the variation in practical forecast skill.

Decision-makers involved in the running of hydroelectric
dams along the Yangtze River and its tributaries are able to
use long-range seasonal forecasts to prepare flood mitigation
actions  and  estimate  their  energy  production,  allowing
water  and  electricity  resources  to  remain  relatively  stable
and  be  well-managed  in  the  event  of  an  extreme  flood  or
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drought  season.  Forecasts  of  Yangtze  River  basin  rainfall
from  November  developed  here  could  allow  action  to  be
taken with greater confidence, on timescales that match exist-
ing planning decisions.
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