
 
 

Compensating Errors in Cloud Radiative and Physical Properties over
the Southern Ocean in the CMIP6 Climate Models※

Lijun ZHAO1,2, Yuan WANG* ,†,1, Chuanfeng ZHAO#,2, Xiquan DONG3, and Yuk L. YUNG1

1Division of Geology and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
2College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China

3Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85710, USA

(Received 12 February 2022; revised 6 June 2022; accepted 30 June 2022)

ABSTRACT

The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous
climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR)
over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue
and  explores  the  uncertainty  sources  in  the  latest  CMIP6  models.  We  employ  10-year  satellite  observations  to  evaluate
cloud  radiative  effect  (CRE)  and  cloud  physical  properties  in  five  CMIP6  models  that  provide  comprehensive  output  of
cloud,  radiation,  and  aerosol.  The  simulated  longwave,  shortwave,  and  net  CRE at  the  top  of  atmosphere  in  CMIP6  are
comparable with the CERES satellite observations.  Total cloud fraction (CF) is also reasonably simulated in CMIP6, but
the  comparison  of  liquid  cloud  fraction  (LCF)  reveals  marked  biases  in  spatial  pattern  and  seasonal  variations.  The
discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro-
and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as
well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional
means ~20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and
LCF  also  cancel  out  with  each  other,  leaving  CRE  and  ASR  reasonably  predicted  in  CMIP6.  An  error  estimation
framework  is  employed,  and  the  different  signs  of  the  sensitivity  errors  and  biases  from  CF  and  LWP  corroborate  the
notions  that  there  are  compensating errors  in  the  modeled shortwave CRE. Further  correlation analyses  of  the  geospatial
patterns  reveal  that  CF  is  the  most  relevant  factor  in  determining  CRE  in  observations,  while  the  modeled  CRE  is  too
sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore
the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical
properties for future climate model development and climate projection.
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Article Highlights:

•  Cloud radiative effects in CMIP6 are comparable with satellite observations.
•  There are large compensating biases in cloud fraction, liquid water path, and droplet effective radius.
•  Cloud radiative effect is over-sensitive to liquid water path and droplet effective radius in CMIP6.

 

 
 

 1.    Introduction

Clouds play a  pivotal  role  in  the global  energy budget
by reflecting solar radiation back to space, which is known
as  a  cloud cooling  effect  (Schneider,  1972; Ramanathan et
al.,  1989),  absorbing  longwave  radiation  as  a  warming
effect  (Zhao and Garrett,  2015),  as  well  as  releasing  latent
heat to the atmosphere (Wang et al., 2014; Pan et al., 2020).
Nearly 80% of the Southern Ocean (SO) region (defined as
40°–60°S) is covered by cloud (Dolinar et al., 2015) but has
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been underexplored due to lack of observations. Meanwhile,
this area is far from any anthropogenic pollution sources but
has abundant biogenic marine gases and aerosols (McCoy et
al., 2020).

Cloud  radiative  effect  (CRE)  is  largely  determined  by
cloud physical  properties.  The previous model  assessments
showed that the poorly simulated regional radiation budget
can lead to the biases in sea surface temperature and climate
sensitivity  (IPCC,  2014a, b; Bony  et  al.,  2015)  and  also
affect the simulations of atmospheric circulation and precipita-
tion  (Ceppi  et  al.,  2012; Hwang  and  Frierson,  2013).  The
cloud  radiative  cooling  effect  at  the  top  of  atmosphere
induced by a 15%–20% increase in low cloud coverage can
neutralize the effect of doubling CO2 concentrations (Slingo,
1990).  Cloud  fraction  (CF)  was  underestimated  by  many
global  climate  models,  which  results  in  a  large  bias  in
absorbed shortwave radiation (Trenberth and Fasullo, 2010;
Dolinar  et  al.,  2015).  Moreover,  cloud  microphysical  pro-
cesses also closely linked with the radiation budget and the
hydrological  cycle,  which  efficiently  determines  regional
and global climate feedbacks (Tan et al., 2015; Bjordal et al.,
2020). Slingo (1990) found that the cooling effects of a 15%
–20% decrease in cloud effective radius (re) or a 20%–35%
increase in liquid water path (LWP) are equivalent to a 15%
–20%  increase  in  low  cloud  coverage.  The  cloud  phase  is
also critical to determine CRE (Teng et al., 2020), especially
for  the  mixed-phase  clouds  over  the  SO region (Bjordal  et
al.,  2020).  The low and optically  thick clouds over  the  SO
(Haynes et al., 2011) have a remarkable effect on the planetary
albedo. The concurrent increases in LWP and cloud optical
depth (COD) can cause negative shortwave CRE (Zelinka et
al., 2012).

Cloud physical parameterizations are key knobs in tuning
climate model simulations (Schiro, 2019; Wang et al., 2020).
By  implementing  new  boundary  layer  and  convection
schemes,  researchers  managed  to  improve  CRE  on  the
global  scale  in  Post-CMIP5  simulations  (Stanfield  et  al.,
2015), most obviously in total CF and SW CRE over the SO.
Therefore,  a  comprehensive  examination  of  cloud  physical
properties  is  essential  to  understanding regional  and global
CREs,  simulating  climate  mean  states  and  variations,  and
quantifying climate feedbacks and sensitivities. It is a well-
known fact that the net radiative flux biases in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) are mainly
caused  by  the  SO  clouds  in  the  models  (Bodas-Salcedo  et
al., 2014). Here, we expand this effort to the CMIP Phase 6
(CMIP6) models (Eyring et al.,  2016). The performance of
the latest models has been improved in terms of precipitation
extremes (Luo et  al.,  2022),  equilibrium climate sensitivity
(Jiang et al., 2021), and climate extremes (Zhu et al., 2020).
A recent study attributed the high effective climate sensitivity
in  the  CMIP6  models  to  stronger  positive  cloud  feedbacks
from  decreasing  extratropical  low  cloud  coverage  and
albedo mainly in the SO (Zelinka et al., 2020). Therefore, it
is critical to quantify and understand the cloud and radiation
biases in the CMIP6 models over the SO. To avoid degrada-
tion of model performance due to the complexity in air–sea

interactions,  this  study  focuses  on  the  Atmospheric  Mode
Intercomparison Project (AMIP) experiment with prescribed
but  time-varying  sea  surface  temperature,  sea  ice  content,
and other external forcings (Gates et al., 1999). It covers the
time period from January 1979 through December 2014.

In this study, we evaluate CMIP6 models using 10-year
satellite observations and focusing on atmospheric radiation
fluxes, cloud radiative and physical properties such as CRE,
CF, re,  LWP,  and  COD,  as  well  as  aerosol  optical  depth
(AOD)  over  the  SO.  Since  we  aim  to  explore  all  relevant
cloud  and  aerosol  output  of  a  CMIP6  model,  only  five
CMIP6 models meet such a requirement and are analyzed in
this study. We investigate their relationships and the underly-
ing reasons for their biases. Detailed information of models
and satellite products, including the participating CMIP6 mod-
els and satellite retrievals, are described in section 2. Evalua-
tion results are shown in section 3. Synergistic results and fur-
ther  analyses  on potential  uncertainty sources in  predicting
CRE are discussed in section 4. Conclusions and discussions
on future research are provided in section 5.

 2.    Data and methods

 2.1.    Observations

Observational  datasets  for  the  period  from  January
2003 to December 2012 are utilized in our study to evaluate
the performance of CMIP6 models. Monthly-mean radiative
fluxes from the Clouds and the Earth’s Radiant Energy Sys-
tem (CERES)  Energy  Balanced  and  Filled  (EBAF)  dataset
are used for assessing top-of-atmosphere (TOA) cloud radia-
tive  properties,  including  the  longwave  cloud  radiative
effect  (LW  CRE),  shortwave  cloud  radiative  effect  (SW
CRE),  and  net  cloud  radiative  effect  (CRE).  Furthermore,
the  Surface  Data  Ocean  Fraction  Coverage  from  CERES
SYN1deg Products  are also used as  a  filter  in  our  study to
avoid  the  inconsistency  between  land  and  ocean  surface
retrievals.  Hence,  the  pixels  with  ocean  fraction  of  more
than  95%  are  chosen  in  this  study.  We  also  use  retrieved
Level-3 cloud physical properties from Moderate Resolution
Imaging  Spectroradiometer  (MODIS)  instruments  onboard
the  Aqua  satellite  (MYD08_M3),  including  the  CF,  liquid
cloud fraction (LCF), re, LWP, and COD. The details of the
MODIS  dataset  are  shown  in Table  1.  Note  that  satellite-
derived LWP is an in-cloud property. To match up with the
climate models’ definition, which is averaged over the grid
box, we multiply the satellite LWP by the satellite CF to get
the  grid-scale  LWP for  all  the  analyses  below.  To  explore
the  relationship  between  aerosols  and  clouds  over  the  SO,
the Level-3 AOD product from MODIS is also analyzed in
this study.

The  uncertainty  of  satellite-derived  variables  needs  to
be emphasized, specifically for any model evaluation study.
Based on prior  research,  the  uncertainty  of  global  monthly
mean TOA fluxes can be separated into two parts. The differ-
ence of all-sky radiative fluxes can be 2.5–3 W m–2,  while
the  discrepancies  of  clear-sky fluxes  can reach 5–6 W m–2
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and 4.5–5 W m–2 for SW and LW fluxes, respectively (Loeb
et al., 2018a,b). Compared with in situ aircraft observations,
the  MODIS  cloud  retrieval  product  overestimates re near
cloud  top  by  26%–31%  over  the  SO  (Zhao  et  al.,  2020).
Kang et al. (2021) further suggested that re is overestimated
by satellite for non- or light precipitation and underestimated
for  heavy  precipitation.  Considering  the  possible  existing
uncertainty in satellite-derived variables, corresponding statis-
tic  strategies  (Weatherhead  et  al.,  1998; Shea  et  al.,  2017)
are used in this study. σvar is the standard deviation of the vari-
able’s regional, annual, or monthly mean time series. κvar is
the autocorrelation time of natural variability. It is calculated
as: κvar= ,  where ρ is  the  lag-1  autocorrela-
tion. The uncertainty of MODIS-derived cloud physical prop-
erties used in this study is presented in Table 2.

 2.2.    CMIP6 models

Considering  the  availability  of  datasets  within  the
CMIP6 project, five CMIP6 climate models (CESM2, GISS-

E2-1-G,  MPI-ESM-1-2-HAM,  NorESM2-LM,  and
UKESM1-0-LL)  participating  in  the  Atmospheric  Model
Intercomparison Project (AMIP) are chosen. Some detailed
information  on  these  five  models  is  listed  in Table  3.  The
CMIP6 dataset is from “historical*” experiments. The radia-
tive properties in five CMIP6 models are incoming shortwave
radiation (rsdt), outgoing longwave radiation (rlut), outgoing
shortwave radiation (rsut), upwelling clear-sky longwave radi-
ation  (rlutcs),  and  outgoing  clear-sky  shortwave  radiation
(rsutcs).  The total CF for the whole atmospheric column is
called clt, and the LCF (the mass of cloud liquid water) seen
by MODIS, including the large-scale and convective clouds,
is called clwmodis. The cloud physical properties in the mod-
els include LWP, re, and COD. The parameters of LWP are
calculated by clwvi minus clivi, which corresponds to column
integrated condensed water minus that of ice. The variables
of re are  named  as  reffclwtop,  representing  the  effective
radius of liquid droplets seen from satellite.  Note that re in
GISS-E2-1-G is calculated from the averaged reffclws (the

Table 1.   Dataset and parameters used from the MYD08_M3 dataset.

Parameter Variable Name

CF Cloud_Fraction_Mean_Mean
LCF Cloud_Retrieval_Fraction_Liquid_FMean
LWP Cloud_Water_Path_Liquid_Mean_Mean
COD Cloud_Optical_Thickness_Combined_Mean_Mean

re Cloud_Effective_Radius_Liquid_Mean_Mean
AOD Aerosol_Optical_Depth_Average_Ocean_Mean_Mean

Table  2.   Annual  and  monthly  variability  parameters  calculated  for  cloud  radiative  effect  and  cloud  properties  over  the  SO from the
CERES and MODIS satellite products. σvar is  the standard deviation of the variable’s annual and monthly mean time series. κvar is  the
autocorrelation time of natural variability.

Mean κvar (yr) σvar (yr) κvar (mon) σvar (mon)

LW CRE 30.64 1.29 0.22 2.45 3.20
SW CRE −70.11 0.97 0.20 2.35 42.31
Net CRE −39.47 0.97 0.31 2.36 43.73

CF 88.36% 1.73 0.121% 2.41 1.48%
LCF 43.45% 0.98 0.346% 2.50 7.49%

re 13.33 0.98 0.06 2.37 1.27
LWP 142.03 1.99 1.88 2.56 40.95
COD 14.99 2.20 0.21 2.65 4.17
AOD 0.09 1.40 0.0032 2.64 0.02

Table 3.   CMIP6 AMIP models evaluated in this study.

Model Name Modeling Center Horizontal Grids

CESM2 National Center for Atmospheric Research, USA 288 × 192
GISS-E2-1-G Goddard Institute for Space Studies, USA 144 × 90

MPI-ESM-1-2-HAM* Max Planck Institut fur Meteorologie, Germany 192 × 96
NorESM2-LM** NorESM Climate modeling Consortium, Norway 144 × 96
UKESM1-0-LL Met Office Hadley Centre, UK 192 × 144

*re is multiplied by a factor of 10, as the original re is on the order of 1 μm.
**re values that are too large (greater than 25 μm) are excluded.
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effective radius of stratiform cloud liquid water) in multiple
layers. The cod of CMIP6 models is the integral of scatter-
ing, absorption, and attenuation coefficients along the radia-
tive  path.  The  od550aer  of  CMIP6  models  refers  to  the
AOD from ambient aerosols. All available “r1i1p1f1” ensem-
ble runs from three CMIP6 models (CESM2, MPI-ESM-1-2-
HAM, and NorESM2-LM) are used in our study. Owing to
the  unavailability  in  the  AMIP  experiment,  the  “r1i1p3f1 ”
ensemble run from GISS-E2-1-G and the “r1i1p1f4” ensem-
ble run from UKESM1-0-LL are used here. The time period
of CMIP6 datasets used in this study is from January 2003
to December 2012, consistent with our satellite product time
period.

 2.3.    Evaluation methods

In this study, the evaluations are developed using the fol-
lowing statistical methods. The regional averaged variables
over the SO are calculated by Eq. (1): 

X =
∑k

i=1 Xi

k
, (1)

where Xi is  the ith  value  of  the  multiyear  averaged  corre-
sponding variable and k is the total number of samples. 

RMSE =

√∑m
i=1(Xi−X)

m
. (2)

X

The regional root-mean-square Error (RMSE) is calcu-
lated from Eq. (2), where m is the sum of grid samples cover-
ing the SO and Xi is the corresponding value of grid i.  is
the averaged value of the grid over the SO. 

R =
Cov(X,Y)
√

Var |X|Var |Y |
. (3)

Cov(X,Y) Var |X| Var |Y |

The  correlation  coefficient  is  used  for  evaluations  in
this  study.  In  Eq.  (3), X and Y represent  the  corresponding
variables  of  observation  and  the  CMIP6  models,  respec-
tively,  is  the  covariance,  and  and 
denote the variance of X and Y separately. 

Normalized variable =
Xi

max(X)
. (4)

The normalization method used in this study is calculated
by using the ratio of the ith variable and the maximum of val-
ues to show the temporal change of corresponding variables.
Note  that  all  the  grid  data  used  in  this  study  is  latitude-
weighted.

 3.    Evaluation  of  climatology  and  spatiotem-
poral variations

 3.1.    Absorbed solar radiation

Absorbed solar radiation (ASR) is calculated as the down-
welling minus upwelling shortwave radiation of all-sky condi-
tions at the top of atmosphere. A previous study by Trenberth
and  Fasullo  (2010)  found  that  too  large  ASR  over  the  SO
was simulated by the CMIP3 models, showing a substantial
bias of more than 32 W m–2. The serious overestimation of
ASR and underestimation of cloudiness over the SO led to
poor model performance in simulating the energy budget in
the  Southern  Hemisphere  in  climate  models  (Marchand  et
al., 2014). Here, we first compare CMIP6 multimodel mean
ASR  against  the  CERES  satellite  observations.  In Fig.1a,
the spatial distribution of the ASR biases can be characterized
as  an  overall  underestimation  over  a  large  fraction  of  the
oceans  and  an  overestimation  in  the  high-latitude  region
(50°W–150°E, 53°–60°S). More importantly, the magnitudes

 

(c)

(a)

(b)

 

Fig. 1. (a) The multimodel mean bias of Absorbed Solar Radiation (ASR) at the top of atmosphere (TOA) over the Southern
Ocean  (SO)  between  five  CMIP6  models  and  CERES  observations.  (b)  The  relative  bias.  (c)  The  Taylor  Diagram  of
multiyear mean ASR in CMIP6 simulations against CERES observations. The axis is the standard deviation of CMIP6 and
CERES.  The  root-mean-square  errors  (RMSEs)  of  the  models  are  indicated  by  the  green  dotted  lines.  The  arc  refers  the
correlation coefficient between CMIP6 models and CERES.
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of those biases are within the range of ±10 W m–2 and ±10%
relative changes (Fig. 1b), showing an evident improvement
of  ASR  in  CMIP6  compared  to  CMIP3  and  CMIP5.  In
Fig.  1c,  all  the  correlation  coefficients  of  multiyear  mean
ASR  between  CERES  and  individual  CMIP6  models  are
larger  than  0.95,  indicating  well-aligned  spatial  patterns
between satellite and CMIP6 models. The RMSE of multiyear
mean  ASR  for  the  CMIP6  models  compared  to  CERES
ranges from 4 W m–2 to 8 W m–2, and such biases between
simulations  and observations  are  considerably smaller  than
previous results from CMIP3 (Trenberth and Fasullo, 2010).

 3.2.    Cloud radiative effect

Cloud radiative effect (CRE) is defined in this study as
the difference of net incoming radiation between all-sky and
clear-sky conditions at the top of atmosphere (TOA). The spa-
tial distributions of LW CRE, SW CRE, and net CRE from
the CMIP6 models and CERES are shown in Fig. 2. The spa-
tial patterns of radiative properties in the CMIP6 models are
generally consistent with CERES. However, the magnitudes
are  stronger  over  the  deep  ocean  and  relatively  weaker  on
the near-shore regions. Considering the abundant low-level
clouds over the SO, there is an obvious cooling effect over
the  southern  Indian  and  Atlantic  oceans.  The  relatively
weaker cooling occurred in the high latitudes to the south of
55ºS (Figs. 2b and e). This can be attributed to the high surface
reflectance by sea ice appearing in austral winter with rela-
tively weak solar radiation. According to Figs. 2g and h, the
warming effect of LW CRE is relatively underestimated by
the CMIP6 models over a large fraction of the SO, but the spa-
tial biases of SW CRE between CMIP6 models and CERES

suggest that the cooling effect of SW CRE is apparently over-
estimated  over  the  areas  south  of  50ºS  and  underestimated
over  the  lower  latitudes.  The  larger  bias  of  SW  CRE  can
also explain the similar pattern of net CRE discrepancy due
to  the  stronger  magnitude  of  the  effect  of  SW  CRE  than
theof  LW  counterpart  (Fig.  2i).  Generally  speaking,  the
biases in net CRE are contributed by both SW and LW CRE
in the lower latitudes, while SW CRE biases dominate over
the high latitudes. The standard deviations between the five
CMIP6 climate models are used to represent the inter-model
spreads. The standard deviations in SW CRE and net CRE,
particularly over the area to the south of the African continent
(0°–25°E,  40°–47°S),  reach  more  than  15  W  m–2,  making
the  model  biases  less  statistically  significant  in  those
regions.

To  examine  the  fidelity  of  each  CMIP6  model  in  a
more  quantitative  manner,  the  Taylor  diagrams  (Taylor,
2001) for the CRE spatial distributions are shown in Fig. 3.
LW CRE is found to have a larger bias than the SW counter-
part.  As  we  learn  from Fig.  2g,  the  CMIP6  multimodel
mean cannot capture the magnitude of LW CRE very well,
with maximal underestimation of about 5 W m–2. In Fig. 3a,
the Taylor diagram shows that the correlation coefficient of
the  LW  CRE  spatial  distribution  is  less  than  0.6,  with
RMSE larger than 2 W m–2. On the contrary, the simulated
SW CRE and net CRE are better correlated with observations
(Figs.  3b and c).  In particular,  UKESM1-0-LL exhibits  the
best performance with the largest correlation coefficient and
the smallest RMSE. CESM2 also shows good performance
in SW and net CRE. The net CRE evaluation resembles that
of SW CRE according to the three criteria in the Taylor dia-

 

 

Fig. 2. Multimodel means and standard deviations of LW, SW, and net CRE from five CMIP6 models and from CERES.
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grams, implying that the net CRE is mainly regulated by the
SW part.

 3.3.    Cloud fraction

Cloud macro-physical properties such as CF can play a
dominant role in determining the radiative characteristics of
cloud. Basically, increasing cloud coverage can reduce outgo-
ing longwave radiation at the TOA and shortwave radiation
reaching the surface. The CF spatial pattern over the SO in
the CMIP6 models generally agrees with MODIS (Figs. 4a
and b), with more cloud cover over the deep ocean regions.
The  differences  between  MODIS  and  the  CMIP6  models

(Fig.  4c)  suggest  that  there  is  less  CF simulated in  CMIP6
models, especially over the region near 40°S. The CF differ-
ence between MODIS and CMIP6 models can be caused by
many factors, such as cloud overlap algorithms and the thresh-
old assumptions for cloud formation (Jian et al., 2021). The
spatial distribution of the spread of the five CMIP6 models
can  be  seen  in Fig.  4d.  The  model  disagreement  is  larger
over the southern Indian Ocean (0°–25°E, 40°–47°S), where
a similar bias in net CRE simulation can be found (Fig. 2l).
Specifically,  according  to  the  Taylor  diagram  (Fig.  4e),
UKESM1-0-LL  and  CESM2  exhibit  better  performance  in

 

 

Fig. 3. Taylor Diagrams of multiyear mean (a) LW, (b) SW, and (c) net CRE in CMIP6 simulations compared with CERES
observations. The axis is the standard deviation of CMIP6 simulations and CERES observations. The RMSE of difference
between simulation  and  observation  is  represented  as  green  dotted  line.  The  arc  refers  the  correlation  coefficient  between
CMIP6 and CERES.

 

 

Fig.  4. Spatial  distribution of multiyear mean total  cloud fraction (CF) over the SO from CMIP6 simulations and MODIS
observations (a–d). Taylor Diagram of multiyear spatial average of CMIP6-simulated CF to MODIS-observed CF (e).
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simulating  CF  with  higher  spatial  correlation  and  smaller
RMSE  against  satellite  observations.  The  underestimated
CF in  the  models  can  also  explain  the  lower  modeled  LW
CRE compared to CERES observations. LWP and COD do
not impact LW radiation significantly because cloud emissiv-
ity  is  close  to  1  when  LWP  and  COD  are  larger  over  the
region, like over the SO.

LCF in the CMIP6 models and in MODIS is shown in
Fig. 5. Because of unavailable LCF output from GISS-E2-1-
G and  MPI-ESM-1-2-HAM,  only  CESM2,  NorESM2-LM,
and UKESM1-0-LL are compared with MODIS. The observa-
tion shows that LCF (Fig.  5a) has a pattern similar to total
CF (Fig.  4a),  i.e.,  greater cloud fraction at  higher latitudes.
This  pattern  is  also  consistent  with  the  distribution  of  net
CRE shown in Fig. 2c, which has a stronger cooling effect
over the high-latitude deep sea. Note that the net CRE over
the region of 100°–180°E is weaker than other areas which
is caused by the smaller liquid cloud fraction of this region.
Compared to observations,  the CMIP6 LCF bias is  high in
the area near  40°–45°S and low near  50°–60°S.  Moreover,
the  inter-model  spread  is  rather  large  over  the  area  of  50°
–100°E, 45°–55°S, which makes the model-observation com-
parison meaningless in this region.

 3.4.    Cloud liquid water path and cloud optical depth

The spatial patterns of cloud LWP in the CMIP6 multi-
model  mean  and  in  MODIS  are  shown  in Fig.  6.  The
MODIS observation reveals that the high-latitude LWP is dis-
tinctly  larger  than  the  LWP  at  lower  latitudes  (Fig.  6a),
which  is  consistent  with  the  patterns  of  observed  CF

(Fig. 4a) and LCF (Fig. 5a). Compared to MODIS, the multi-
model  mean LWP in  the  CMIP6 models  is  underestimated
by 19.9% (Figs. 6b and c). The spatial distribution of modeled
LWP  is  characterized  by  high  values  in  the  middle  of  the
SO between 40°–50°S, which is not comparable with observa-
tions. The standard deviations among the five CMIP6 models
are generally large over the high latitudes (50°–60°S).

For the individual CMIP6 models, their spatial correla-
tions with observations are rather diverse. There are even neg-
ative  correlation  coefficients  for  MPI-ESM-1-2-HAM  and
UKESM1-0-LL (Fig. 6e). In contrast, the LWP spatial pat-
terns in CESM2, GISS-E2-1-G, and NorESM2-LM are rea-
sonable. The RMSE magnitude also differs vastly among dif-
ferent  models,  ranging  from a  minimum error  of  20  g  m–2

for CESM2 to a maximum error of 40 g m–2 for UKESM1-0-
LL. Note that a negative spatial correlation coefficient never
occurs  for  other  cloud  macrophysics  parameters  like  total
CF and LCF in any model discussed here, implying a much
larger challenge for those models to predict LWP.

The SO mean COD is comparable between the CMIP6
mean  (15.2)  and  MODIS (14.9).  The  slight  overestimation
of COD in CMIP6 can compensate for the underestimation
of  CF  in  the  radiation  calculation,  leaving  the  modeled
mean  CRE  close  to  the  satellite  observation.  However,
regional  biases  in  COD  are  much  larger.  Spatially,  the
biases appear as a general overestimation at lower latitudes
and underestimation at higher latitudes. Meanwhile, the spa-
tial  patterns  of  satellite-observed  COD,  the  multimodel
mean COD, and the differences between those two (Figs. 7a,

 

 

Fig. 5. Same as Fig. 4, except for liquid cloud fraction (LCF).
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b, and c) are quite similar to the patterns of LWP (Fig. 6). It
implies  COD  is  largely  controlled  by  LWP  in  this  region.
Of  the  individual  CMIP6  models  involved  in  this  study
(Fig.  7e),  CESM2  is  the  only  model  showing  reasonable
COD performance,  with  a  spatial  correlation of  0.75 and a

RMSE of 2.2. Both the spatial distributions and magnitudes
of COD in the other four models exhibit marked biases com-
pared to MODIS, with correlation coefficients smaller than
0.12 and RMSE larger  than 3.  In particular,  the magnitude
of COD in MPI-ESM-1-2-HAM is extremely low (generally

 

 

Fig. 6. Same as Fig. 4, except for liquid water path (LWP).

 

 

Fig. 7. Same as Fig. 4, except for liquid cloud optical depth (COD).
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less than 0.4), which means its predicted COD has no physical
meaning.

 3.5.    Cloud effective radius

Compared to MODIS re, the CMIP6 models show poor
performance  in  simulating re over  the  SO.  As  seen  in
Fig.  8a, re over  the  deep  oceans  is  much  larger  in  satellite
observations than it is near the continent of South America.
In  contrast,  the  spatial  pattern  of  the  CMIP6  multimodel
mean re shows the opposite, i.e.,  larger re is predicted over
the near-shore  regions  (Fig.  8b).  Moreover,  the  differences
of re climatology between MODIS and the  CMIP6 models
(Fig. 8c) show that the magnitude of re over the SO is underes-
timated  by  about  11.8%  by  the  CMIP6  models.  The  large
biases in the deep oceanic regions are consistent among the
models, as a high standard deviation of re occurs only in the
coastal regions near South America in the five CMIP6 mod-
els.  The  relationships  between  the  five  individual  CMIP6
models and MODIS are shown in Fig. 8e. The RMSE of simu-
lated re in  the  five  CMIP6 models  compared to  MODIS is
between  0.8–2.6  μm,  indicating  stark  differences  in re

between the CMIP6 models and satellite observations.

 3.6.    Seasonal cycles of variables

The above evaluations focus on the climatology and spa-
tial distributions of cloud properties. Here, we further evaluate
the seasonal variations of CRE, the related cloud properties,
and  AOD  in  the  five  CMIP6  models.  The  simulated  ten-
year  averaged  seasonal  cycles  in  SW  and  LW  CRE  in  the
five individual CMIP6 models exhibit good agreement with
the ones from CERES (Figs. 9a and b). Both models and satel-

lite observations show that SW CRE peaks in the austral sum-
mer, as the solar radiation reaches the maximum in the sum-
mer. Meanwhile, the CMIP6 models and CERES also agree
that  LW  CRE  peaks  in  the  austral  winter.  However,  there
are  significant  differences  between the  CMIP6 models  and
MODIS in the temporal evolution of cloud physical properties
and  AOD  throughout  a  year.  The  temporal  changes  in  CF
(Fig. 9c) between CMIP6 models and observations are rela-
tively consistent. All models capture the peak in the austral
winter,  but two of them (GISS-E2-1-G and MPI-ESM-1-2-
HAM) erroneously predict another peak in the austral summer
that  does  not  exist  in  the  satellite  observations.  Different
with  CF  seasonality,  LCF  reaches  the  maximum  over  the
SO in the austral summer. Only UKESM1-0-LL can simulate
such  a  pattern,  while  CESM2  and  NorESM2-LM  predict
two LCF peaks in spring and fall.

Much larger disparities in the seasonal cycles can be iden-
tified  for  COD, re,  LWP,  and  AOD  in  comparing  the
CMIP6 models with MODIS. As shown in Figs. 9e, f, and g,
the  temporal  changes  in  COD, re,  and  LWP  from  MODIS
share a similar pattern, i.e., an increase in austral winter and
a decrease in austral  summer.  However,  the modeled LWP
seasonality  is  opposite  to  that  pattern.  Therefore,  even
though the modeled re generally agrees with the observed sea-
sonal  pattern,  the  seasonality  of  COD  is  not  comparable
between  models  and  MODIS.  To  be  more  specific,  MPI-
ESM-1-2-HAM,  NorESM1-LM,  and  CESM2  simulate  the
oppositive trends, and UKESM1-0-LL cannot actually repre-
sent the obvious change of corresponding variables.

 

 

Fig. 8. Same as Fig. 4, except for liquid cloud effective radius (re).
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 4.    Exploration of uncertainty sources

 4.1.    CRE error estimation

To explore the possible influence of cloud physical prop-
erties on the net CRE, the correlation coefficients of spatial
distributions  between  individual  cloud  physical  properties
and net CRE are calculated from three sources: the satellite
observation,  the  CMIP6  multimodel  mean,  and  the  differ-
ences between models and observations (Fig. 10). Generally,
all cloud physical properties examined here are positively cor-
related with SW CRE. For CF, the observations show a high

correlation coefficient of about 0.6, while the modeled clima-
tological means and biases do not show strong relationships
between CF and SW CRE. In contrast, the models all agree
well  with  observations  on  the  strong  positive  relationship
between LCF and SW CRE. For COD and LWP, the observa-
tions only show a moderate positive correlation, with coeffi-
cients  no  larger  than  0.3,  while  much stronger  correlations
between COD/LWP and SW CRE are found in the CMIP6
models.  It  indicates  that  the  radiation  simulations  of  those
CMIP6  models  over  the  SO  are  too  sensitive  to  LWP  and
COD. The positive correlation between CRE and re is unex-
pected  to  some  extent,  and  it  implies  that  some  other  co-

 

 

Fig. 9. Annual cycles of normalized cloud radiative effect and cloud physical properties in five CMIP6 models and satellite
observations. Note that the normalization is calculated as the monthly-mean value divided by the maximum value throughout
a year.
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varying factors dictate such a relationship.
The  relative  importance  of  each  factor  in  contributing

to SW CRE can be partly revealed by comparing the correla-
tion  coefficients  across  all  parameters  in  their  relationship
with  SW  CRE.  In  observations,  CF  and  LCF  exhibit  the
largest correlation, indicating highest relevance to SW CRE.
However, for the CMIP6 models, COD, LWP, and re are the
more relevant variables compared with CF and LCF, corrobo-
rating  the  notion  that  the  SW  CRE  controlling  factors  are
quite  different  between  the  models  and  observations.  For
the biases in the modeled SW CRE, the potential largest con-
tributors include LCF, LWP, and COD, as their biases resem-
ble those of SW CRE well in space with high correlation coef-
ficients.  Furthermore,  AOD–SW  CRE  relationships  are
found to be positive in both observations and models. How-
ever,  the  biases  in  the  modeled  SW  CRE  cannot  be
explained by those in the aerosol field, as there is a small cor-
relation coefficient between aerosol and SW CRE biases.

The two key parameters in controlling CRE are CF and
LWP. To quantitatively estimate their joint and relative contri-

∂CF ∂LWP

butions to CRE errors, we adopt a multivariate linear regres-
sion model to link CRE with CF and LWP. The regression
slopes  of  CREs  versus  CF  ( )  and  LWP  ( )  can  be
derived from Eq. (5),
 

CRE = ∂CFCF+∂LWPLWP+ r , (5)

where CRE represents the LW, SW, or net CRE. r is the resid-
ual of the corresponding regression.

εsen

εbias εcov εtotal

Following Dolinar et al. (2015), the CRE sensitivity to
CF  or  LWP  ( ),  the  CRE  errors  from  CF  or  LWP  bias
( ), the co-variations ( ), and the total errors ( ) are
computed as follows:
 

εsen = (∂m−∂obs) Xobs , (6)
 

εbias = ∂obs (Xm−Xobs) , (7)
 

εcov = (∂m−∂obs) (Xm−Xobs) , (8)
 

 

 

Fig. 10. Correlation coefficients of spatial  distributions between SW CRE and cloud physical properties or
AOD in satellite products, multimodel mean, and the model biases (model minus observation).

Table 4.   Individual errors and total error in SW, LW, and net CRE of the CMIP6 models as indicated by CRE sensitivities to CF or
LWP, biases of CF or LWP, and co-variations.

SW CRE LW CRE net CRE

CF sensitivity error 187.56 21.61 209.18
CF biases 8.22 0.12 8.34

CF co-variations −10.93 −1.26 −12.19
LWP sensitivity error −104.86 −1.95 −106.41

LWP biases −6.18 −1.55 −6.56
LWP co-variations 21.41 0.32 21.73

Total 95.22 17.29 114.09

Note: Error are in units of W m−2.
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εtotal =εsen, CF+εsen, LWP+εbias,CF+

εbias, LWP+εcov, CF+εcov, LWP , (9)

where X is CF or LWP, the subscript obs means the observa-
tion, and m represents the simulated value.

εsen εbias εcov εtotalFour errors ( , , , ) for SW, LW, and net
CRE are shown in Table 4. The SW CRE sensitivity to CF
and LWP can reach 187.6 W m–2 and –104.9 W m–2, respec-
tively.  The  different  signs  of  the  sensitivity  errors  and
biases  from  CF  and  LWP  once  again  corroborate  the
notions  that  there  are  compensating  errors  in  the  modeled
SW  CRE  calculation,  and  the  cancellation  of  those  errors
result  in  smaller  error  in  CRE.  Similar  with  SW CRE,  the
net CRE is sensitive to CF and LWP with sensitivity magni-
tudes of 209.2 W m–2 and –106.4 W m–2, respectively. LW
CRE sensitivities to CF or LWP, the biases in CF and LWP,
and the co-variations are much smaller than the ones in SW
and net CRE, indicating that simulated SW sensitivity con-
tributes  most  to  the  total  errors.  With  larger  magnitudes  in
all  four  errors,  CF  generally  exhibits  a  larger  influence  on
CRE in comparison with LWP.

 4.2.    Relationship between COD, LWP, and re

As is discussed in section 3, the modeled spatial distribu-
tions of LWP, COD, and re have different characteristics com-
pared  to  the  MODIS  observations.  Even  though  LWP  and
COD  in  the  CMIP6  models  share  similar  spatial  patterns
(Figs.  6 and 7),  that  of re is  largely  different  from  them
(Fig. 8). This motivates us to explore how COD is calculated

in  each  model.  Employing  the  canonical  formula  of  the
COD calculation in Eq. (10), we compare COD provided by
the  CMIP6  models  with  those  calculated  as  a  function  of
LWP and re. 

COD =
3LWP
2ρwre

, (10)

Figure 11 uses scatter density maps to show the relation-
ship  between  model-simulated  COD  and  calculated  COD
based on model output and MODIS retrieved and calculated
COD. In Fig. 11a, the correlation between MODIS retrieved
and calculated COD reaches 0.9,  with RMSE of  1.7.  As is
shown  in Figs.  11b and  c,  the  simulated  COD  values  in
CESM2  and  UKESM1-0-LL  have  better  consistency  with
the predicted values. In particular, the correlation coefficient
R in  CESM2  can  reach  0.99.  In  the  comparison  of  CRE
(Figs. 2 and 3), the better inner relationship among the physi-
cal properties in CESM2 and UKESM1-0-LL can determine
the simulation appearance of CRE. However, the simulated
COD  and  calculated  COD  in  GISS-E2-1-G,  MPI_ESM_1-
2_HAM,  and  NorESM2-LM  shows  weaker  correlations,
with a correlation coefficient R of 0.53, 0.63, and 0.45, respec-
tively  (Figs.  11d–f).  Specifically,  MPI_ESM_1-2_HAM
tends to simulate smaller COD than calculated COD. Such a
discrepancy can be explained by the “reduction factor” intro-
duced in the radiation scheme of the MPI model (Mauritsen
et al., 2019). Its purpose is to account for the cloud hetero-

 

 

Fig.  11. Scatter  density  plots  of  COD calculated offline  by LWP and re versus  COD taken directly  from model  output  or
satellite product.
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genicity within a grid cell, but it is poorly constrained. The
disagreement between calculated and online simulated COD
may stem from the re choice in the calculation based on the
model output, as mentioned in section 2.

 4.3.    Plausible influence from aerosols

As a possible source of bias contributing to the modeled
cloud radiative effect and physical properties in the CMIP6
models over the SO, aerosol fields in the CMIP6 models are
evaluated  with  satellite  products.  Here,  we focus  on  AOD,
which is output by all models. Among the five CMIP6 mod-
els,  the  GISS  model  is  an  outlier,  as  its  AOD  values  are
about six times the MODIS observations. The other four mod-
els only differ from MODIS by 0.04 (Figs. 12a and b). How-
ever, the spatial correlations of AOD between the other four
CMIP6 models and MODIS are rather poor, with coefficients
smaller than 0.2. It implies the models have difficulty in pre-
dicting the sources of aerosols of the SO and related transport
processes.  Interestingly,  even with the largely biased AOD
magnitude,  the  GISS  model  shows  good  agreement  with
MODIS on the spatial  pattern of AOD (Fig. 12c),  showing
much larger  AOD in the Atlantic  and Indian oceans of  the
SO than in the Pacific Ocean. The high AOD over the southern
Pacific  near  150°W  is  also  captured  by  the  GISS  model.
Note that the satellite-retrieved AOD is also subject to large
uncertainty over the SO, as the highly frequent clouds make
it  difficult  for  the  instruments  to  distinguish  aerosol  from
cloud.  Overall,  a  poor  ability  of  aerosol  simulation  in  the
CMIP6 models is identified, and the biases can be propagated
to simulating cloud physical properties over the SO.

The  relationships  between re and  AOD  from  MODIS
and the five individual CMIP6 models are shown in Fig. 13.
From Fig. 13a, the satellite-derived re is dominated by cloud
droplet  radii  between  13–15  μm,  with  AOD  ranging  from

0.04  to  0.19.  The  correlation  between  MODIS  AOD  and
MODIS re is  0.05,  indicating  that  the  signal  of
aerosol–cloud interaction is not strong in this long-time aver-
aged spatial  pattern of re over  the SO, and there should be
some other more relevant factors. Three models predict a posi-
tive correlation between AOD and re,  while NorESM2-LM
and GISS-E2-1-G simulate a negative correlation (Figs. 13d
and e). The weak relationship in the observation and diverse
relationships in the model simulations reveal that it is not a
feasible way to identify aerosol–cloud interactions by simply
correlating AOD with cloud properties through their spatial
patterns.

 5.    Conclusion and discussions

Global  climate  models  (GCMs)  have  been  widely
reported to exhibit too much absorbed solar radiation (ASR)
over the Southern Hemisphere, especially over the Southern
Ocean (SO), with a mean bias more than 30 W m–2. Such a
bias  further  leads  to  substantial  uncertainty  in  simulating
atmospheric  circulations  and  storm  activities  in  GCMs.
Using  CERES  satellite  observations  as  the  benchmark,  we
show  that  the  bias  of  ASR  over  the  SO  simulated  in  the
CMIP6 models is reduced (within the range of ±10 W m–2)
compared to the previous CMIP models. Over a large fraction
of the SO, even an underestimation of ASR occurs. To under-
stand the improvement of ASR simulations from CMIP3 to
CMIP6, this study evaluates the performances of cloud charac-
teristics in the five climate models (CESM2, GISS-E2-1-G,
MPI-ESM-1-2-HAM, NorESM2-LM,  and  UKESM1-0-LL)
participating  in  CMIP6.  We  use  10-year  MODIS  and
CERES satellite observations to evaluate the cloud radiative
effect and cloud physical properties in those CMIP6 models
over the SO. The key findings are summarized as follows:

 

 

Fig. 12. Spatial distribution of multiyear mean aerosol optical depth (AOD) over the SO from CMIP6 models and MODIS
(a–c).  Taylor  Diagram of  multiyear  AOD spatial  average  of  CMIP6  to  MODIS  (d).  The  axis  is  the  standard  deviation  of
CMIP6 simulated AOD and MODIS AOD. The RMSE of difference between CMIP6 and MODIS is represented as green
dotted line. The arc refers the correlation coefficient between the four CMIP6 models and observation.
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a)  The  ASR  simulations  in  the  CMIP6  models  have
been largely improved since CMIP3, and the simulations of
cloud radiative effect in the five CMIP6 models match well
with satellite observations. Especially for SW CRE, the corre-
lations between the CMIP6 models and CERES are close to
0.9. Due to the significant cloud cooling effect over the SO,
the net CRE is dominated by SW CRE. Overall, among the
five CMIP6 models, CESM2 and UKESM1-0-LL exhibit bet-
ter performances in simulating the regional radiation balance
and components.

b) Compared to MODIS, the CMIP6 models have similar
spatial  patterns  of  CF  but  with  underestimated  magnitudes
over  the  SO.  Similar  with  the  CRE  comparisons,  CESM2
and  UKESM1-0-LL  also  have  better  correlations  with
MODIS CF than the other  three CMIP6 models.  However,
there are noticeable biases of LCF between the CMIP6 models
and MODIS observation, with an overestimation at lower lati-
tudes  and  underestimation  at  higher-latitude  areas.  More-
over,  the  discrepancies  of  cloud physical  properties  (LWP,
COD,  and re)  between  the  CMIP6  models  and  MODIS
appear even larger. The CMIP6 models fail to capture the spa-
tial characters of cloud LWP and COD. Also, the magnitudes
of  LWP  and  COD  simulated  in  certain  CMIP6  models
depart far away from the MODIS observations. Those identi-
fied  biases  are  all  larger  than  the  estimated  uncertainty  in
the satellite products.

c)  When  comparing  the  spatial  relationships  between
SW CRE and six cloud properties, we find that the simulated
SW CRE in the CMIP6 models over the SO is too sensitive

to the LWP and COD, while the observations show the SW
CRE is mainly controlled by CF and LCF. An error estimation
for CRE reveals that there are compensating errors in the mod-
eled CF and LWP, and the cancellation of those errors result
in smaller net error in CRE.

d) The simulated COD in CESM2 and UKESM1-0-LL
are well correlated with the calculated COD based on LWP
and re. It is important to note that these two models also out-
perform the rest in the comparison of cloud radiative effect.
It implies that the inner relationship among the physical prop-
erties  in  each  CMIP6  model  can  impact  the  simulation  of
cloud radiative properties.

e) Detailed analyses to explain the biases of cloud physi-
cal properties between satellite observation and the CMIP6
models  are  performed in  this  study.  Compared  to  MODIS,
the AOD is overestimated in the CMIP6 models, with lower
correlation.  The  inconsistency  of  AOD  simulated  in  the
CMIP6  models  can  be  responsible  for  the  weaker  perfor-
mance of simulating cloud physical properties over the SO.
Especially for GISS-E2-1-G, the magnitude of AOD is way
too  large,  which  could  be  another  uncertainty  source  for
cloud  simulations  over  the  SO.  However,  in  both  satellite
observation and the five CMIP6 models, there are no strong
relationships between the re and AOD over the SO.

Data  availability.     All  the  CMIP6  model  outputs  used  for
this research can be downloaded from website at https://esgf-node.
llnl.gov/search/cmip6/.  The  CERES  observations  used  in  this
study  were  obtained  from  the  NASA  Langley  Research  Center

 

 

Fig. 13. Scatter plots of the relations between re and AOD from MODIS and the CMIP6 models.
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CERES  ordering  tool  at https://ceres.larc.nasa.gov/data/ (Loeb  et
al., 2018; Kato et al., 2018). The MODIS satellite retrieval products
were obtained from L1 and Atmosphere Archive and Distribution
System  (LAADS)  MODIS  Science  Team,  datasets  can  be  down-
loaded  at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/
61/MOD08_M3/ (MODIS Atmosphere L3 Gridded Product Algo-
rithm Theoretical Basis Document (ATBD) & Users Guide, 2019).
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