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ABSTRACT

To understand the potential  impacts of projected climate change on the vulnerable agriculture in Central Asia (CA),
six  agroclimatic  indicators  are  calculated  based  on  the  9-km-resolution  dynamical  downscaled  results  of  three  different
global climate models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and their changes in the near-
term future  (2031–50)  are  assessed  relative  to  the  reference  period  (1986–2005).  The  quantile  mapping  (QM) method  is
applied to correct the model data before calculating the indicators. Results show the QM method largely reduces the biases
in all the indicators. Growing season length (GSL, day), summer days (SU, day), warm spell duration index (WSDI, day),
and  tropical  nights  (TR,  day)  are  projected  to  significantly  increase  over  CA,  and  frost  days  (FD,  day)  are  projected  to
decrease.  However,  changes  in  biologically  effective  degree  days  (BEDD,  °C)  are  spatially  heterogeneous.  The  high-
resolution projection dataset of agroclimatic indicators over CA can serve as a scientific basis for assessing the future risks
to local agriculture from climate change and will be beneficial in planning adaption and mitigation actions for food security
in this region.
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1.    Introduction

Central Asia (referred to as CA, Fig. 1), which consists
of five countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turk-
menistan, and Uzbekistan), is highly agrarian, with 60% of

its population living in rural areas and agriculture accounting
for  over  45%  of  total  employment  and  nearly  25%  of  the
Gross Domestic Production (Babu and Djalalov, 2006). Agri-
cultural land in this region is mostly desert and mountainous
pastures.  Arable  land  suitable  for  crop  production  is  about
20%  of  the  agricultural  land  (and  as  low  as  4%  in  Turk-
menistan).  The  main  crops  produced  in  CA are  cotton  and
wheat.  Kazakhstan  is  one  of  the  world’s  major  wheat  and
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Database profile

Database title High-resolution projection dataset of agroclimatic indicators over Central Asia (1986–2005 and 2031–50)
Time range Reference (historical) period: 1986–2005; Future period: 2031–50.
Geographical scope Central Asia (36°–94°E, 30°–58°N)
Data format netCDF4
Data volume 132 MB
Data service system National Tibetan Plateau Data Center (https://doi.org/10.11888/Atmos.tpdc.271934)
Sources of funding The Strategic Priority Research Program of Chinese Academy of Sciences (Grand No. XDA20020201);

The General Project of the National Natural Science Foundation of China (Grand No. 41875134);
The TianHe Qingsuo Project – special fund project in the field of climate, meteorology and ocean.

Database composition 1. The dataset contains six agroclimatic indicators (GSL, BEDD, FD, SU, WSDI, and TR);
2. Files for each indicator are grouped in a directory;
3. The values for each simulation period (1986–2005 and 2031–50) and each experiment (WRF_MPI_COR,

WRF_CCSM_COR, and WRF_Had_COR) are stored in a file.
4. The names of the files follow the order: [experiment_name].[indicator_name].[period].nc
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flour exporters. Uzbekistan is the sixth largest producer and
the second largest exporter of cotton in the world. Semi-arid
to arid climates prevail in the lowland areas of CA. Thus, in
the central and western parts of CA, agriculture is only possi-
ble with irrigation. Major areas under rainfed agriculture are
only found in the very north of Kazakhstan (Sommer et al.,
2013).  Every  year,  natural  disasters  such  as  droughts  and
extreme  temperatures  (cold  and  heat  waves)  bring  risks  to
agricultural production in this region (Thurman, 2011).

As  one  of  the  hot  spots  of  climate  change  (Giorgi,
2006),  CA  has  experienced  a  significant  warming  (0.16°C
(10 yr)−1)  during the past century (1901–2003, Chen et  al.,
2009),  with  an  accelerating  warming  rate  (0.36°C–0.42°C
per  decade)  in  the  past  ~30  years  (1979–2011,  Hu  et  al.,
2014).  Meanwhile,  its  annual  precipitation  has  increased
(Chen et al., 2011; Hu et al., 2017). The warming and wetting
trend  is  very  likely  to  be  ongoing  in  the  future  with  the
increase  of  heatwave  and  drought  events  (Mannig  et  al.,
2013; Huang  et  al.,  2014; Ozturk  et  al.,  2017; Peng  et  al.,
2019; Jiang et al., 2020b; Zhu et al., 2020; Qiu et al., 2022).

Climate change may pose challenges to the vulnerable
agriculture  in  CA.  Sommer  et  al.  (2013)  assessed  the
impacts of projected climate change on wheat in this region
and  found  that  the  projected  increase  in  temperature  is  the
most  important  factor  leading  to  earlier  and  faster  crop
growth  and  higher  biomass  accumulation  and  yield.  Con-
versely, the projected increase in precipitation is expected to
be  insignificant  because  of  the  increasing  evaporative
demand of the crops. In addition, higher temperatures were
found to bring an increased risk of flower sterility and thus
lead  to  less  yields.  Mirzabaev  (2018)  suggested  adaptive
actions should be taken to strengthen the resilience of agricul-
ture producers in CA to increased weather variability.

Due to the lack of high-resolution climate data and less

attention  from  the  community  relative  to  its  surrounding
areas,  like  East  Asia,  South  Asia,  and  the  Mediterranean
(Wang et al., 2009; Piao et al., 2010; Iglesias et al., 2011; Ban-
dara and Cai, 2014; Cramer et al., 2018; Aryal et al., 2020;
Huang  et  al.,  2020),  studies  on  the  impacts  of  climate
change  on  agriculture  in  CA are  lacking,  especially  on  the
potential impacts of projected climate change under warming
scenarios in the near-term future.

Recently, we carried out a study that involves the dynami-
cal downscaling of multiple global climate models (GCMs)
for the CA region with an unprecedented horizontal resolution
of 9 km (Qiu et al., 2022). The reference and future periods
of the simulations are 1986–2005 and 2031–50, respectively.
In this study, the model data from the downscaled results is
applied  to  calculate  some  key  agroclimatic  indicators
(referred  to  as  AIs),  which  are  proxies  for  the  effect  of
weather  and  climate  on  specific  agricultural  activities
(Arnell  and  Freeman,  2021)  and  both  practical  and  under-
standable to farmers and policy makers (Trnka et al., 2011).
As absolute threshold-based temperature indices are largely
sensitive to systematic model biases, statistical bias correction
(adjustment) methods are suggested to be used to correct the
raw model outputs (Dosio, 2016: Iturbide et al., 2022). Here,
the  quantile  mapping  method  (Themeßl  et  al.,  2011)  is
applied to correct the simulated temperature before calculat-
ing the AIs relating to absolute temperature thresholds.

The aim of this paper is to describe the high-resolution
projection dataset of AIs over CA and investigate projected
changes  in  these  indicators  in  the  near-term  future.  This
study can serve as a scientific basis for assessing the future
risks  to  the  local  agriculture  from climate  change  and  will
be beneficial in planning adaption and mitigation actions for
food security in this region. The remainder of this paper is
organized as follows: section 2 describes the data and meth-
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Fig. 1. Study area and its surroundings. The main producing area of wheat (cotton) in
Central Asia is colored by green (pink).
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ods. Projected changes in the indicators are presented in sec-
tion 3, as well as the evaluation of the QM method. Section
4 provides usage notes. Discussion and conclusion are in sec-
tion 5. 

2.    Data and method
 

2.1.    The model data

The AIs assessed in this study are calculated based on
daily  mean/maximum/minimum  temperature  (TG/TX/TN)
from the 9-km-resolution dynamical downscaling of three dif-
ferent GCMs in CA with a regional climate model (RCM),
the Weather Research and Forecasting (WRF) model (Ska-
marock  et  al.,  2008).  The  three  GCMs  are  MPI-ESM-MR
(referred to as  MPI),  CCSM4 (CCSM),  and HadGEM2-ES
(Had) from Phase 5 of the Coupled Model Intercomparison
Project (CMIP5). Before the downscaling, the bias-correction
technique developed by Bruyère et al. (2014) is utilized to cor-
rect the climatology of the GCMs and meanwhile allow syn-
optic and climate variability to change. The WRF simulations
are  labeled  as  MPI_WRF_COR,  CCSM_WRF_COR,  and
Had_WRF_COR (“COR”  means  using  the  bias-correction
technique),  respectively.  The  reference-period  simulations
are  from  1986  to  2005,  and  the  future  runs  are  between
2031  and  2050  under  the  moderate  emission  scenario
RCP 4.5.

The simulated TG/TX/TN over CA has been extensively
evaluated,  and  basic  features  of  the  projected  temperature
changes  have been investigated (Qiu et  al.,  2022a, 2022b).
Results show that the RCM simulations driven by three differ-
ent  GCMs  can  well  capture  the  local  temperature  on  time
scales  from  daily  to  annual  in  CA  during  the  reference
period.  For  instance,  the  spatial  correlation  coefficients
(SCCs) of the simulated seasonal and annual mean TG/TX/
TN over CA are all above 0.95 against the observations, and
their root mean square errors (RMSEs) are all below 2.50°C.
The  three  WRF  simulations  indicate  that  annual  mean  TG
averaged over CA will increase by 1.6°C–2.0°C in the near-
term  future  (2031–50)  relative  to  the  reference  period
(1986–2005). Stronger warming is detected north of ~45°N

in CA from autumn to spring. Enhanced warming is projected
in  many  mountainous  regions  (like  the  Tibetan  Plateau/
Himalayas  and  Alps)  around  the  world  (Rangwala  et  al.,
2013; Mountain  Research Initiative  EDW Working Group,
2015; Palazzi et al., 2019). However, the projected warming
in the high-elevation areas of CA is not stronger than that in
the plain areas. 

2.2.    Agroclimatic indicators

Specific  crops  grow  well  in  specific  climate  regions,
and the success of a crop can be related to climate factors (e.
g.,  frequency  of  frost  damage,  length  of  growing  season,
heat  stress)  as  well  as  physical  factors  (e.g.,  soil,  slope,
aspect) and farm management (e.g., irrigation, fertilization)
(Petr, 1991; Rijks, 1994; Holden and Brereton, 2004). Under-
standing  the  complex  interactions  between  crops  and
regional  climate  allows  for  better  management  decisions
(Trnka et al., 2011). AIs are widely used to convey climate
variability and change, which are meaningful to the agricul-
tural  sector.  For  instance,  the  Global  Agriculture  Sectoral
Information System project developed by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) has pro-
duced  contemporary  and  future  AIs  for  climate  change
impact studies for global agriculture (SIS, 2019).

Here,  we chose  six  of  the  ECMWF indicators  that  are
most meaningful to assessing the potential impact of projected
climate change on the agriculture in CA. Among them, grow-
ing season length (GSL,  day)  refers  to  the  number  of  days
when plant growth takes place, biologically effective degree
days  (BEDD,  °C)  provides  valuable  information  on  the
local  heat  summation,  frost  days  (FD,  day)  indicates  frost
damage,  summer  days  (SU,  day)  and  warm  spell  duration
index (WSDI, day) indicate heat stress and heatwaves,  and
tropical nights (TR, day) gives information about the occur-
rence of various pests. Table 1 shows the detailed definitions
of  these  AIs,  which  are  calculated  using  TG/TX/TN  from
the  WRF  simulations  (MPI_WRF_COR,  CCSM_WRF_
COR,  and  Had_WRF_COR).  Note  that  GSL  is  calculated
with the model data throughout the year, and the other indica-
tors are calculated for the growing season (April to October,
Gessner et al., 2013).

Table 1.   Information about the agroclimatic indicators used in the study.

Name Unit Definition

Growing season length
(GSL)

d Number of days between the first occurrence after 1 January of at least six consecutive days with TG
>5°C and the first occurrence after 1 July of at least six consecutive days with TG < 5°C. This indicator
refers to the number of days when plant growth takes place.

Biologically effective
degree days (BEDD)

°C Sum of TG above 10 °C and less than 30 °C. This indicator provides valuable information on the local
heat summation.

Frost days (FD) d Number of days when TN < 0°C.This indicator provides information on frost damage.
Summer days (SU) d Number of days when TX > 25°C. This indicator provides an indication of the occurrence of heat

stress.
Warm spell duration
index (WSDI)

d Number of days with at least six consecutive days when TX > TX90th, where TX90th is the calendar
day 90th percentile centered on a five-day window for the base period 1986–2005. This indicator
provides an indication of the occurrence of heat stress.

Tropical nights (TR) d Number of days when TN > 20°C. This indicator provides an indication of occurrence of various
pests.
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The WRF simulations show that projected changes in pre-
cipitation over few areas are significant  in CA in the near-
term future  (Qiu et  al.,  2022a, 2022b).  We found that  pro-
jected changes in AIs calculated based on precipitation (e.g.,
wet  days,  heavy  precipitation  days,  and  maximum number
of  consecutive  wet/dry  days)  are  also  insignificant  over
most  of  CA.  Therefore,  only  the  results  of  the  AIs  which
relate to temperature are presented in this paper. 

2.3.    Quantile mapping for postprocessing the model data

Our  recent  study  (Qiu  et  al.,  2022b)  found  that  the
WRF simulations have systematic biases in simulating the sur-
face air temperature. For instance, the annual mean TG over
the  very  northern  part  of  Kazakhstan  and  the  Pamirs
exhibits  a  cold  bias,  and  that  over  other  areas  generally
exhibits  a  warm  bias.  All  the  chosen  AIs  except  WSDI
relate to absolute temperature thresholds (see their definitions
in Table  1)  and  are  particularly  sensitive  to  the  systematic
biases in the model data. The biases in the raw model outputs
can propagate down to the AIs, which may add uncertainties
in the projected changes in them. Thus, the QM method is sep-
arately used to postprocess the simulated TG, TX, and TN.
First, a transfer function depending on the quantile distribu-
tion is established by matching the model data with observa-
tions  during  the  reference  period  (1986–2005).  Then,  the
transfer function is applied to correct the model data in the
future period (2031–50). The equations are as below: 

Fm,c
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xm,c
)
= Fo,c

(
xo,c
)
, (1)

 

xbc = F−1
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[
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(
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c p x
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where  the  model  data  and  observations  are  denoted  by 
and , respectively, calibration period and projection (future)
period are denoted by  and , respectively,  is the variable,

 and  are the empirical cumulative distribution function
( ) and its  inverse,  respectively,  and  is  the bias-cor-
rected  model  data.  Numerous  studies  have  found  that  the
QM method can effectively remove model biases, not only
for  the  mean  and  interannual  variability,  but  also  for
extreme events (Ashfaq et al., 2010; Piani et al., 2010; Gud-
mundsson et al., 2012; Teutschbein and Seibert, 2012; Tong
et al., 2021).

The land component of the fifth generation of European
reanalysis (referred to as ERA5-Land, Hersbach et al., 2020)
with  ~9-km grid  spacing  is  used  as  “observations”  during
the  postprocessing.  Prior  to  the  bias  correction,  the  model
data is interpolated to the grid of the observations with the
nearest  neighbor  method.  There  are  two  reasons  why  we
chose ERA5-Land as observations. First, the traditional obser-
vations  that  are  available  for  the  CA region,  like  CRU TS
v4  (version  4  of  the  Climatic  Research  Unit  gridded  Time
Series)  and  CPC  (Climate  Prediction  Center)  Global  daily
temperature, have coarser resolution (0.5° × 0.5°) relative to
the  9-km-resolution  downscaled  results.  If  we  use  these
coarse-resolution gridded observations, the model data will

be interpolated to their grids and the small-scale climate char-
acteristics  brought  by  the  dynamical  downscaling  will  be
largely erased. Second, ERA5-Land is found to have good per-
formance in describing the global land surface temperature
with  respect  to  the  MODIS (Moderate  Resolution  Imaging
Spectroradiometer)  data  (Hersbach  et  al.,  2020)  and  has
been applied for studies on many sectors in CA (Xue et al.,
2019; Wang et al., 2020; Jiang et al., 2021; Lu et al., 2021). 

2.4.    Main producing areas of wheat and cotton

As  introduced  above,  wheat  and  cotton  are  the  main
crops in CA. Hence,  projected changes in the AIs over the
main  producing  areas  of  these  two  crops  are  particularly
assessed.  Main  producing  areas  of  wheat  and  cotton  are
detected based on the Spatial  Production Allocation Model
(SPAM)  2010  v2.0  Global  data  (International  Food  Policy
Research Institute, 2019), which contains the physical area,
harvest  area,  production,  and  yield  of  42  crops  (including
wheat  and  cotton)  with  10  ×  10-km  grid-cell  resolution.
According to the condition that the main crop of a grid cell
is defined as the crop whose harvest area is the largest and
accounts for at least 5% of the grid cell area, the main produc-
ing area of wheat is detected to be located in northern Kaza-
khstan, with an area of ~3.8 × 105 km2, and that of cotton is
detected  to  be  along  the  Amu Darya  and  Syr  Darya  rivers
and in Uzbekistan and Turkmenistan, with an area of ~9.4 ×
104 km2 (Fig.  1).  Other  thresholds  (3%  and  7%)  are  also
tested,  and the  results  are  similar  to  those with  a  threshold
of 5%. 

3.    Results
 

3.1.    Evaluation of the quantile mapping method

To  evaluate  the  QM  method,  the  reference  period
(1986–2005)  of  the  model  data  is  divided  into  two  parts.
The first half (1986–95) is set as the calibration period, during
which the transfer function is established. The transfer func-
tion is then applied to correct the model data in 1996–2005.
The  AIs  calculated  based  on  the  raw  and  bias-corrected
model  data  (Raw-AIs  and  Cor-AIs)  during  1996–2005  are
compared  with  those  calculated  based  on  the  observations
(Obs-AIs) to show the performance of the QM method.

Figure 2 presents the time-averaged Obs-AIs (the left col-
umn) over CA during 1996–2005 and the biases of the time-
averaged  Raw-AIs  (the  middle  column)  and  Cor-AIs  (the
right column). Because the spatial patterns of the biases are
very  consistent  between  the  three  WRF  simulations
(MPI_WRF_COR,  CCSM_WRF_COR,  and  Had_WRF_
COR), only the results of WRF_CCSM_COR are shown. It
is seen that the application of the QM method caused drastic
reductions in bias for all the indicators over CA, especially
for  BEDD and  SU (Fig.  2e vs Fig.  2f, Fig.  2k vs Fig.  2l).
The  RMSEs  of  all  the  indicators  are  generally  reduced  by
more than half. For instance, the ensemble mean of RMSEs
of  BEDD  decreases  from  289.86  °C  per  year  to  96.08  °C
per year (Fig. 3d), and that of SU decreases from 21.01 days
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per  year  to  4.67  days  per  year  (Fig.  3h).  The  Raw-AIs  are
close  to  the  Obs-AIs  in  the  spatial  distribution,  with  the
mean values of SCCs generally above 0.90 (e.g., Figs. 3a, c,
and e). After using the bias correction, all the SCCs increase
to  near  1.00  (e.g., Fig.  3i),  which  suggests  that  the  QM
method  not  only  reduces  the  biases  of  the  AIs  but  also

brings improvements in describing their spatial patterns.
We also evaluated WSDI, which relates to relative (not

absolute)  temperature  threshold  (see  its  definition  in
Table 1) and is calculated based on the raw model data. We
found that it is difficult for the regional model to accurately
simulate  the  spatial  distribution  of  WSDI  in  CA,  with  the

 

 

Fig.  2. The mean agroclimatic indicators (except WSDI) calculated based on ERA5-Land (the left  column) during
1996–2005,  the  bias  of  the  mean  agroclimatic  indicators  calculated  based  on  the  model  data  before  (the  middle
column)  and  after  (the  right  column)  bias  correction  (BC).  The  model  data  is  from  the  simulation
WRF_CCSM_COR.
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Fig. 3. Spatial correlation coefficients (SCCs) and root-mean-square errors (RMSEs) of the mean
agroclimatic indicators (except WSDI) calculated based on the model data before and after bias
correction (BC) in Central Asia during 1996–2005. The circles are the results of each simulation
(WRF_MPI_COR, WRF_CCSM_COR, and WRF_Had_COR), and the bars are the mean values.
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SCCs in the range of 0.3–0.4. However, the biases of WSDI
are  minor,  with  the  RMSEs  as  low  as  about  five  days  per
year. To sum up, the QM method is excellent in improving
the  accuracy  of  the  simulated  AIs,  which  provides  a  good
base for assessing the projected changes in the agroclimatic
indicators in CA. 

3.2.    Projected changes in the agroclimatic indicators

Projected  changes  in  the  Cor-AIs  during  the  future
period  (2031–50)  relative  to  the  reference  period
(1986–2005)  are  demonstrated  in  this  section.  Besides  the
results of each WRF simulation, the ensemble mean is also
illustrated. Figures 4 and 5 show that GSL, SU, WSDI, and
TR  are  projected  to  significantly  increase  over  CA  in  the
near-term  future,  while  FD  is  very  likely  to  decrease  over
the entire region, especially in the high-elevation areas (e.g.,
the  Tien  Shan  and  Pamirs).  Averaged  over  CA,  GSL
changes from about 201–202 days per year (1986–2005) to
around 213–217 days per year (2031–50, Table 2). The aver-

age number of SU (TR) increases from about 88 (35) days
per  year  to  around  101–108  (48–54)  days  per  year.  More-
over,  the  simulated WSDIs  are  1.8–2.4  times  longer  in  the
coming decades. Regional averages of the Cor-AIs over the
climate  subregions  [northern  CA  (NCA),  middle  CA
(MCA),  southern  CA  (SCA),  and  the  mountainous  areas
(MT)]  are  also  summarized  in Table  2.  See  the  scopes  of
these subregions in Fig. 1c of Qiu et al. (2022).

Figure 4 shows that  BEDD increases (>100°C yr−1)  in
northern  CA  and  the  mountainous  areas  and  decreases
(>300°C yr−1) in the southern and middle parts of the plain
areas. The reason why projected changes in BEDD are spa-
tially heterogeneous is as follows: the northern part and moun-
tain ranges of CA have relatively cold climates, and higher
temperature in the future will lead to more days whose TG
exceeds the lower limit (10°C) of BEDD and thus increases
BEDD in  these  areas;  in  contrast,  the  southern  and  middle
parts of the plain areas have relatively hot climates, and the
local  warming  will  cause  more  days  whose  TG  goes  over

 

 

Fig. 4. Projected changes (2031–50 vs. 1986–2005) in GSL, BEDD, and FD calculated based on the bias-corrected
model  data  from  three  WRF  simulations  (WRF_MPI_COR,  WRF_CCSM_COR,  and  WRF_Had_COR).  The
ensemble means of the changes are also shown. The slashed areas in subplots a–c, e–g, and i–k indicate where the
changes  passed the  significance test  at  the  95% confidence level  using the  two-tailed Student’s t-test.  The slashed
areas in subplots d, h, and l indicate where the signals (+/−) of the changes in the WRF simulations are consistent.
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the upper limit (30°C) of BEDD and thus reduces BEDD in
these areas.

In  particular,  projected  changes  in  the  Cor-AIs  over
main producing areas of wheat and cotton are assessed. The
ensemble mean of the results of the simulations shows that
GSL, BEDD, SU, WSDI, and TR over the main producing
area of wheat will increase by 8.7%, 15.6%, 49.8%, 112.1%,
and  219.6%,  respectively,  and  FD  over  this  area  will
decrease  by  40.7% (Fig.  6).  Over  the  main  producing  area
of cotton, GSL, SU, WSDI, and TR will increase by 3.9%,
6.5%,  91.0%,  and  32.0%,  respectively,  and  BEDD  will
decrease by 10.4%. There are few frost days in this area during
the growing season both in the reference and future period.
Prolonged  growing  seasons,  more  local  heat  summation,
and  less  frost  damage  over  the  main  producing  area  of
wheat  may  increase  crop  yields.  However,  more  summer
days, warm spells, and tropical nights over the main produc-
ing areas of both wheat and cotton will increase the risk of
heat  stress  and  the  occurrence  of  pests,  which  may  cause
less crop yields.
 

4.    Usage notes

This  dataset  is  hosted  at  the  National  Tibetan  Plateau
Data Center (tpdc.ac.cn/en/) (Qiu et al., 2022). The files are
stored  in  netCDF4 format  and  compiled  using  the  Climate
and Forecast (CF) conventions. It contains six agroclimatic
indicators  calculated  based  on  the  TG/TX/TN  from  three
WRF  simulations  (MPI_WRF_COR,  CCSM_WRF_COR,
and Had_WRF_COR) for a spatial domain covering the CA
region  and  its  surrounding  areas.  The  spatial  resolution  is
0.1° × 0.1°. The dataset covers two continuous 20-year peri-
ods, 1986–2005 and 2031–50. The names of the files follow
the  order:  [experiment_name].[variable_name].[period].
nc. For example, the file name, WRF_CCSM_COR.WSDI.
2031-2050.nc, represents the WSDI of the future period calcu-
lated  based  on  the  model  data  from  the  experiment
WRF_CCSM_COR.

The  original  simulated  TG/TX/TN  is  available  at
https://doi.org/10.11888/Meteoro.tpdc.271759 (Qiu  et  al.,
2022b).  The  bias  correction  with  the  quantile  mapping
method is based on the Python module bias_correction 0.4,
whose  description,  installation,  and  usage  are  explained  at

 

 

Fig. 5. Same as Fig.4, but for SU, WSDI, and TR.
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https://pypi.org/project/bias-correction/.  The  Climate  Data
Operators (CDO, https://code.mpimet.mpg.de/projects/cdo),
Python  modules  (like  netCDF4,  Xarray,  and  Numpy),  and
NCAR  Command  Languages  (NCL, https://www.ncl.ucar.
edu/)  are  recommended  to  do  operations  on  the  netCDF
files. 

5.    Discussion and conclusion

A high-resolution projection dataset of agroclimatic indi-
cators  (AIs)  over  Central  Asia  (CA)  is  derived  based  on
daily  mean/maximum/minimum  temperature  (TG/TX/TN)
from  the  9-km-resolution  dynamically  downscaled  results
of three different GCMs. The AIs used are growing season
length (GSL, d), biologically effective degree days (BEDD, °
C),  frost  days  (FD,  day),  summer  days  (SU,  d),  warming
spell  duration index (WSDI,  day),  and tropical  nights  (TR,
day).  The  reference  and  future  periods  are  1986–2005  and
2031–50, respectively.

The quantile mapping (QM) method is applied to correct
the  TG/TX/TN  from  the  downscaled  results,  and  then  the
AIs  relating  to  absolute  temperature  thresholds  are  calcu-
lated. Comparison between AIs calculated based on the raw

and bias-corrected  model  data  (Raw-AIs  and Cor-AIs)  and
those calculated based on the observations (Obs-AIs) shows
that the QM method largely reduced the biases in the Raw-
AIs.  Projected  changes  in  the  Cor-AIs  during  the  future
period  (2031–50)  relative  to  the  reference  period
(1986–2005)  are  assessed.  Results  show  that  GSL,  SU,
WSDI, and TR will significantly increase over CA and FD
will decrease. However, changes in BEDD are spatially het-
erogeneous.

Model data from Phase 6 of the Coupled Model Intercom-
parison  Project  (CMIP6)  has  been  successively  released
since 2019. Some studies have found that the CMIP6 models
bring  improvements  in  simulating  the  climate  in  some
regions relative to those of CMIP5 (Jiang et al., 2020a; Xin
et al., 2020; Dong and Dong, 2021). The dynamical downscal-
ing in  this  study began in early 2019,  and at  that  point  the
available  model  data  from  CMIP6  that  could  be  used  to
drive the WRF model was rare. Thus, we chose the CMIP5
models to do the downscaling. The CMIP6 models will be pri-
oritized for the studies in the next stage.

This study assessed projected changes in some key agro-
climatic  indicators  over  CA,  its  climate  subregions,  and
main producing areas of wheat and cotton, to present some

Table  2.   Regional  averages  of  the  agroclimatic  indicators  calculated  based  on  the  bias-corrected  model  data  from  three  WRF
simulations.  The  ensemble  mean  (first  number)  as  well  as  the  minimum  and  maximum  ensemble  member  (in  parentheses)  is  listed.
Regional averages of the indicators over the climate subregions in CA are also summarized. They are northern CA (NCA), middle CA
(MCA), southern CA (SCA), and the mountainous areas (MT). Their scopes are presented in Fig. 1c of Qiu et al. (2022).

Region

CA NCA MCA SCA MT

GSL (d)
1986–2005 201.8

(201.1/202.4)
173.4

(172.2/174.3)
198.6

(198.1/199.2)
265.6

(265.0/266.8)
98.2

(97.4/99.9)
2031–50 215.1

(212.7/216.6)
188.7

(186.0/190.2)
209.9

(207.6/211.6)
278.2

(275.3/280.1)
119.4

(117.2/121.5)
BEDD (°C)
1986–2005 2840.1

(2833.9/2844.0)
2498.0

(2491.6/2502.2)
3177.8

(3169.4/3183.6)
3131.9

(3128.1/3134.5)
920.3

(916.1/925.2)
2031–50 2865.6

(2850.0/2882.5)
2877.8

(2804.5/2963.1)
3233.6

(3217.5/3242.8)
2721.5

(2647.1/2787.0)
1145.7

(1102.6/11214.9)
FD (d)

1986–2005 13.9
(13.5/14.5)

20.1
(19.5/21.2)

7.0
(6.4/7.6)

0.6
(0.6/0.7)

78.3
(77.7/78.7)

2031–50 9.8
(9.1/10.1)

12.7
(11.8/13.3)

4.2
(3.7/4.6)

0.3
(0.3/0.4)

63.6
(61.1/65.5)

SU (d)
1986–2005 88.2

(88.0/88.4)
48.2

(48.1/48.2)
94.8

(94.6/94.9)
139.5

(139.0/140.1)
5.7

(5.6/5.7)
2031–2050 103.6

(101.1/107.9)
70.4

(65.3/78.7)
111.6

(109.9/114.8)
149.6

(147.4/153.1)
9.2

(8.4/10.7)
WSDI (d)

1986–2005 21.9
(21.6/22.5)

19.8
(17.4/21.9)

21.8
(21.4/22.0)

22.9
(22.1/23.7)

26.0
(25.9/26.3)

2031–50 44.7
(41.2/51.2)

44.1
(36.9/55.0)

44.0
(41.0/48.8)

46.0
(41.8/51.5)

46.3
(42.3/52.4)

TR (d)
1986–2005 34.8

(34.8/34.8)
4.2

(4.2/4.2)
31.8

(31.8/31.8)
79.4

(79.4/79.5)
0.1

(0.1/0.1)
2031–50 50.2

(48.0/54.2)
13.9

(10.7/18.6)
50.9

(48.5/55.5)
98.5

(96.3/101.9)
0.5

(0.3/0.9)
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preliminary  results  on  the  potential  impact  of  climate
change  on  the  local  agriculture.  Further  studies  with
dynamic agroecosystem models, such as crop yield models,
are recommended to make a more accurate assessment with
consideration of limiting crop production factors (e.g., CO2

fertilization, soil nutrients, and fertility) and viable adaptation
options (e.g., irrigation).
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Fig.  6. Areal  means  of  the  agroclimatic  indicators  over  the  main  producing  areas  of  wheat  and  cotton  during  the
reference (1986–2005) and future (2031–50) periods. The circles are the results of each simulation (WRF_MPI_COR,
WRF_CCSM_COR, and WRF_Had_COR), and the bars are the mean values. The digit s are the change ratio.
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