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ABSTRACT

An ensemble Kalman filter (EnKF) combined with the Advanced Research Weather Research and Forecasting model
(WRF) is cycled and evaluated for western North Pacific (WNP) typhoons of year 2016. Conventional in situ data, radiance
observations, and tropical cyclone (TC) minimum sea level pressure (SLP) are assimilated every 6 h using an 80-member
ensemble.  For  all  TC  categories,  the  6-h  ensemble  priors  from  the  WRF/EnKF  system  have  an  appropriate  amount  of
variance  for  TC  tracks  but  have  insufficient  variance  for  TC  intensity.  The  6-h  ensemble  priors  from  the  WRF/EnKF
system  tend  to  overestimate  the  intensity  for  weak  storms  but  underestimate  the  intensity  for  strong  storms.  The  5-d
deterministic forecasts launched from the ensemble mean analyses of WRF/EnKF are compared to the NCEP and ECMWF
operational control forecasts. Results show that the WRF/EnKF forecasts generally have larger track errors than the NCEP
and ECMWF forecasts for all TC categories because the regional simulation cannot represent the large-scale environment
better than the global simulation. The WRF/EnKF forecasts produce smaller intensity errors and biases than the NCEP and
ECMWF forecasts for typhoons, but the opposite is true for tropical storms and severe tropical storms. The 5-d ensemble
forecasts from the WRF/EnKF system for seven typhoon cases show appropriate variance for TC track and intensity with
short forecast lead times but have insufficient spread with long forecast lead times. The WRF/EnKF system provides better
ensemble forecasts and higher predictability for TC intensity than the NCEP and ECMWF ensemble forecasts.
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Article Highlights:

•  An  80-member  cycled  WRF/EnKF  with  6-h  data  assimilation  is  operated  and  evaluated  for  western  North  Pacific
typhoons of year 2016.

•  The  WRF/EnKF  system  has  an  appropriate  amount  of  variance  for  6-h  track  forecasts  and  better  typhoon  intensity
forecasts than global models.

•  The  WRF/EnKF system provides  better  ensemble  forecasts  and  higher  predictability  for  typhoon  intensity  than  global
models.

 

 
 

 1.    Introduction

Over  the  last  few  decades,  there  has  been  a  steady
decrease  in  tropical  cyclone (TC) track forecast  errors;  but
there  have  been  minimal  changes  in  TC  intensity  forecast
errors over the same period (e.g., Rogers et al., 2006; Rappa-

port et al., 2009). TC track and intensity forecasts from numer-
ical weather prediction models are limited by initial condition
errors that are associated with the large-scale environments
and  TC  structures,  as  well  as  model  errors  introduced  by
grid  resolution  and  physical  parameterization  schemes.
While TC motion is mostly controlled by the large-scale envi-
ronment, TC intensity depends on the large-scale kinematic
and thermodynamic  environment,  the  inner-core  dynamics,
and the lower boundary condition including the surface sea
temperature,  ocean  heat  content,  and  land  surface  (e.g.,
Wang and Wu, 2004).

One  feature  of  TCs  is  the  large  gradients  in  the  mass
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and wind fields, which are often difficult to solve due to rela-
tively  coarse  grid  resolutions  compared  to  the  scale  of  the
TCs. Therefore, several different techniques have been devel-
oped to relocate the storm to the observed position and con-
struct  initial  conditions  with  more  realistic  TC  structures.
One kind of technique splits the forecast field into basic and
disturbance fields and simply relocates the TC circulation to
the  observed  position,  then  obtains  the  updated  forecast
filed with a correct TC position (e.g., Liu et al., 2000; Hsiao
et al., 2010). Another kind of technique generates a more real-
istic TC initial structure by adding a TC-like vortex into the
analysis field through data assimilation schemes (e.g., Kuri-
hara et  al.,  1995; Zou and Xiao,  2000; Wang et  al.,  2008).
To avoid the interference between a bogus vortex and actual
observations, there are techniques that first implant a bogus
vortex and then assimilate the profile data into the bogus vor-
tex (e.g., Chou and Wu, 2008). The third kind of technique
is dynamical initialization that incorporates the three-dimen-
sional  initial  TC  structure  through  the  numerical  forecast
model (e.g., Kurihara et al., 1993; Cha and Wang, 2013; Hen-
dricks  et  al.,  2013; Liu  and  Tan,  2016).  These  techniques
are somewhat limited by their assumptions, so they may not
be optimal at all times.

Compared to the previously discussed TC initialization
methods,  advanced  data  assimilation  methods,  which  are
not  specialized  for  TC  initialization,  have  been  shown  to
make  great  impacts  on  TC  forecasts.  Among  the  widely
applied data assimilation methods, ensemble-based assimila-
tion approaches, such as the ensemble Kalman filter (EnKF;
Burgers  et  al.,  1998),  have  shown great  promise  for  atmo-
spheric data assimilation in both global (e.g., Whitaker et al.,
2008; Buehner  et  al.,  2010a, b; Houtekamer  et  al.,  2014)
and  regional  applications  (e.g., Dowell  et  al.,  2004; Tong
and Xue, 2005; Meng and Zhang 2008; Aksoy et al., 2009).
As  a  Monte  Carlo  approximation  to  the  Kalman  filter
(Kalman, 1960), the EnKF uses flow-dependent error statis-
tics  estimated from short-term ensemble forecasts  to  deter-
mine the weight given to observations relative to model fore-
casts and spread observation information to model state vari-
ables. The usage of flow-dependent error statistics should pro-
vide  more  effective  assimilation  of  observations  near  TCs,
and the set of ensemble analyses can naturally provide initial
conditions for TC ensemble forecasting.

Previous  work  has  shown  that  EnKF  assimilation  is
able  to  provide  dynamically  consistent  TC state  estimation
and improve TC track and intensity forecasts. Hamill et al.
(2011) initialized the National Centers for Environmental Pre-
diction  (NCEP)  Global  Forecasting  System  (GFS)  with
EnKF  analyses  and  obtained  improved  TC  track  forecasts
compared to the operational ensemble data assimilation sys-
tems at the time (e.g., ensemble transform technique (Wei et
al., 2008) and ensemble transform Kalman filter (Hunt et al.,
2007)). Torn and Hakim (2009) cycled an EnKF over the life-
time of Hurricane Katrina (2005) and obtained a 50% reduc-
tion in TC track and intensity errors compared to the NCEP
GFS  and  National  Hurricane  Center  (NHC)  official  fore-
casts.  Moreover,  Zhang  et  al.  (2009, 2011b)  showed  that

assimilating  Doppler  radar  data  from  both  land-based  and
reconnaissance  aircraft  platforms  with  an  EnKF  led  to
improved  TC  intensity  forecasts.  Assimilating  microwave
radiances with an EnKF was also found to be beneficial for
TC predictions (Schwartz et al., 2012). Besides these individ-
ual case studies with relatively short periods over which obser-
vations  are  assimilated,  Torn  (2010)  cycled  an  EnKF  over
the  life  cycle  of  multiple  TCs  ranging  from  marginal  to
intense  TCs  in  the  Atlantic  basin  and  found  that  cycling
with  an  EnKF  system  was  particularly  effective  for  weak
TCs. Cavallo et al. (2013) evaluated a cycling EnKF for the
2009 North Atlantic hurricane season and obtained systemati-
cally reduced TC track and intensity errors  by assimilating
observations, except for strong TCs. Xue et al. (2013) system-
atically  compared  the  EnKF  and  three-dimensional  varia-
tional data assimilation (3DVAR; Kleist et al., 2009) for the
2010 North Atlantic hurricane season and found significantly
improved  TC intensity  forecasts  initialized  from the  EnKF
compared to those initialized from the 3DVAR.

Although previous studies have been encouraging, sys-
tematic work on regional cycling EnKF systems for the west-
ern North Pacific (WNP) basin is limited. Besides the internal
dynamical  and  physical  processes  that  have  important
impacts  on  TC track  and intensity,  TCs over  the  WNP are
strongly  influenced  by  complex  environmental  conditions,
including  vertical  wind  shear,  synoptic-scale  weather  sys-
tems, Asia monsoons, easterly waves, Rossby wave energy
dispersion,  and  so  on  (e.g., Fudeyasu  and  Yoshida,  2018;
Ma et al., 2019). The interactions across scales impose chal-
lenges on the predictability, data assimilation, and forecasts
for  typhoons.  Thus,  this  study  describes  the  results  of  a
cycling  mesoscale  EnKF  system  combined  with  the
Advanced  Research  Weather  Research  and  Forecasting
model (WRF) applied for most of the 2016 WNP typhoon sea-
son. The WRF/EnKF system produces an 80-member ensem-
ble analysis every 6 h. For each storm during the experimental
period,  a  5-d  deterministic  forecast  is  launched  from  the
ensemble mean analysis every 6 h; and a 5-d ensemble fore-
cast is obtained from the 80-member ensemble analyses for
seven  typhoons  whose  intensities  are  underestimated.  The
application  of  the  combined  data  assimilation  and  regional
forecasting  system  over  a  nearly  complete  typhoon  season
provides a large sample for assessing its potential benefit to
TC forecasts.

This paper is organized as follows. Section 2 describes
the modeling and data assimilation system. An overview of
the 21 storms studied for the 2016 WNP typhoon season is
provided  in  section  3.  Section  4  discusses  verifications  for
the cycling data assimilation system, while section 5 provides
verifications for the 5-d deterministic forecasts. The perfor-
mances of ensemble forecasts are evaluated in section 6. A
summary and conclusion are provided in section 7.

 2.    Experimental design

Ensemble analyses are generated every 6 h by cycling a
WRF/EnKF system from 0000 UTC 1 July to 1200 UTC 21
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October. During this period, 21 TCs are simulated, whose cat-
egories and starting and ending dates are given by Table 1
and tracks are shown in Fig. 1. Within the duration of each
TC, a 5-d forecast is launched every 6 h from the ensemble
mean analysis. Due to limited computational resources, 5-d
ensemble  forecasts  are  launched  for  the  typhoons  whose
rapid intensification processes are not well  captured by the

WRF/EnKF system and the ensemble mean analysis of the
minimum  sea  level  pressure  (SLP)  is  higher  than  the
observed value. Table 2 lists the typhoons and initial times
for the 5-d ensemble forecasts.

The simulation of the 2016 WNP typhoon season uses
WRF V3.4 (Skamarock et al., 2008). The model’s domain 1,
shown in Fig. 1, covers most of China and the WNP basin.

 

 

Fig. 1. Tropical cyclone tracks for each of the 21 TCs studied here. See Table 1 for a detailed
list of storms. The colors are used to differentiate the TC tracks.

Table 1.   The name, category, and duration for each TC in the 2016 WNP typhoon season assimilation.

TC name Category Duration

Nepartak Typhoon 0600 UTC 3 Jul – 0600 UTC 9 Jul
Lupit Tropical Storm 0000 UTC 21 Jul – 1200 UTC 24 Jul

Mirinae Severe Tropical Storm 0600 UTC 24 Jul – 1200 UTC 28 Jul
Nida Severe Tropical Storm 1200 UTC 29 Jul – 0600 UTC 2 Aug

Omais Severe Tropical Storm 1800 UTC 4 Aug – 0000 UTC 9 Aug
Conson Tropical Storm 0600 UTC 8 Aug – 1200 UTC 14 Aug
Chanthu Severe Tropical Storm 1200 UTC 13 Aug – 1200 UTC 17 Aug
Mindulle Typhoon 1800 UTC 17 Aug – 1800 UTC 22 Aug
Dianmu Tropical Storm 0000 UTC 18 Aug – 0600 UTC 19 Aug
Lionrock Typhoon 1800 UTC 19 Aug – 1800 UTC 30 Aug
Kompasu Tropical Storm 1800 UTC 19 Aug – 0000 UTC 21 Aug
Namtheun Typhoon 1200 UTC 31 Aug – 0600 UTC 5 Sep
Meranti Typhoon 1800 UTC 8 Sep – 0000 UTC 15 Sep
Malakas Typhoon 0000 UTC 12 Sep – 1200 UTC 20 Sep

Rai Tropical Storm 0000 UTC 12 Sep – 0000 UTC 13 Sep
Megi Typhoon 0000 UTC 23 Sep – 0600 UTC 28 Sep
Chaba Typhoon 0000 UTC 28 Sep – 0600 UTC 5 Oct
Aere Severe Tropical Storm 0600 UTC 6 Oct – 0000 UTC 10 Oct

Songda Typhoon 1200 UTC 8 Oct – 0000 UTC 13 Oct
Sarika Typhoon 1200 UTC 12 Oct – 1200 UTC 19 Oct
Haima Typhoon 1800 UTC 14 Oct – 1200 UTC 21 Oct
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This  domain  could  include  the  track  of  all  storms  in  the
WNP  basin.  18-km  horizontal  grid  spacing  is  used  for
domain  1,  with  520  ×  660  grid  points.  When  the  Joint
Typhoon  Warning  Center  (JTWC)  announces  an  advisory
TC position, a vortex following domain 2 of 6-km horizontal
grid  spacing  and  180  ×  180  grid  points  is  set  for  6-hourly
cycling.  When  a  5-day  forecast  is  produced  for  both  the
ensemble  mean  and  the  ensemble  members,  an  additional
high-resolution  domain  is  set  into  the  vortex  following
domain 2. This high-resolution domain has 2-km horizontal
grid spacing and 300 × 300 grid points. There are 57 vertical
levels, with the model top at 10 hPa. The implementation of
WRF has the following components: the WRF 6-class micro-
physics scheme (Hong and Lim, 2006), the Yonsei University
(YSU) planetary boundary layer (PBL) scheme (Hong et al.,
2006),  the  Noah  land  surface  model  (Ek  et  al.,  2003),  the
Rapid Radiative Transfer Model (RRTM) longwave scheme
(Mlawer  et  al.,  1997),  and  the  RRTM  shortwave  scheme
(Iacono et al., 2008). The cumulus parameterization uses the
Tiedtke  cumulus  scheme  (Tiedtke,  1989; Zhang  et  al.,
2011a) and is only used for the 18-km domain 1.

The  ensemble  initial  conditions  (ICs)  at  the  starting
date 0000 UTC 1 July are generated from the National Centers
for Environmental Prediction (NCEP) Global Forecast Sys-
tem (GFS) analysis of 0.25° resolution using the fixed-covari-
ance perturbation technique of Torn et al. (2006). This tech-
nique produces random perturbations that sample the NCEP
background  error  covariance  by  use  of  the  WRFDA-
3DVAR (Barker et al., 2012), and the initial ensembles are
generated by adding these random perturbations to the GFS
analysis.  Ensemble  lateral  boundary  conditions  (LBCs)  are
generated  in  a  similar  manner  to  the  ensemble  ICs,  except
that the NCEP GFS forecasts valid at the appropriate times
are used. LBCs for the 5-d forecast launched from the ensem-
ble mean analysis are produced using the NCEP GFS fore-
casts launched from the same analysis date but at the appropri-
ate times.

Observations from the NCEP global data assimilation sys-
tem  (GDAS)  are  assimilated  every  6  h,  including  conven-
tional  in  situ  observations,  cloud-motion  vectors,  and
remotely  sensed  satellite  radiances  from  the  Advanced
Microwave  Sounding  Unit-A  (AMSUA),  High  resolution
IR  Sounder  (HIRS),  Atmospheric  IR  sounder  (AIRS),  and
Microwave  Humidity  Sounder  (MHS).  For  the  assimilated
radiance observations, a thinning mesh of 60 km is used, at

which  the  radiance  observation  errors  are  assumed  to  be
uncorrelated (Lin et al., 2017). In addition, the JTWC advi-
sory minimum SLP at the observed position (latitude and lon-
gitude of the lowest sea level pressure) are assimilated. The
observation error variances are the same as those used in the
NCEP GDAS.

An ensemble square-root filter (EnSRF; Whitaker et al.,
2008)  that  is  very  similar  to  the  NOAA operational  EnKF
for  the  NCEP  GFS  in  2016  (https://dtcenter.org/sites/
default/files/community-code/enkf/docs/users-guide/EnKF_
UserGuide_v1.3.pdf) is used to assimilate the observations.
Note that, recently, a localized ensemble transform Kalman
filter with model space localization (Hunt et al., 2007; Lei et
al., 2018) has been implemented for the NCEP GFS. Ensem-
ble  size  is  80.  The  observation  prior Hxb,  where H is  the
observation forward operator and xb is the model ensemble
background or prior, is computed by the “observer” portion
of  the  Gridpoint  Statistical  Interpolation  system  (GSI; Wu
et al., 2002; Kleist et al., 2009). The “observer” runs sepa-
rately for the ensemble mean and the 80 ensemble members,
and  the  obtained  observation  ensemble  priors  are  used  by
the EnKF. Bias correction of radiance observations is com-
puted using the EnKF based on iterated analysis error covari-
ance (Miyoshi et al., 2010).

The EnKF system requires additional steps designed to
overcome  sampling  errors  that  result  from  using  a  limited
ensemble  size  and  also  account  for  model  error.  Sample
covariances derived from the ensembles are localized by the
Gaspari  and  Cohn  (1999)  localization  function  that  is  an
approximately  Gaussian  fifth-order  piecewise  continuous
polynomial  function.  Observation  space  localization
(Houtekamer and Mitchell, 1998) is applied, by which obser-
vation  impact  is  tapered  to  0  at  1000  km in  the  horizontal
and 1.5 ln (hPa) in the vertical. The vertical locations of the
non-local radiance observations are assigned to the vertical
level  at  which  the  weighting  function  maximizes.  At  each
assimilation time, the ensemble deviations from the ensemble
mean are inflated posterior to assimilation using the relaxation
posterior  ensemble  spread to  prior  ensemble  spread (relax-
ation-to-prior  spread; Whitaker  and  Hamill,  2012)  with  a
relaxation  coefficient  of  1.15.  To  maintain  an  appropriate
ensemble  spread,  a  relaxation  coefficient  larger  than  1.0  is
necessary,  which  forces  posterior  ensemble  spread  to  be
larger than prior ensemble spread (Schwartz and Liu, 2014;
Schwartz, 2016). During a 10-day test period, a group of sen-

Table 2.   Forecast initialization times for the typhoons whose ensemble mean analysis of the minimal sea level pressure is higher than
the observation.

TC name Forecast initialization times Min. SLP

Nepartak 1200 UTC 3 Jul 911 hPa, 0600 UTC 6 Jul
Namtheun 1200 UTC 31 Aug 948 hPa, 0600 UTC 2 Sep
Meranti 0000 UTC 10 Sep 898 hPa, 0000 UTC 13 Sep
Chaba 0600 UTC 28 Sep 915 hPa, 0600 UTC 3 Oct
Songda 1200 UTC 8 Oct 926 hPa, 1800 UTC 11 Oct
Sarika 1200 UTC 12 Oct 944 hPa, 1200 UTC 17 Oct
Haima 1800 UTC 14 Oct 913 hPa, 1800 UTC 18 Oct
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sitivity  experiments  with  varying  localization  and  inflation
parameters  are  conducted.  The  localization  and  inflation
parameters are chosen based on the sensitivity experiments
that  provide  the  smallest  6-h  prior  errors  comparing  to  the
conventional observations and JTWC advisory TC data.

To overcome the underestimation of TC initial intensity
given  an  18-km  horizontal  resolution  (Torn,  2010)  and
avoid  the  technical  challenges  associated  with  moving
nested domains for each ensemble member (like each ensem-
ble member having a different nest location and interpolation
from the  coarse  grid),  the  non-cycled  nesting  procedure  of
Cavallo et al. (2013) is adopted. Given our domain configura-
tion, the EnKF data assimilation is done on the 18-km resolu-
tion  domain  1,  but  not  on  the  6-km  vortex-following
domain 2. However, the 18-km resolution domain 1 benefits
from the  increased  resolution  for  storm intensity,  since  the
6-h  forecast  on  the  18-km grid  is  averaged  from the  6-km
grid where the 6-km grid exists. Cavallo et al. (2013) noted
a 22% error reduction in the 6-h prior of TC minimum SLP
and a moderate error reduction in the 6-h prior of TC maxi-
mum  wind  speed  when  using  non-cycled  nests  within  the
data  assimilation  compared  to  no  nests  within  the  data
assimilation.

 3.    Overview of cases

A  short  review  of  the  21  TCs  in  the  2016  WNP
typhoon season during the assimilation period is provided in
this  section  (Fig.  1).  Most  of  the  TCs  formed  in  the  main
development region, while a few formed at relatively western
longitudes. More than half of the TCs moved westward, and
some of them turned poleward at some point in their lives,
while  several  TCs  directly  moved  poleward.  Besides  these
TC  tracks,  Typhoon  Lionrock  first  moved  southwest,  then
turned  northeast,  and  at  last  turned  towards  the  northwest
due to a high pressure system located east of Japan.

The lifetime durations and categories of the 21 TCs are
given  in Table  1.  The  lifetime  durations  of  the  storms
ranged from 24 h (Rai)  to  11 days  (Lionrock).  There  were
short-lived storms, such as Rai, Nida, Lupit, and Aere, and
long-lived storms, such as Sarika, Chaba, Malakas, and Lion-
rock. According to the Regional Specialized Meteorological
Centre  (RSMC)  Tokyo’s  tropical  cyclone  intensity  scale
(Typhoon Committee, 2015), there were five tropical storms
(TS)  (Lupit,  Conson,  Dianmu,  Kompasu,  and  Rai),  whose
maximum wind speeds were less than 24.2 m s–1; and there
were  five  severe  tropical  storms  (STS)  (Mirinae,  Nida,
Omais,  Chanthu,  and Aere),  whose maximum wind speeds
were  less  than  32.4  m  s–1.  The  remaining  storms  reached
typhoon (TY) scale, with maximum wind speeds larger than
32.4  m s–1.  Based on the  Kaplan-DeMaria  criteria  (Kaplan
and DeMaria, 2003), all the typhoons were characterized by
at  least  one  instance  of  rapid  intensification  (maximum
wind speed increasing more than 15.4 m s–1 per 24 h). Both
Malakas  and  Songda  met  the  rapid  intensification  criteria
twice during their lifetimes. A wide variety of TC intensities
are captured in this study.

 4.    Cycling verification

In this section, the cycling WRF/EnKF system is evalu-
ated. Ensemble priors, i.e., 6-h ensemble forecasts, are veri-
fied against the JTWC advisory TC track position and inten-
sity estimates that are the same as the assimilated quantities.
The simulated TC position is given by the location of the min-
imum SLP. Figure 2 shows the TC track RMS errors, ensem-
ble spread, and biases (observation minus forecast) for tropi-
cal  storms  (TS),  severe  tropical  storms  (STS),  typhoons
(TY),  and all  TCs (ALL),  respectively. Figure 3 represents
the RMS errors and biases of TC minimum SLP and maxi-
mum wind speed for different TC categories. The statistical
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Fig.  2. (a)  6-h forecast  ensemble mean RMS error (dark gray
bar) and ensemble spread (light gray bar) of TC positions as a
function  of  TC intensity.  The  number  of  verification  times  is
given along the top. (b) 6-h forecast ensemble mean bias of TC
positions  for  tropical  storm  (TS,  blue  line),  severe  tropical
storm (STS, green line), typhoon (TY, red line), and all storms
(ALL,  black  line).  The  range  rings  denote  10-km  intervals.
Error bars denote the 5% and 95% percentiles determined from
bootstrap resampling.
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significances  of  RMS  errors  and  biases  are  determined
using  a  bootstrap  resampling  with  replacement  method
(Efron and Tibshirani, 1993). Each error distribution is resam-
pled 1000 times with a bootstrap process. Error bars denote
5%  and  95%  percentiles;  thus,  only  significance  levels
greater than 90% are considered statistically significant.

For all TC categories, the ensemble spread of TC position
is slightly smaller than the RMS error. As shown by Anderson
(1996) and Hamill (2001), verification of an ensemble fore-
cast can be affected by the used imperfect observations. The
ensemble spread here does not take into account the observa-
tion uncertainties; thus, the generally consistent TC position
error with ensemble spread indicates a well calibrated ensem-
ble being provided by the WRF/EnKF system (Houtekamer
et al.,  2005). The TC position error and spread of ALL are
dominated by those of TY, because TY has many more sam-
ples  than  TS  and  STS.  The  position  error  and  spread  are
inversely  proportional  to  the  TC  intensity.  This  may  be  a
result of poorly defined TC centers for weak TCs. Note that
the  6-h track errors  are  larger  than the  operational  forecast
errors because there are ensemble members with large track
errors,  especially  when  the  vortex  is  weak  (figures  are  not
shown). The zonal and meridional position biases of TY are
also  much  smaller  than  those  of  TS  and  STS.  For  all
instances,  there  are  larger  meridional  position  biases  than
zonal position biases, which is consistent with the persistently
positive v-wind biases (figures are not shown).

Unlike for TC position, the ensemble spread of minimum
SLP is insufficient to present the ensemble mean error, espe-

cially  for  TY.  Similarly,  the  magnitude  of  TC  maximum
wind speed suffers from a large mismatch between the ensem-
ble  mean  error  and  ensemble  spread.  Thus,  the  ensemble
spread is not calibrated well for TC minimum SLP and maxi-
mum  wind  speed.  TY  has  a  much  larger  minimum  SLP
error  than  TS  and  STS,  but  the  ensemble  spread  does  not
increase  much  from  TS/STS  to  TY.  Compared  to  TS  and
STS, the larger minimum SLP error of TY is also accompa-
nied  by  a  larger  bias.  TS  and  STS  have  similar  errors  of
approximately 7 hPa, and similar biases of approximately +/
– 0.75 hPa; but TY has an increased error of 22.21 hPa and
an increased bias of –13.12 hPa. Although TS has a similar
minimum  SLP  error  and  absolute  bias  to  STS,  TS  has  a
larger  maximum wind  speed  error  and  bias  than  STS.  The
error  (bias)  of  maximum  wind  speed  is  12.59  m  s–1

(–9.06 m s–1) for TS, 7.37 m s–1 (–3.24 m s–1) for STS, and
14.61 m s–1 (9.5 m s–1) for TY. Therefore, given a 6-km hori-
zontal  grid  spacing,  the  WRF  model  is  still  unable  to
resolve  the  large  gradients  of  TY’s  wind  and  mass  fields.
The  WRF/EnKF  system  overestimates  the  maximum  wind
speed for weak storms like TS and STS, but underestimates
the  minimum  SLP  and  maximum  wind  speed  for  strong
storms like TY.

 5.    Forecast verification

In this section, WRF/EnKF TC track and intensity deter-
ministic forecasts launched from the ensemble mean analyses
every 6 h are evaluated against the JTWC advisory TC track
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Fig. 3. (a) 6-h forecast ensemble mean RMS error (dark gray bar) and ensemble spread
(light  gray  bar)  of  TC  minimum  SLP  as  a  function  of  TC  intensity.  The  number  of
verification  times  is  given  along  the  top.  (b)  6-h  forecast  ensemble  mean  bias  of  TC
minimum SLP as a function of TC intensity. (c) As in (a), but for the TC maximum wind
speed. (d) As in (b), but for the TC maximum wind speed. Error bars denote the 5% and
95% percentiles determined from bootstrap resampling.
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position  and  intensity  estimates.  For  comparison,  errors  of
the NCEP Global Ensemble Forecast System (GEFS) forecast
(Zhou et al., 2017) and European Centre for Medium-Range
Weather Forecasts  (ECMWF) Ensemble Prediction System
(EPS) global forecast (details are available online at https://
www.ecmwf.int/sites/default/files/elibrary/2012/14557-
ecmwf-ensemble-prediction-system.pdf)  are  also  computed
at the equivalent time. The NCEP GEFS has one control mem-
ber  and  20  ensemble  members,  and  the  21  total  ensemble
members are integrated with the GFS model at approximately
34-km  horizontal  grid  spacing  for  the  first  8-d  forecasts.
The  ECMWF  EPS  contains  one  control  member  and  50
ensemble  members,  and  the  51  total  ensemble  members
have a grid spacing of about 32 km through the 10-d fore-
cast. Since WRF/EnKF uses a single forecast from the ensem-
ble  mean  analysis,  deterministic  forecasts  from the  control
members  of  the  NCEP  GEFS  and  ECMWF  EPS  are  used
for comparison in this section. Please note that WRF/EnKF
has much higher  horizontal  grid  resolutions (18 km, 6 km,
and 2 km) than NCEP and ECMWF for the vortexes.

Instead  of  launching  a  deterministic  forecast  from  the
ensemble  mean  analysis,  Torn  (2010)  and  Cavallo  et  al.
(2013)  used  a  single  member  of  the  WRF/EnKF  analysis

ensemble for the deterministic forecast in order to avoid the
overly smoothed depiction of the TC mass and wind fields
which result  from ensemble averaging.  The single-member
initial condition is chosen as the closest member to the ensem-
ble  mean  analysis  based  on  normalized  latitude,  longitude,
and minimum SLP differences. To show the differences of a
single forecast from the ensemble mean analysis or from a sin-
gle  ensemble  member,  a  5-d  deterministic  forecast  is  run
from  the  ensemble  mean  analysis  and  a  randomly  chosen
ensemble  member  every  6  h  for  5  TS,  5  STS,  and  8  TY.
Results show that the deterministic forecast from the ensem-
ble mean analysis and that from a single ensemble member
have  similar  errors  of  minimum  SLP  and  maximum  wind
speed  through  the  5-d  forecast  period  (figures  are  not
shown). The forecast from the ensemble mean analysis has
track  RMS  errors  similar  to  those  from  a  single  ensemble
member within 48 h, and the former has smaller track RMS
errors than the latter beyond 48 h, although the differences
are not statistically significant at a 90% confidence interval.
Therefore,  the  deterministic  forecast  from  the  WRF/EnKF
ensemble mean analysis is used here and compared to the con-
trol forecast of NCEP GEFS and ECMWF EPS.

Figure  4 shows  the  track  RMS errors  as  a  function  of
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Fig. 4. RMS error of TC positions for 5-d forecast as a function of forecast hour for (a) TS, (b) STS, (c) TY,
and (d) ALL. The blue solid line denotes the WRF/EnKF forecast  launched from ensemble mean analysis,
and the red and black solid lines are the NCEP GFS forecast and ECMWF forecast, respectively. The number
of verification times for WRF/EnKF and NCEP is given by the first  row along the top,  and the number of
verification times for ECMWF is given by the second row along the top. Error bars denote the 5% and 95%
percentiles determined from bootstrap resampling.
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forecast hours for TS, STS, TY, and ALL, respectively. The
statistical significance of RMS error is denoted by the error
bars showing 5% and 95% percentiles. The number of verifi-
cation times is denoted on the top of the figure. The sample
sizes  of  WRF/EnKF  and  NCEP  are  larger  than  that  of
ECMWF  because  WRF/EnKF  and  NCEP  GEFS  forecasts
are computed every 6 h while the ECMWF EPS forecast is
computed  every  12  h.  For  TS,  STS,  TY,  and  ALL,  WRF/
EnKF  deterministic  forecasts  generally  have  significantly
larger track RMS errors than NCEP and ECMWF forecasts
at short forecast lead times. The large initial track errors of
WRF/EnKF are mainly resulted from the ensemble mean ini-
tial  conditions,  which have degraded initial  position due to
the  ensemble  averaging  and  have  a  subsequently  fast  error
growth  rate  for  the  first  6  h  due  to  imbalanced  mass  and
wind fields of the ensemble mean. WRF/EnKF has insignifi-
cantly larger track errors or significantly smaller track errors
than NCEP and ECMWF at long forecast lead times. More-
over, the meridional and zonal track biases of WRF/EnKF,

NCEP,  and  ECMWF  generally  increase  with  forecast  lead
times,  while the meridional  track biases are larger than the
according  zonal  track  biases,  especially  at  longer  forecast
lead  times  for  TS  and  STS  (Fig.  5).  The  meridional  and
zonal position error differences at longer forecast lead times
are consistent with those from 6-h priors, which is possibly
due  to  the  persistently  positive v-wind  biases.  Consistent
with  track RMS errors,  WRF/EnKF deterministic  forecasts
in  general  have  smaller  track  biases  than  NCEP  and
ECMWF at long forecast lead times. Thus, the regional simu-
lation  cannot  better  represent  the  large-scale  environment
compared to the global simulation, especially at short forecast
lead times.

Figures 6 and 7 display RMS errors and biases of mini-
mum SLP as a function of forecast  hour for  different  cate-
gories, respectively. For TS, WRF/EnKF deterministic fore-
casts  produce  larger  RMS  errors  of  minimum  SLP  than
NCEP and ECMWF until about 60 h, and the error differences
between WRF/EnKF and NCEP/ECMWF are not statistically
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Fig. 5. Biases of TC positions from 5-d forecasts for (a) TS, (b) STS, and (c) TY. The blue dot, green plus,
and  red  square  denote  WRF/EnKF  forecasts  launched  from  the  ensemble  mean  analyses,  NCEP  GEFS
control forecasts, and ECMWF EPS control forecasts, respectively. The range rings denote 200-km intervals.
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significant  at  long  forecast  lead  times.  WRF/EnKF  and
NCEP (ECMWF)  forecasts  have  negative  (positive)  biases
of  minimum SLP at  short  forecast  lead times,  while  WRF/
EnKF and ECMWF (NCEP) forecasts have negative (posi-
tive)  biases  for  forecast  lead  times  longer  than  48  h.  For
STS,  NCEP  and  ECMWF  forecasts  obtain  similar  RMS
errors  of  minimum  SLP,  which  are  smaller  than  those  of
WRF/EnKF.  Consistently,  NCEP  and  ECMWF  forecasts
have  similar  biases  of  minimum  SLP,  which  have  smaller
magnitudes than the positive biases of WRF/EnKF. For TY,
WRF/EnKF  deterministic  forecasts  generally  have  signifi-
cantly  smaller  RMS  errors  of  minimum  SLP  than  NCEP
and  ECMWF  until  forecast  lead  times  of  42  h  and  72  h,
respectively.  Consistent  with  the  RMS  errors,  NCEP  and
ECMWF forecasts have similar negative biases of minimum
SLP, which have much larger magnitudes than the biases of
WRF/EnKF. The RMS errors  and biases  of  minimum SLP
for ALL are similar to those of TY since the samples from
TY are larger than those from TS and STS and thus the fea-
tures of TY dominate.

The RMS errors and biases of maximum wind speed at
10 m as a function of forecast hour for different categories
are  shown  in Figs.  8 and 9,  respectively.  For  TS,  WRF/

EnKF deterministic forecasts have similar RMS errors of max-
imum  wind  speed  to  NCEP  and  ECMWF  within  36  h  but
larger  RMS errors  than  NCEP and  ECMWF beyond  48  h.
Similar  biases  of  maximum  wind  speed  are  obtained  for
WRF/EnKF, NCEP, and ECMWF forecasts. For STS, WRF
/EnKF deterministic forecasts have larger RMS errors of max-
imum  wind  speed  than  NCEP  and  ECMWF.  Meanwhile,
WRF/EnKF deterministic forecasts have negative biases of
maximum  wind  speed,  and  the  magnitudes  are  larger  than
those  from  NCEP  and  ECMWF.  Different  from  the  weak
storms, WRF/EnKF deterministic forecasts produce signifi-
cantly  smaller  RMS  errors  of  maximum  wind  speed  than
NCEP  and  ECMWF  for  TY.  The  error  differences  among
WRF/EnKF, NCEP, and ECMWF beyond 90 h are generally
not statistically significant. Consistently, WRF/EnKF deter-
ministic  forecasts  produce  positive  biases  of  maximum
wind speed, and the magnitudes are much less than those of
NCEP and ECMWF. Similar results to the comparisons for
TY are obtained for ALL.

Therefore, although WRF/EnKF deterministic forecasts
generally have larger RMS errors of minimum SLP and maxi-
mum wind speed than NCEP and ECMWF for weak storms
like TS and STS, WRF/EnKF deterministic forecasts produce
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Fig. 6. Same as Fig. 4, except for RMS error of TC minimum SLP.
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smaller  RMS  errors  of  intensity  than  NCEP  and  ECMWF
for  strong  storms  like  TY.  For  weak  storms,  WRF/EnKF
deterministic forecasts often have positive biases of minimum
SLP and negative biases of maximum wind speed, which indi-
cates  overestimation  of  the  intensity.  For  strong  storms,
WRF/EnKF  deterministic  forecasts  often  have  negative
biases  of  minimum  SLP  and  positive  biases  of  maximum
wind  speed,  which  indicates  underestimation  of  the  inten-
sity. The underestimation of TY intensity is much better miti-
gated  for  WRF/EnKF  compared  to  NCEP  and  ECMWF.
There  are  environmental  factors  that  may  have  influences
on the vortex intensity, including temperature, specific humid-
ity, vertical wind shear, etc. Figure 10 shows the profiles of
differences  for  the  mean  specific  humidity  between  WRF/
EnKF and  ECMWF forecasts.  For  each  forecast,  the  mean
specific humidity is averaged over an annulus that is centered
around each vortex location with outer and inner circle radii
of 5° and 2°, respectively. For weak storms, WRF/EnKF pro-
duces larger values of specific humidity below 500 hPa than
ECMWF, which contributes to the intensity overestimation
of  weak  vortexes  for  the  WRF/EnKF.  For  strong  storms,
WRF/EnKF  also  has  moister  conditions  than  ECMWF,
which  explains  the  much  better  mitigated  underestimation

of TY intensity of WRF/EnKF compared to ECMWF.

 6.    Ensemble forecast performance

Performances  of  the  ensemble  forecasts  for  the
typhoons listed in Table 2 are evaluated in this section. The
mean absolute errors of the ensemble-mean position and inten-
sity forecasts are compared with the mean ensemble spread.
The consistency between these two quantities indicates that
the  ensemble  contains  an  appropriate  amount  of  variance,
while  the  inconsistency  between  these  two  quantities  indi-
cates  a  lack  of  growing  modes  or  reflecting  model  biases.
For  comparison,  the  mean  absolute  errors  and  ensemble
spreads  of  NCEP  GEFS  and  ECMWF  EPS  forecasts  are
also computed, as shown in Fig. 11.

For  TC  track,  the  mean  absolute  errors  and  ensemble
spreads of WRF/EnKF, NCEP, and ECMWF ensemble fore-
casts are comparable within 30 h. Beyond that, the mean abso-
lute  errors  of  WRF/EnKF  and  NCEP,  especially  NCEP,
increase  at  a  higher  rate  than  the  ensemble  spread;  but  the
ensemble  track  forecasts  of  ECMWF  have  an  even  larger
ensemble spread than the error. Thus, the ensemble track fore-
casts  of  WRF/EnKF and  NCEP are  underdispersive,  while
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Fig. 7. Same as Fig. 4, except for bias of TC minimum SLP.
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the ensemble track forecasts of ECMWF are overdispersive.
For minimum SLP and maximum wind speed, WRF/EnKF,
NCEP, and ECMWF ensemble forecasts contain appropriate
variance  when  the  forecast  hour  is  less  than  18  h.  Beyond
that,  all  three  ensemble  forecasts  have  spread  deficiency.
Compared to the ensemble forecasts of NCEP and ECMWF,
WRF/EnKF  ensemble  forecasts  have  smaller  intensity
errors but contain larger ensemble spread. Therefore, WRF/
EnKF ensemble forecasts lack variance for TC track (Puri et
al.,  2001; Magnusson  et  al.,  2008; Torn,  2010),  but  WRF/
EnKF  provides  better  intensity  ensemble  forecasts  than
NCEP and ECMWF. Numerous factors have impacts on the
ensemble  forecasts,  like  the  ensemble  initial  conditions,
numerical model and parameterization schemes for different
physical processes, model error representations, etc. A system-
atic  investigation  for  the  ensemble  forecasts  of  different
ensemble systems will be reported in a future study.

To illustrate the ensemble performance in detail, ensem-
ble forecasts for typhoon Meranti from 0000 UTC 10 Septem-
ber and typhoon Sarika from 1200 UTC 12 October by the
WRF/EnKF,  NCEP,  and  ECMWF  are  shown  in Figs.  12
and 13,  respectively.  The  track  ensemble  forecasts  for
typhoon  Meranti  by  WRF/EnKF,  NCEP,  and  ECMWF  all

have the ensemble plumes centered on the observed value;
thus, typhoon Meranti appears predictable. The ensemble fore-
casts of the minimum SLP and maximum wind speed by the
NCEP and  ECMWF show some degree  of  confidence,  but
they are far from the observed intensity. The intensity ensem-
ble  forecasts  by  WRF/EnKF  are  much  closer  to  the
observed values than the ensemble forecasts  by NCEP and
ECMWF;  WRF/EnKF  predicts  a  central  pressure  that  is
approximately 40 hPa lower than NCEP and ECMWF and a
wind speed that is about 20 m s–1 stronger than NCEP and
ECMWF. Typhoon Sarika also appears predictable from the
track  ensemble  forecasts,  although  WRF/EnKF  shows  less
predictability than NCEP and ECMWF. Similar to typhoon
Meranti, the intensity ensemble forecasts for typhoon Sarika
by NCEP and ECMWF are far from the observed value, and
all ensemble members fail to capture the re-intensification pro-
cess.  However,  the  intensity  ensemble  forecasts  by  WRF/
EnKF have the ensemble plume around the observed inten-
sity, and most ensemble members predict the re-intensifica-
tion  process.  At  forecast  lead  times  from  12  h  to  120  h,
WRF/EnKF  ensemble  members  for  typhoons  Meranti  and
Sarika have moister conditions than ECMWF at low levels
(figures are not shown), which could explain the stronger vor-
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Fig. 8. Same as Fig. 4, except for RMS error of TC maximum wind speed.
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texes predicted by WRF/EnKF. Therefore, consistent with pre-
vious  error  statistics  based  on  the  mean  absolute  error  and
ensemble spread, WRF/EnKF has better intensity predictabil-
ity than NCEP and ECMWF.

 7.    Conclusions

This study describes the performance of a cycling WRF
/EnKF system during most of the 2016 WNP typhoon sea-
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Fig. 10. Profiles of the differences of the mean specific humidity between WRF/EnKF and ECMWF 48-h forecasts
for (a) STS and (b) TY. For each forecast, the mean specific humidity is the averaged specific humidity over an outer
circle centered around each vortex with a 5° radius minus that over an inner circle with a 2° radius.
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Fig. 9. Same as Fig. 4, except for bias of TC maximum wind speed.
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son.  Conventional  in  situ  data,  radiance  observations,  and
TC minimum SLP are assimilated every 6 h using an 80-mem-
ber  ensemble.  For  the  21  storms  during  the  experimental

period,  a  5-d  deterministic  forecast  is  launched  from  the
ensemble  mean  analysis  every  6  h  within  the  duration  of
each  storm;  and  a  5-d  ensemble  forecast  is  produced  from
the ensemble analyses for 7 typhoons whose intensities are
underestimated.  The  forecast  errors  are  compared  to  the
ECMWF and NCEP operational models.
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For all TC categories, the 6-h ensemble prior estimates
of TC position from the WRF/EnKF system contain an appro-
priate amount of variance, while the TC intensity estimates
are  variance-deficient  for  all  intensities,  especially  for  TY.
The TC position RMS error and spread are inversely propor-
tional to the TC intensity,  which may be a result  of poorly
defined TC centers for weak TCs. All TC instances are charac-
terized by larger meridional position bias than zonal position

bias.  Category  TY  has  much  larger  minimum  SLP  errors
and biases than categories TS and STS, which indicates that
a 6-km horizontal grid spacing is still unable to resolve the
large gradients of TC wind and mass fields. Maximum wind
speed errors and biases indicate that the WRF/EnKF system
tends to overestimate maximum wind speed for TS and STS,
but underestimate maximum wind speed for TY.

Compared to the NCEP and ECMWF operational control
forecasts,  the  WRF/EnKF  deterministic  forecasts  from  the
ensemble mean analyses often has larger TC track errors for
all  categories because the regional simulation cannot better
represent  the  large-scale  environment  compared  to  the
global simulation. A blending method that merges the analy-
ses of global and regional models can be beneficial for TC
track forecasting (Hsiao et al.,  2015).  The meridional track
biases  of  WRF/EnKF,  NCEP,  and  ECMWF  are  generally
larger than the according zonal track biases for TS and STS,
while  WRF/EnKF  and  ECMWF  produce  much  smaller
zonal  and  meridional  track  biases  than  NCEP for  TY.  The
WRF/EnKF deterministic forecasts exhibit smaller TC inten-
sity errors for TY than the NCEP and ECMWF control fore-
casts, which is due to the higher grid resolution of the WRF/
EnKF system; but the WRF/EnKF forecasts have larger TC
intensity errors for TS and STS. The WRF/EnKF determinis-
tic  forecasts  often  have  positive  biases  of  minimum  SLP
and  positive  biases  of  maximum  wind  speed  for  weak
storms,  which  means  overestimation  of  the  intensity.  The
NCEP and ECMWF control  forecasts  have negative biases
of  minimum  SLP  and  positive  biases  of  maximum  wind
speed  for  strong  storms,  which  means  underestimation  of
the intensity, but the WRF/EnKF deterministic forecasts pro-
duce  smaller  intensity  biases  than  the  NCEP and  ECMWF
control  forecasts.  Profiles  of  specific  humidity  differences
between WRF/EnKF and ECMWF show that WRF/EnKF pro-
duces  moister  conditions  than  ECMWF for  both  weak  and
strong storms, which explains how WRF/EnKF overestimates
intensity for weak storms and why WRF/EnKF has better miti-
gated underestimation of intensity for strong storms.

The ensemble forecasts from the WRF/EnKF system con-
tain  appropriate  variance  for  TC  track  and  intensity  with
short forecast lead times. With long forecast lead times, the
ensemble forecasts of WRF/EnKF and NCEP are underdisper-
sive for TC track, while the ensemble forecasts of ECMWF
are overdispersive for TC track. The WRF/EnKF ensemble
forecasts  have  smaller  intensity  errors  but  larger  ensemble
spread  than  the  NCEP  and  ECMWF  ensemble  forecasts;
thus,  the  WRF/EnKF  system  provides  better  TC  intensity
ensemble  forecasts  than  NCEP  and  ECMWF,  in  terms  of
the  comparison  between  amount  of  ensemble  spread  and
mean  absolute  error.  Moreover,  the  ensemble  forecasts  of
WRF/EnKF can better capture the detailed intensity evolution
than those of NCEP and ECMWF; thus, WRF/EnKF shows
better intensity predictability than NCEP and ECMWF.

The large initial track errors of WRF/EnKF are possibly
a  result  of  fast  error  growth  due  to  imbalances  caused  by
data assimilation, which could be mitigated by appropriate ini-
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Fig. 13. Same as Fig. 12, except for typhoon Sarika from 1200
UTC 12 October.
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tialization methods and will be reported in a separate study.
To  improve  the  WRF/EnKF  ensemble  forecasts  with
enlarged  ensemble  spread,  advanced  data  assimilation  that
updates  ensemble  perturbations  with  hybrid  background
error covariance (Lei et al., 2021) and additive inflation that
can  represent  model  uncertainties  (Whitaker  and  Hamill,
2012) need be further studied. Moreover, the cycling ensem-
bles  and  5-d  ensemble  forecasts  here  provide  a  unique
dataset for studying TC structure, dynamics, genesis, and pre-
dictability.  Ensemble  sensitivity  analysis  (e.g.,  Torn  and
Hakim,  2008; Lei  and  Hacker,  2015)  using  this  output  to
understand the dynamical processes that limit the predictabil-
ity of TC track, intensity, and structure will be presented in
a future study. Data assimilation algorithms that can capture
multiscale  features  of  TCs  and  improve  TC  predictability
will also be investigated.
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