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ABSTRACT

A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-
g3 developed by researchers at the Institute of Atmospheric Physics, Chinese Academy of Sciences. This is the first dataset
of large ensemble simulations with a climate system model developed by a Chinese modeling center.  The simulation has
the  largest  realizations  up  to  now  worldwide  in  terms  of  single-model  initial-condition  large  ensembles.  Each  member
includes a historical experiment (1850–2014) and an experiment (2015–99) under the very high greenhouse gas emissions
Shared  Socioeconomic  Pathway  scenario  (SSP5-8.5).  The  dataset  includes  monthly  and  daily  temperature,  precipitation,
and  other  variables,  requiring  storage  of  275  TB.  Additionally,  the  surface  air  temperature  (SAT)  and  land  precipitation
simulated  by  the  FGOALS-g3  super-large  ensemble  have  been  validated  and  projected.  The  ensemble  can  capture  the
response  of  SAT  and  land  precipitation  to  external  forcings  well,  and  the  internal  variabilities  can  be  quantified.  The
availability of more than 100 realizations will help researchers to study rare events and improve the understanding of the
impact of internal variability on forced climate changes.
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Database profile

Database title The Super-large Ensemble experiments of CAS FGOALS-g3
Time range 1 January 1850 to 31 December 2099

Geographical scope Global
Data format The Network Common Data Form (NetCDF) version 4
Data volume Historical (1850–2014): 1.5 TB/member SSP5-8.5 (2015–99): 0.8 TB/member Data for producing paper:

1.2 TB
Data service system Monthly surface air temperature, precipitation, 850-hPa wind and meridional streamfunction, daily maximum

temperature and precipitation for producing paper: http://www.doi.org/10.11922/sciencedb.01332
Sources of funding The National Key Program for Developing Basic Sciences (Grant No. 2020YFA0608902) and the National

Natural Science Foundation of China (Grant Nos. 41976026 and 41931183).
Database composition The datasets contain 110 members. Each member contains daily and monthly variables for atmosphere/

ocean component, and monthly variables for land/sea ice component.
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1.    Background

Climate  change  has  greatly  impacted  the  surface
physics of land areas, the global monsoon, sea level change,
and the lives of human beings (e.g., Church et al., 2013; Hat-
field and Walthall, 2014; Loo et al., 2015; Fang et al., 2018).
The  signal  of  anthropogenic  forcing  in  climate  change  is
superposed  on  the  internal  variability  (IV),  which  itself
mainly  originates  from  various  physical  processes  such  as
the interactions among different climate components (atmo-
sphere, ocean, land, etc.) as well as those among the different
climate modes (e.g., Deser et al., 2020). IV is an important
source  of  uncertainty  for  understanding  historical  climate
change since it  can account  for  a  large component  or  even
the dominant part of it,  especially at regional scales (Deser
et  al.,  2012a, b; Huang  et  al.,  2020; Maher  et  al.,  2021).
More  importantly,  IV  will  cause  large  uncertainties  for
future  regional  climate  projections,  especially  in  the  near
term (Hawkins and Sutton, 2009; Hawkins et al., 2016).

To quantify  the  role  of  IV,  the  most  popular  approach
is  to  produce single-model  initial-condition large ensemble
simulations.  These  ensemble  simulations  employ  a  single,
fully coupled climate or earth system model under a particular
radiative forcing scenario but with different initial conditions
(e.g., Kay  et  al.,  2015; Frankignoul  et  al.,  2017;
Frankcombe et al., 2018; Maher et al., 2021). The different
initial  fields  cause  different  fluctuations  of  the  coupled
model  across  members,  and  then  cause  ensemble  spread
(Deser et al., 2020). By calculating the ensemble mean and
spread,  the  response  to  external  forcing  and  the  IV  can  be
split  separately  and  robustly  estimated  (Frankcombe  et  al.,
2018).  As  reported  in  IPCC  AR6,  large  ensembles  have
improved our  understanding of  the  impact  of  IV on forced
changes  and  are  highlighted  as  an  important  new  field  of
progress in climate science (Zhou, 2021).

Since the era of CMIP3, in which only two coupled mod-
els  carried  out  large-ensemble  simulations  [62  members  in
CCSM1.4 (e.g., Selten et  al.,  2004; Zelle  et  al.,  2005; Dri-
jfhout et al., 2008; Branstator and Selten, 2009) and 40 mem-
bers in CCSM3 (e.g., Deser et al., 2012a)], an increasing num-
ber of modeling center research groups have moved in this
direction. For instance, six research groups have conducted
single-model  initial-condition  large  ensemble  simulations
(at  least  15 members)  using CMIP5 coupled models  in  the
past few years (Hazeleger et  al.,  2010; Jeffrey et  al.,  2013;
Kay et al., 2015; Rodgers et al., 2015; Kirchmeier-Young et
al.,  2017; Maher et  al.,  2019).  Among them, the maximum
number  of  ensemble  members  is  100,  conducted  by  only
one group (the Max Planck Institute). Fast-forwarding to the
latest  phase  of  CMIP  (i.e.,  CMIP6),  more  than  10  groups
have now employed CMIP6 fully coupled models to conduct
large-ensemble  simulations,  including  all-forcings  and  sin-
gle-forcing large ensembles, such as the CESM2 large ensem-
ble simulations with 100 members under a historical/SSP3-
7.0 scenario (Rodgers et al., 2021), CanESM5 (Swart et al.,
2019),  and EC-Earth3 (Wyser et  al.,  2021).  However,  only
two  groups  to  date,  with  CESM2  and  MPI  respectively,

have  conducted  simulations  with  more  than  100  ensemble
members, since ensembles of such size require huge computa-
tional resources and massive storage capability.

Similar  to  previous  studies  under  the  framework  of
CMIP6,  we  have  carried  out  super-large  ensemble  simula-
tions  using  a  single,  fully  coupled  climate  system
model—namely,  the  Flexible  Global  Ocean–Atmosphere–
Land System Model, grid-point version 3 (FGOALS-g3, Li
et al., 2020b). For the ensemble simulations, the external forc-
ings were adapted from historical forcings and the very high
greenhouse  gas  emissions  Shared  Socioeconomic  Pathway
scenario  (SSP5-8.5).  Here,  we  document  the  used  model,
the design of the super-large ensemble, the responses to exter-
nal  forcings,  and  the  IVs,  to  provide  a  description  of  this
dataset for users.

The  organization  of  the  paper  is  as  follows:  Section  2
describes the coupled model, forcing data, the designed initial
values for the super-large ensemble members, and the meth-
ods.  Section  3  presents  validation  results  of  the  ensemble,
focusing  mainly  on  the  climatology  and  change  in  surface
air  temperature  (SAT)  and  land  precipitation,  but  also  the
Atlantic  meridional  overturning  circulation  (AMOC).
Firstly, the temporal evolution is given for examining the his-
torical and future responses of the ensemble. Secondly, the
simulated historical mean state and changes in SAT and pre-
cipitation extreme events are validated. Meanwhile, the sig-
nal-to-noise  ratio  (S/N)  is  provided  to  illustrate  the  role  of
IVs.  And  thirdly,  the  precipitation  and  low-level  winds  in
the East  Asian monsoon region are  validated.  In  section 4,
projections  in  the  near  term  (2021–40),  middle  term
(2041–60), and long term (2080–99) are provided. Section 5
provides  a  summary.  Section  6  describes  the  data  record.
And lastly, section 7 presents some usage notes. 

2.    Model, experiment, and methods
 

2.1.    Introduction to the model

The  Chinese  Academy  of  Sciences  (CAS)  FGOALS
model,  version  3,  has  three  climate  system model  versions
for CMIP6, developed by the Laboratory of Atmospheric Sci-
ences  and  Geophysical  Fluid  Dynamics  (LASG),  Institute
of  Atmospheric  Physics  (IAP),  CAS.  Among  them,
FGOALS-g3 (Li et al., 2020b) is employed in this study. In
FGOALS-g3,  the  oceanic  component  is  version  3  of  the
LASG-IAP Climate System Ocean Model (LICOM3; Lin et
al.,  2020);  the  atmospheric  component  is  version  3  of  the
Grid-point Atmospheric Model of LASG-IAP (GAMIL3; Li
et  al.,  2020a);  the  ice  component  is  version  4  of  the  Los
Alamos sea ice model (CICE4, http://climate.lanl.gov/Mod-
els/CICE); and the land component is the CAS Land Surface
Model (CAS-LSM; Xie et al., 2020). The spatial resolutions
of  the  model  components  are  listed  in  section  7,  and  other
setup  details  of  FGOALS-g3  are  described  in  Li  et  al.
(2020b).  The  equilibrium  climate  sensitivity  of  FGOALS-
g3 is 2.8 K (Li et al., 2020b). 
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2.2.    Experimental design

The  110-member  historical  experiments  (1850–2014)
and  SSP5-8.5  experiments  (2015–99)  are  performed  using
FGOALS-g3, following the experimental design of CMIP6
(Eyring  et  al.,  2016);  plus,  the  forcings  are  from  CMIP6.
The SSP5-8.5 scenario is chosen because of the large effect
of  high emissions on the AMOC (e.g., Cheng et  al.,  2016)
and  regional  monsoon  precipitation  (Moon  and  Ha,  2020).
Only  the  initial  values  are  different  among  the  members,
and they are chosen from the FGOALS-g3 preindustrial con-
trol  (piControl)  2000-year  simulations.  These  initial  values
are chosen from the last 1101 years (900–2000) of the piCon-
trol simulations (Fig. 1) to perform 110 ensemble historical
experiments  since  the  piControl  experiment  by  FGOALS-
g3  reaches  a  quasi-stationary  state  after  the  first  900  years
of simulations with a slight global-mean SAT linear trend of
−0.015°C  (100  yr)−1 (Li  et  al.,  2020b).  A  smaller  linear
trend  [−0.01°C  (1000  yr)−1]  during  900–2000  is  achieved
(Fig.  1a).  The  ocean  circulation  (AMOC)  has  no  obvious
drift,  with a small linear trend of −0.1 Sv (1000 yr)−1 (Fig.
1b). Here, the macro method (Deser et al., 2020) is applied
to sample possible climate trajectories adequately, as different
oceanic initial conditions strongly influence regional climate
variations (Doblas-Reyes et al., 2013; Hawkins et al., 2016).
In this study, we design a novel macro initialization scheme
that fully considers the effects of decadal to interdecadal vari-
abilities in the climate system, since these have been identified
as possibly important terms for IVs (e.g., Dai and Bloecker,
2019).  At  decadal  to  interdecadal  time  scales,  the  leading
basin-scale climate modes in the Pacific and Atlantic Ocean
are  the  Interdecadal  Pacific  Oscillation  (IPO)  and  Atlantic
Multidecadal Oscillation (AMO), respectively. Additionally,
the  AMOC  is  an  important  driving  source  of  the  AMO
(Zhang  et  al.,  2019).  The  110  initial  values  for  the  super-
large ensemble members are based on 90 pair-wise combina-
tions of the positive, negative, and neutral phase of the IPO
(IPO+,  IPO−,  and  IPO0,  respectively)  and  AMO  (AMO+,
AMO−,  and AMO0),  and 20 different  years  of  strong/weak
AMOC values (AMOC+/AMOC−) from the piControl simula-
tions during model years 900–2000.

A  positive  (+)/negative  (−)  AMO  (IPO)  phase  occurs
when the AMO (IPO) index is larger/smaller than 1.0/−1.0
times  its  standard  deviation  (SD).  An  AMO/IPO  index
value between ± 0.5 SD defines its neutral phase (AMO0 or
IPO0).  The  AMOC  index  is  computed  as  the  maximum
annual meridional streamfunction over 20°–60°N and below
the depth of 500 m in the North Atlantic. A positive (+)/nega-
tive (−) AMOC is defined when the AMOC index is larger
(smaller)  than  35.5  Sv  (1  Sv  =  106 m3 s−1).  According  to
this  definition,  the  110  restart  years  selected  are  provided
for  the  initial  values  of  super-large  ensembles  in Table  1.
For example, the 1019 restart year is in a combined AMO+

and  IPO+ phase,  meaning  the  simulated  data  on  1  January
1019 are used as the input initial field for one of the ensemble
members.  Initialized  by  the  selected  macro  climate  condi-
tions, the historical simulations including 110 members are

performed using the time-varying external forcings of the his-
torical  run  recommended  by  CMIP6 (https://esgf-node.llnl.
gov/search/input4mips/). Every member has its own distinct
initial  value.  The  initial  value  corresponds  to  the  transient
restart field on 1 January of the model year (here, 1 January
is omitted in Table 1). The SSP5-8.5 runs are initialized by
the historical simulation on 1 January 2015 of each member.
The SSP5-8.5 run is driven by the standard SSP5-8.5 external
forcings from CMIP6.

Our novel macro initialization scheme is able to fully con-
sider the possible states of the long-term oceanic IVs (provid-
ing SAT and AMOC), including different phases of the IPO,
AMO, and AMOC. For instance, depending on the phase of
the  AMO,  the  evolution  of  the  AMOC  is  totally  different
(Fig. 1c), and the different evolutions of the AMOC under dif-
ferent AMO phases indicate that the “memory” spans about
three to four decades from the initialization (Fig. 1c), which
is close to that  in CESM2 large ensembles (Rodgers et  al.,
2021).  Besides,  110  members  will  help  to  obtain  more
robust and precise conclusions on matters such as the forced
response to external forcing. Separating the forced response
of SAT to external forcing is used as an example to explain
why  110  members  is  superior  to  using  a  small  number  of
members.  Following  Milinski  et  al.  (2020),  the  ensemble
means of annual global SAT from the 110 members or their
subsets (randomly selecting 1, 5, 10, 25, 50, 75, and 100 mem-
bers from 110) are considered as a reference “true” value of
the forced response and estimated forced responses, respec-
tively.  Then,  the  root-mean-square  error  (RMSE)  between
the  forced  response  estimated  from  each  subset  and  the
“true” forced response value is computed (Fig. S1 in the Elec-
tronic Supplementary Materials, ESM). As shown in the fig-
ure,  the  RMSE  from  a  larger  ensemble  becomes  smaller,
and the spread is smaller too. This indicates that a larger num-
ber of ensemble members can obtain a more accurate quantifi-
cation of the forced response, which is similar to the findings
of Milinski et al. (2020).

Details  of  the  outputs  for  the  atmospheric  and oceanic
component models are given in Tables 2 and 3. The analysis
in this study employs monthly SAT, total precipitation, merid-
ional overturning streamfunction, wind vector fields at 850
hPa,  daily  precipitation,  and  the  daily  SAT  maximum  to
describe and validate the 110 FGOALS-g3 ensemble mem-
bers. 

2.3.    Data

To validate the temperature and precipitation, the SAT
from  HadCRUT5  (Morice  et  al.,  2021),  land  precipitation
data from the monthly analysis (version 2.3) of the Global Pre-
cipitation Climatology Project (GPCP; Adler et al., 2018), ver-
sion  4  of  the  Climatic  Research  Unit  (CRU)  Time  Series
monthly  high-resolution  gridded  multivariate  climate
dataset (Harris et al., 2020), and NOAA’s Precipitation Recon-
struction  over  Land  (PRECL, Chen  et  al.,  2002),  are
employed.

We use  multiple  observational  datasets  to  evaluate  the
simulated  extreme  temperature  and  precipitation.  They
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include: (1) HadEX3, which is a land-surface dataset of cli-
mate  extreme  indices  on  a  1.875°  ×  1.25°  grid  covering
1901–2018 (Dunn et al., 2020); (2) the NOAA Climate Predic-
tion  Center  (CPC)  Global  Telecommunication  System–
based daily SAT over the global land area from 1979 to the
present  day  at  a  0.5°  ×  0.5°  resolution;  and  (3)  the  global

gauge-based gridded daily precipitation from the Global Pre-
cipitation Climatology Centre (GPCC Full Data Daily Prod-
uct) covering 1982–2019 with a resolution of 1° × 1° (Schnei-
der et al., 2014). A common period of 1995–2014 is used to
evaluate the simulated climate extremes.

The  following  two  extreme  indices  defined  by  The

 

 

Fig. 1. (a) Global average SAT (units: °C) and (b) the evolution of the AMOC maximal annual value (units:
Sv)  at  26.5°N  below  500  m  (AMOC  26.5N  Max)  during  model  years  900–2000  in  the  piControl  run  of
FGOALS-g3. The linear trends are denoted in the top right. (c) the simulated historical AMOC 26.5N Max
for  110-member  simulations  in  FGOALS-g3.  The  gray  lines  represent  each  individual  member,  and  the
colored  lines  are  the  ensemble  means  of  10-member  simulations  whose  initial  values  are  chosen  from
different  phases  of  combined  IPO  and  AMO  phases;  for  example,  the  green  (IPO+AMO+)  line  is  the
ensemble mean of  10-member simulations whose initial  value is  chosen from IPO+AMO+.  The black lines
are the 10-member ensemble means of AMOC+ and AMOC− conditions.
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Table  1.   The  initial  values  (transient  branch  model  time)  selected  for  the  super-large  ensemble  historical  members  according  to  the
combined AMO/IPO phases and the AMOC phases from the piControl run. The years of the dates for selected initial values are given for
short since the dates are all fixed on 1 January.

Selected Ocean-state Brach model time (year)

IPO+AMO+ 1019, 1021, 1048, 1051, 1052, 1053, 1054, 1857, 1860, 1985
IPO+AMO- 1118, 1119, 1529, 1530, 1531, 1532, 1533, 1620, 1621, 1622
IPO+AMO0 966, 972, 1243, 1244, 1268, 1269, 1270, 1271, 1790, 1918
IPO-AMO+ 1516, 1517,1727, 1781, 1823, 1826, 1831, 1890, 1895, 1896
IPO-AMO- 1288, 1289, 1336, 1542, 1543, 1545, 1546, 1909, 1938, 1939
IPO-AMO0 1044, 1088, 1208, 1292, 1234, 1307, 1520, 1521, 1632, 1754
IPO0AMO+ 909, 1049, 1050, 1671, 1782, 1783, 1858, 1859, 1891, 1892
IPO0AMO- 1120, 1256, 1343, 1444, 1445, 1547, 1700, 1702, 1703, 1907
IPO0AMO0 1012, 1032, 1108, 1399, 1400, 1439, 1451, 1640, 1882, 1964

AMOC+ 1163, 1365, 1394, 1426, 0913, 1022, 1216, 1361, 1420, 1433
AMOC- 1908, 1701, 1766, 1535, 1537, 1122, 1544, 1549, 1696, 1762,

Table 2.   Output variables from the atmospheric model component of FGOALS-g3.

Name Description Frequency

CONCLD Convective Cloud Cover Monthly
STRATUS The Stratus Cloud Fraction Monthly
CLDTOT Vertically-integrated Total Cloud Monthly
LHFLX Surface Latent Heat Flux Daily, Monthly
SHFLX Surface Sensible Heat Flux Daily, Monthly
FLNS Long Wave Net flux at Surface Daily, Monthly

FLNSC Long Wave Clearsky Net Flux at Surface Daily, Monthly
FLDS Long Wave Downward Flux at Surface Daily, Monthly

FLDSC Long Wave Clearsky Downward Flux at Surface Daily, Monthly
FLUTOA Long Wave Upward Flux at top of Atmosphere (TOA) Daily, Monthly

FLUTOAC Long Wave Clearsky Upward Flux at TOA Daily, Monthly
FSNS Short Wave Net Flux at Surface Monthly
FSDS Short Wave Downward Flux at Surface Daily, Monthly
FSUS Short Wave Upward Flux at Surface Daily, Monthly

FSUSC Clear Sky Short Wave Upward Flux at Surface Daily, Monthly
FSDSC Short Wave Clearsky Downward Flux at Surface Monthly

FSDTOA Short Wave Downward Flux at TOA Daily, Monthly
FSNTOA Short Wave Net flux at TOA Monthly

FSNTOAC Short Wave Clearsky Net Flux at TOA Monthly
SRFRAD Net Radiative Flux at Surface Monthly
RELHUM Relative Humidity Monthly
RHREFHT Near-Surface Relative Humidity Monthly

Q Specific Humidity Daily, Monthly
QFLX Surface Water Flux Monthly
SFQ Q Surface Flux Monthly

QREFHT Near-Surface Specific Humidity Monthly
CMFMC Moist Convection Mass Flux Monthly
PRECC Convective Precipitation Rate Daily, Monthly
PRECL Large-scale (stable) Precipitation Rate Monthly
PRECT Total Precipitation Rate Daily, Monthly

PS Surface Pressure Daily, Monthly
PSL Sea level Pressure Daily, Monthly
U/V Zonal/Meridional Wind Daily, Monthly

U200/V200 Zonal/Meridional Wind at 200 mbar Pressure Surface Monthly
U850/V850 Zonal/Meridional Wind at 850 mbar Pressure Surface Monthly

OMEGA Vertical velocity (pressure) Daily, Monthly
Z500 Geopotential Height at 500 mbar Pressure Surface Monthly
TS Surface Temperature Daily, Monthly

TREFHT Surface Air Temperature Daily, Monthly
TREFMNAV Daily TREFHT minimum Daily
TREFMXAV Daily TREFHT maximum Daily

T Temperature Daily, Monthly
TAUX Zonal Surface Stress Monthly
TAUY Meridional Surface Stress Monthly
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Expert Team Climate Change Detection and Indices (Zhang
et al., 2011) are used in this study: (a) extreme high tempera-
ture events, defined as the annual hottest daily maximum tem-
perature  (TXx);  and  (b)  extreme  precipitation  events,
defined  as  the  annual  maximum  daily  precipitation
(Rx1day).
 

2.4.    Methods

(SATM,t)

Following  the  definition  of  previous  studies  (e.g.,  Dai
and Bloecker, 2019; Maher et al., 2019), and taking SAT as
an example, since the external forcing is identical in all mem-
bers, the transient forced response  is estimated by
taking  the  ensemble  mean  across  members  at  each  time
step:
 

SATM,t=
1
Nm

Nm∑
m=1

SATm,t , (1)

SATm,t

t

SATM,t

where  is from an individual member with ensemble
numbers Nm at time step . Here, Nm is 110. The estimations
of  the  forced  response  for  other  variables  are  similar  to

.
The  IV is  defined  as  1  standard  deviation  (SD)  across

the ensemble members. The SD is calculated using the follow-
ing formula:
 

SD=

√√√
1
Nm

Nm∑
m=1

(SATm,t-SATM,t)2 . (2)

We also use a simple S/N analysis to assess the relative
magnitudes  of  the  forced  and  internally  generated  compo-
nents  of  future  climate  change.  Here,  the  signal  is  the
change in the forced response between two time periods and
is  defined  as  the  absolute  change  in  the  ensemble-mean
value of a variable across ensembles, and noise is defined as
1 SD across ensemble members of this variable at each grid
point: 

S/N =

∣∣∣∣∆SAT∣∣∣∣√
1
Nm
∑Nm

m=1 (∆SATm−∆SAT)
2
, (3)

∆SAT= 1
Nm
∑Nm

m=1∆SATm ∆SATm=SATm,t1−SATm,t2

SATm,t1 SATm,t2 SATm,t

t1 t2

where , ,
and  ( ) is the time average of  over a
time period  ( ). It is clear that the signal is significant on
the condition that S/N is larger than one.

The pattern correlation coefficient  (PCC) calculated in
this study is the Pearson product-moment coefficient of linear
correlation between two datasets. For the Pearson correlation
coefficient,  the  linear  change  in  the  two  variables  will  not
change  its  value.  A  high  correlation  coefficient  does  not
mean  two  variables  are  exactly  the  same;  rather,  that  the
two variables have the same spatial gradient. 

Table 3.   Output variables from the oceanic model component of FGOALS-g3.

Name Description Frequency

runoff Runoff from Land Monthly
net1 Net Surface Heat Flux Monthly
mld Mixed Layer Depth Monthly
ifrac Sea Ice Concentration Monthly
lthf Latent Heat Flux Monthly
sshf Sensible Heat Flux Monthly
lwv Longwave Monthly
swv Shortwave Monthly
bsf Barotropic Stream Function Monthly

mth_adv Euler Meridional Tracer Transport Monthly
mth_adv_iso Eddy-induced Meridional Tracer Transport Monthly

mth_dif Diffusion-induced Meridional Tracer Transport Monthly
psi_euler Meridional Stream Function for Euler Velocity Monthly
psi_eddy Meridional Stream Function for Eddy-Induced Velocity Monthly

us Zonal Current Monthly
vs Meridional Current Monthly
ws Vertical Current Monthly
su Windstress for X-axis Monthly
sv Windstress for Y-axis Monthly
ss Salinity Monthly
ts Temperature Monthly
z0 Sea Surface Height Monthly
tos Sea Surface Temperature Daily

omldamax Daily Maximum Mixed Layer Daily
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3.    Validation
 

3.1.    Temporal  evolution of  SAT, land precipitation,  and
AMOC

Figure  2a shows the  average  of  the  annual  mean  SAT
anomalies over the global (relative to 1961–90) time series
from historical simulations (1850–2014) and SSP5-8.5 simula-
tions  in  the  future  (2015–99)  from  the  FGOALS-g3  large

ensemble simulations. The evolution of every individual mem-
ber and the super-large ensemble mean of FGOALS-g3 resem-
bles that of HadCRUT5 well.  The observed average global
SAT anomalies (red line in Fig. 2a) fall within the spread of
the FGOALS-g3 ensemble members (gray shaded region in
Fig. 2a). During 1850–1950, it seems that the global SAT in
the super-large ensemble of FGOALS-g3 is lower than that
in  the  observation.  The  observed  global  SAT  lies  in  the
upper bounds of the super-large ensemble of FGOALS-g3.

 

 

Fig.  2. (a)  Globally  averaged  annual  SAT  anomaly  relative  to  1961–90;  (b)  precipitation  averaged  over
global  land  areas;  and  (c)  the  maximal  AMOC at  26.5°N during  the  historical  (1850–2014)  and  SSP5-8.5
(2015–99)  period.  Thick  black  lines  denote  the  ensemble  means  of  the  FGOALS-g3  super-large  ensemble
simulations,  and  every  gray  line  denotes  the  individual  members.  The  thick  colored  lines  in  (b)  denote
observations from CRU/PRECL and GPCP, respectively. The dashed red lines during 2015–99 in (a) and (b)
are  the  ensemble  mean  of  multiple  CMIP6  models  (Table  S1)  under  the  SSP5-8.5  scenario.  The  pink
shadings show the spread of multiple CMIP6 models.
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During 1939–45, due to the scarce observations at that time,
a  systematic  warming bias  exists  (e.g., Chan  and  Huybers,
2021). Meanwhile, some studies have mentioned that observa-
tional datasets possess large uncertainty pre-1945 (Kennedy,
2014; Kennedy et al., 2019; Morice et al., 2021). Thus, we
do not know whether the cold global SAT in the ensemble
mean of the FGOALS-g3 super-large ensemble is real during
1850–1950.  The ensemble  mean simulates  global  warming
with a magnitude of about 1.18°C (with an ensemble spread
of  1.07°C–1.29°C)  in  1995–2014  relative  to  1850–1900,
which is slightly larger than 1.1°C from HadCRUT5. During
1950–2014, the evolution of the super-large ensemble mean
matches  very  well  with  that  of  the  observation,  indicating
that  the  global  SAT  response  to  external  forcing  in
FGOALS-g3 is very realistic.

The averages of the annual mean precipitation over the
global  land  area  from  the  ensemble  simulations  and  three
sets of observations are displayed in Fig. 2b. The ensemble
mean  of  the  simulated  global  land  precipitation  shows  a
small  increasing trend,  as  in  CRU, during 1900–2014.  The
ensemble mean is able to capture the observed values (CRU
and GPCP), but with some underestimations.  The averages
of global land precipitation from CRU and GPCP fall within
those  of  the  simulated  ensemble  members  generally,  and
both the simulated and observed land precipitation values pos-
sess  large  uncertainties.  Before  satellite  observations
became available (i.e., ~1980), the global land precipitation
shows large uncertainty across the three datasets (maximum
of ~0.15 mm d−1). The uncertainty is about half of the ensem-
ble spread across members (~0.3 mm d−1).

The  AMOC can  significantly  influence  the  climate  by
transporting  large  quantities  of  ocean  heat  poleward  (e.g.,
Buckley  and  Marshall,  2016; Liu  et  al.,  2020). Figure  2c
shows  the  time  series  from  1850  to  2099  of  the  maximal
annual mean AMOC at 26.5°N for the large ensemble mem-
bers.  The  ensemble  mean  of  the  simulated  AMOC  across
the  members  is  25.88  Sv  (with  an  ensemble  spread  from
21.73  Sv  to  28.95  Sv),  which  is  an  overestimation  of  the
observed value (16.9 Sv; Smeed et al.,  2018) from 2004 to
2014.  Meanwhile,  during  1850–1980,  the  ensemble  mean
AMOC kept its amplitude of 28 Sv and displayed no obvious
declining  trend.  After  1980  and  up  to  2014,  the  AMOC
presents  a  noticeable  declining  trend  of  about  0.7  Sv
(10  yr)−1.  The  simulated  AMOC intensity  is  overestimated
in  FGOALS-g3,  which  suggests  a  systematic  AMOC  bias
exists in the coupled model. By contrast, the oceanic compo-
nent  (LICOM3)  of  FGOALS-g3,  forced  by  two  different
atmospheric and runoff datasets,  can simulate the observed
AMOC  well  at  26.5°N  (Lin  et  al.,  2020).  Therefore,  the
AMOC bias in FGOALS-g3 may be related to the interaction
with atmospheric or sea ice components, which needs to be
studied further. 

3.2.    Climatology and change in SAT and precipitation

Figures 3a and b show the mean SAT in HadCRUT5 dur-
ing 1961–90 and the ensemble mean SAT bias relative to Had-
CRUT5. The large-scale spatial features of SAT are simulated

well, with a PCC of 0.99 between the observation and ensem-
ble  mean.  However,  there  are  systematic  biases  in  some
regions  (marked  with  dots  in Fig.  3b).  The  larger  cold
biases  mainly  lie  to  the  north  of  60°N and  to  the  south  of
60°S, around high terrain in plateau or mountainous regions
(e.g.,  the  Tibetan  Plateau).  The  global  mean  SAT  for  the
ensemble mean is −0.71°C lower than that for HadCRUT5,
and  this  is  mainly  due  to  the  cold  SAT  around  the  north
Pacific, the Arctic Ocean, and the Southern Ocean close to
the  Antarctic  Continent.  A  similar  cold  bias  pattern  also
exists  in  the  ensemble  mean  relative  to  BEST  (Rohde  and
Hausfather,  2020),  although  there  are  uncertainties  in  the
observed  SAT  at  high  latitudes.  These  cold  biases  also
appear  in  several  other  models,  such  as  CESM1,  CSIRO,
and  EC-earth3  (Jeffrey  et  al.,  2013; Kay  et  al.,  2015;
Döscher et al., 2021). In terms of the global mean, the ensem-
ble  mean  using  FGOALS-g3  has  the  smallest  bias  among
these ensembles  from different  coupled models  (Fig.  S2 in
the ESM), but the cold biases at high latitudes in FGOALS-
g3 seem more severe than those in other  models.  The cold
biases  at  high  latitudes  in  the  FGOALS-g3  ensemble  may
be related to the surface albedo, or downward solar radiation
associated  with  cloud  cover  (e.g., Zhou  et  al.,  2019).  The
bias in surface albedo in the Arctic Ocean may be associated
with the bias in sea ice, and the bias at the land surface may
be associated with snow parametrization (Li et al., 2020b).

The  SAT  changes  (1995–2014  minus  1961–90)  are
shown for HadCRUT5 in Fig. 3c, and the ensemble mean is
shown in Fig. 3d. The change in SAT also reflects the trend.
The  observed  change  in  SAT  shows  significant  warming
(>0.5°C)  over  the  continent  and  the  North  Atlantic  Ocean,
and the largest warming (>1.5°C) takes place over the Arc-
tic, while there is cooling over the Southern Ocean close to
the  Antarctic  continent.  The  observed  change  in  SAT  in
Fig.  3c is  captured  well  by  some  individual  members,
except over the central-eastern tropical Pacific between 180°
and 120°W, and over the Southern Ocean close to the Antarc-
tic continent. The ensemble mean change in SAT (Fig. 3d)
captures  the  observed  change  well,  with  a  PCC  of  0.86.
Large changes (warming) also appear over the Arctic Ocean
in  the  ensemble  mean,  and  this  warming  should  be  due  to
external  forcings  since  the  S/N  is  larger  than  one  for  the
ensemble  mean.  Over  the  Eurasian  continent,  relatively
weaker warming is located over its central part in the observa-
tion,  whereas  weaker  warming  is  located  over  its  eastern
parts in the ensemble mean. Meanwhile, over the eastern-cen-
tral  tropical  Pacific  and  the  Southern  Ocean  close  to  the
Antarctic continent, the warming is larger based on the ensem-
ble mean than it is in the observed data. Around the subpolar
North  Atlantic,  IVs  strongly  influence  the  change  in  SAT.
The model fails to simulate the weaker warming in the cen-
tral-eastern tropical Pacific between 180° and 120°W, or the
cooling over the Southern Ocean close to the Antarctic conti-
nent, since the S/N ratios are larger than one and the observa-
tion  is  located  outside  all  of  the  FGOALS-g3  super-large
members.
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As previously stated by Bindoff and Min (2013), observa-
tions  show  the  phenomenon  of  amplified  warming  in  the
regions of high latitudes (especially around the Arctic); and
here, larger changes in SAT are found at high latitudes com-
pared  with  low  latitudes  during  1995–2014  relative  to
1961–90 (Fig. 3c). This observed phenomenon is generally
reproduced by the ensemble mean of the FGOALS-g3 super-
large ensemble simulations, but with significant underestima-
tion in magnitude (Fig. 3d). Previous studies have suggested
a  strong  influence  of  IVs  on  SAT change  at  high  latitudes
(Meehl  et  al.,  2014, 2016; Dai  et  al.,  2015).  To  illustrate
whether IVs can influence the observed warming magnitude
around the Arctic, we present the results of the two individual
members with the lowest  and largest  SAT change (relative
to 1961–90) averaged over the regions north of 60°N across
ensemble  members  in  1995–2014  (Figs.  3e and  f,  respec-

tively).  The  average  changes  in  SAT  north  of  60°N  are
0.41°C  (Fig.  3e)  and  1.87°C  (Fig.  3f),  respectively.  The
largest  (lowest)  SAT  change  averaged  over  the  regions
north  of  60°N  is  significantly  higher  (still  lower)  than  the
change  over  the  globe,  with  the  value  of  0.71  (0.49)  in
Fig.  3f (Fig.  3e).  Thus,  the  phenomenon  of  polar  amplifi-
cation in the observation can be captured in some FGOALS-
g3 members (Fig. S3 in the ESM), but with large IVs. This
weak polar amplification in FGOALS-g3 may be related to
the  cold  bias  (inducing  positive  feedback  with  surface
albedo  due  to  excess  sea  ice)  around  the  Arctic  as  well  as
the strong AMOC.

Figures  4a and b show  the  climatological  mean  land
precipitation  in  observations  (CRU)  averaged  during
1961–90 and the bias of  the ensemble mean relative to the
observations. In the observations, the land precipitation belt

 

 

Fig. 3. The climatological mean SAT in (a) HadCRUT5 during 1961–90 and (b) the SAT bias of the ensemble mean
(Ens-mean) of super-large ensemble simulations. The mean SAT bias is shown in the top right of the panel. The PCC
between the observation and Ens-mean is also shown. The places where yearly mean observed SAT values are not in
the  ensemble  spread  of  yearly  mean  SAT  from  FGOALS-g3  super-large  ensemble  for  1961–90  are  dotted  in  (b),
indicating  significant  model  systematic  error.  The  change  in  SAT  between  1995–2014  and  1961–90  for  (c)
HadCRUT5 and (d) Ens-mean. The PCC between (c) and (d) is shown at the top of (d). The dots in (c) indicate the
observed value can be reproduced by at least one ensemble member at this grid point. The dots in (d) denote S/N >1
at that grid point. The members that have the lowest (e) and highest (f) warming values over the Arctic, respectively.
The Arctic/global warming value is computed by the area-weighted SAT change between 1995–2014 and 1961–90
over the area north of 60°N/the globe. Units: °C.
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is  mainly  located  in  the  tropics,  such  as  the  monsoon
regions and the Amazon. This distribution is similar to the ref-
erence values from other observational datasets (GPCP and
PRECL). The observed large-scale spatial pattern and magni-
tude of land precipitation are captured well by the ensemble
mean; the PCC between the observation and ensemble mean
is  0.81.  The  averaged  bias  of  global  land  precipitation  is
0.07  mm  d−1.  The  simulated  land  precipitation  is  clearly
underestimated  over  land  in  the  tropics  (30°S–30°N)  (Fig.
4b),  and the geographical  pattern of  land precipitation bias
is similar to CESM2 (Danabasoglu et al., 2020). A dry bias
is located over land over South Asia, South America, and cen-
tral Africa, and is related to convective and large-scale precipi-
tation biases (Pathak et al., 2019). Additionally, the simulated
land precipitation is overestimated over high terrain, such as
plateau  or  mountain  regions  (e.g.,  the  Tibetan  Plateau,
Andes,  Rocky  Mountains),  and  the  Maritime  Continent,
where the bias is associated with the model resolution (Schie-
mann et al., 2014).

Figures 4c and d show the changes in land precipitation
(1995–2014  relative  to  1961–90)  in  the  observation  and
ensemble mean, respectively. The observed land precipitation
falls  within  almost  all  of  the  ensemble  members  (dotted in
Fig. 4c), which indicates the change in precipitation can be
captured by more than one FGOALS-g3 super-large ensem-
ble member. The super-large ensemble members cannot simu-
late the observed precipitation change in some places, such
as the northeast corner of China, the northeast part of Green-
land,  and  western  Africa  in  the  tropics.  In  the  ensemble
mean, the change in precipitation is affected greatly by IVs
covering most of the tropics south of 60°N (no dots in Fig.
4d), except the southern branch of the Intertropical Conver-

gence  Zone  (ITCZ).  In  the  middle-to-high  latitudes  of  the
Northern Hemisphere,  the  change in  precipitation could be
associated with the change in external forcing in the ensemble
mean.  Still,  the  response  is  very  weak  compared  with  that
over the tropical oceans.

The simulated changes in annual  global  SAT and land
precipitation  (1995–2014  minus  1961–90)  are  compared
with  those  in  the  observational  data  (Fig.  S4  in  the  ESM).
The results show that the ensemble change spreads are large
enough  to  cover  the  observed  SAT  and  land  precipitation
change  over  the  globe.  The  spread  for  land  precipitation
shows better coverage than that for the SAT over the globe. 

3.3.    Climatology of the Asian summer monsoon

Over  the  Asian  monsoon  region,  the  climatological
mean precipitation and 850-hPa winds during 1995–2014 in
boreal summer (June–July–August) simulated by the super-
large ensemble members of FGOALS-g3 are assessed by com-
paring with the observational and reanalysis data (Figs. 5a,
c,  and e).  The  distribution  of  precipitation  is  captured  but
with obvious underestimation in most of the Asian monsoon
region,  except  the  southeastern  Tibetan  Plateau  and  South
China Sea (Fig. 5e). The PCCs of precipitation in the monsoon
region  between  the  110  members  and  GPCP  range  from
0.28 to 0.32, whereas for the 850-hPa wind in (10°S–60°N,
60°–160°E)  they  are  much  higher,  ranging  from  0.90  to
0.92. The correlation coefficients between the PCCs of precip-
itation  and  those  of  low-level  winds  across  members  are
close to zero. Therefore, the local biases in monsoon precipita-
tion  cannot  be  explained  by  the  low-level  winds  and  may
instead  be  rooted  in  the  convective  parameterization
schemes,  treatment  of  topographic  effects,  and  boundary

 

 

Fig. 4. Similar to Fig.  3 but for precipitation.  The observed land precipitation is  from CRU. The 0.02 in (c) is  the
average global land precipitation change, and the 0.02 (0.03) in (d) is the average global land (global) precipitation
change. The dots in (c) indicate the observed value can be reproduced by at least one ensemble member at this grid
point, and the dots in (d) denote S/N > 1 at that grid point. Units: mm d−1.
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layer processes (Yang et al., 2019; Li et al., 2020b).
 

3.4.    Climatology of climate extremes

Next, we compare the annual hottest daily maximum tem-
perature (TXx) between the ensemble members and observa-
tions  from  HadEX3  and  CPC  over  the  period  1995–2014
(Figs.  6a–c).  Over  land,  in  both  HadEX3  and  CPC,  TXx
exhibits  an  overall  latitudinal  structure,  with  generally

warmer values in the tropics and cooler values in the northern
high  latitudes  and  mountainous  regions.  The  FGOALS-g3
ensemble reproduces the spatial distribution of TXx reason-
ably well, with a pattern correlation of 0.99 with CPC over
land. The ensemble slightly underestimates the simulated mag-
nitude  of  TXx,  which  is  33.90°C  (10th–90th  percentile
range of 33.84°C–33.97°C) in the ensemble and 35.51°C in
the CPC dataset over global land areas.

 

 

Fig.  5. Present  climatology  and  future  projection  of  precipitation  and  850-hPa  winds  of  the  Asian  summer
(June–July–August) monsoon under the SSP5-8.5 scenario. (a) Mean state of precipitation from GPCP and 850-hPa
winds  from  ERA5  during  1995–2014.  (c)  As  in  (a)  but  for  the  ensemble  mean  of  FGOALS-g3  110-member
historical  simulations.  (e)  The  differences  between  (c)  and  (a),  in  which  dotted  shading  and  arrows  show  where
observational precipitation and winds (at least one direction) are outside the range of the 110 members. Panels (b),
(d),  and  (f)  represent  the  near-term,  mid-term,  and  long-term  projections,  respectively,  relative  to  the  mean  of
1995–2014, in which dotted shading and arrows show where the S/N ratio is larger than one. The domain encircled
by the thick gray line is higher than 2500 m, indicating the location of the Tibetan Plateau. The domain of the Asian
summer monsoon is shown by the red contour, based on the definition by Wang and Ding (2008), which is composed
of the East Asian, South Asian, and western North Pacific monsoons (divided by the dashed red line).

1756 LARGE ENSEMBLE EXPERIMENTS OF CAS FGOALS-G3 VOLUME 39

 

  



To evaluate the simulated extreme precipitation, we com-
pare  the  annual  maximum  daily  precipitation  (Rx1day)
between  the  ensemble  members  and  observations  from
HadEX3 and GPCC over the period 1995–2014 (Figs. 7a–c).
Climatologically,  extreme  precipitation  in  both  HadEX3
and GPCC is generally stronger in the tropics and monsoon
regions than over the rest of the land areas. The FGOALS-
g3 ensemble is able to reproduce the large-scale spatial distri-
bution of extreme precipitation, with a pattern correlation of
0.90  with  CPCC  over  land.  The  ensemble  underestimates
the  simulated  magnitude  of  Rx1day,  which  is  39.70  mm
(10th–90th  percentile  range  of  39.44–39.92  mm)  in  the
ensemble and 49.20 mm in the GPCC dataset for the average
over global land areas. It is common that global climate mod-
els generally underestimate the magnitude of extreme precipi-
tation  (Flato  et  al.,  2013),  which  is  partly  related  to  model
physics  such  as  convection  parameterization,  and  partly  to
their coarse spatial resolutions (Kopparla et al., 2013; Norris

et al., 2021). 

4.    Projection
 

4.1.    Temporal evolutions in future projections

Under  the  SSP5-8.5  scenario,  warming  is  projected  to
increase  globally  (Fig.  2a and Fig.  8).  In  the  FGOALS-g3
ensemble mean, the change in SAT averaged over the globe
is  0.50°C  (0.23°C–0.66°C),  1.10°C  (0.93°C–1.22°C),  and
2.59°C  (2.46°C–2.75°C)  during  2021–40,  2041–60,  and
2080–99 relative to that during 1995–2014, respectively. By
the  end  of  the  21st  century,  the  change  in  SAT  averaged
over the globe is projected to reach about 3.6°C in the ensem-
ble  mean,  which  is  close  to  the  magnitude  (3.8°C)  in  the
Max Planck Institute Grand Ensemble (Maher et al., 2019).
The  projected  ensemble  mean  future  warming  over  the
globe  in  the  FGOALS-g3  super-large  ensemble  lies  within

 

 

Fig. 6. Extreme high temperature events (annual hottest daily maximum temperature, TXx) simulated by FGOALS-
g3. (a–c) Climatology of TXx in observations from HadEX3 (a) and CPC (b), and the model ensemble median from
110 members (c) over 1995–2014 (units: °C). Note that the HadEX3 and CPC datasets cover land only. In HadEX3,
only regions where at least 50% of records are temporally complete are shown. (d–f) Projected changes in TXx in the
near-term (d), mid-term (e), and long-term (f) periods (units: °C). Shading shows model ensemble medians. Dots and
hatching indicate at least 70% and 90% of members agree on the sign of change, respectively.
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the  spread  of  multiple  CMIP6  models  (Table  S1  in  the
ESM), but at  lower spread bounds (Fig.  2a).  The spread in
the FGOALS-g3 super-large ensemble is much smaller than
that in multiple CMIP6 models.

Under the SSP5-8.5 scenario, the global land precipita-
tion  is  projected  to  increase  continuously  during  2015–40,
and  then  increase  much  more  obviously  thereafter.  The
increase in global land precipitation reflects the response to
external  forcing,  and  this  can  also  be  affected  by  the  IVs.
Maher et al. (2019) suggested that the increase in global pre-
cipitation  is  correlated  with  the  increases  in  average  SAT
and CO2 over  the  globe.  Additionally,  the  IV (gray  spread
in Fig. 2b) can influence global land precipitation, both histor-
ically and in the future. This implies that the IVs need to be
considered in future projections of precipitation. The super-
large ensemble members help to quantify the IVs and there-
fore future projections of precipitation. The projected ensem-

ble mean of land precipitation in the future over the globe in
the  FGOALS-g3  super-large  ensemble  lies  within  the
spread of  multiple  CMIP6 models  (Fig.  2b).  The projected
ensemble  mean  and  spread  of  land  precipitation  in  the
FGOALS-g3  super-large  ensemble  are  both  smaller  than
those in multiple CMIP6 models.

Under the SSP5-8.5 scenario, the declining trend of the
AMOC is much more obvious than that during 1980–2014,
and the value is  about 1.2 Sv (10 yr)−1 during 2015–99. In
multiple CMIP6 models, a significant decline in the AMOC
is also projected to appear in the 21st century (Weijer et al.,
2020), largely due to the rapid warming caused by continuous
emissions  of  CO2 (Maher  et  al.,  2019; Dima  et  al.,  2021).
The  evolution  of  the  spread  of  members  resembles  that  of
the  ensemble  mean  AMOC,  with  no  decline  during
1850–1980 and a decline during 1980–2099. This temporal
change  in  the  behavior  of  the  spread  was  also  reported  in

 

 

Fig. 7. Extreme precipitation events (annual maximum daily precipitation, Rx1day) simulated by FGOALS-g3. (a–c)
Climatology of Rx1day in observations from HadEX3 (a) and GPCC (b), and the model ensemble median from 110
members (c) over 1995–2014 (units: mm). Note that the HadEX3 and GPCC datasets cover land only. In HadEX3,
only regions where at least 50% of records are temporally complete are shown. (d–f) Projected changes in Rx1day in
the  near-term  (d),  mid-term  (e),  and  long-term  (f)  periods  (units:  %  relative  to  the  1995–2014  baseline).  Shading
shows model ensemble medians. Dots and hatching indicate at least 70% and 90% of members agree on the sign of
change, respectively.
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CMIP5 and CMIP6 models by Cheng et al. (2016). 

4.2.    Future changes in SAT and precipitation

Under  the  SSP5-8.5  scenario,  in  the  near-term
(2021–40), mid-term, and long-term projections, the ensem-
ble mean of the FGOALS-g3 super-large ensemble members
shows  continuous  warming  in  most  global  areas,  and  the
warming  patterns  remain  almost  unchanged  relative  to
1995–2014  (Figs.  8a–c).  The  projected  warming  exceeds
the effect of IVs. In the mid-term and long-term projections,
the warming amplification over the Arctic Ocean is obvious,
and  the  warming  is  projected  to  extend  southward  to  the
Eurasian continent. In the tropics, El Niño-like patterns are
found  and  are  consistent  in  the  near-term,  mid-term,  and
long-term projections. Under the SSP5-8.5 scenario, the cool-

ing remains the same as that during 1995–2014 in the subpolar
gyre  in  the  North  Atlantic.  The  cooling  is  affected  greatly
by  IVs  in  the  near  term but  is  beyond  the  IVs  in  the  mid-
term and long-term projections. The cooling is due to the sig-
nificantly weakened AMOC in the mid-term and long-term
projections (Fig. 2c), as indicated by previous studies (Dri-
jfhout  et  al.,  2012; Rahmstorf  et  al.,  2015; Bellomo  et  al.,
2021).

Under  the  SSP5-8.5  scenario,  the  most  significant
changes  are  projected  to  occur  in  the  tropics  (a  southern
branch  of  the  ITCZ)  in  the  near  term  (2021–40),  middle
term (2041–60), and long term (2080–99). The response pat-
tern in Fig. 8 is similar to the projection of zonally contrasting
shifts  in  the  ITCZ  in  CMIP6  (Mamalakis  et  al.,  2021).  In
the  middle-to-high  latitudes  of  the  Northern  Hemisphere,
the  projected  change  in  precipitation  could  be  associated
with  the  change  in  external  forcing  in  the  ensemble  mean,
but the precipitation response is weak. In the near term, the
ensemble  mean  shows  that  the  change  in  precipitation  is
affected  greatly  by  IVs  covering  most  regions  within  60°
S–60°N  except  the  equator  (no  dots  in Fig.  9a),  similar  to
the change during 1995–2014 relative to 1961–90 (Fig. 4d).
In the middle term, the effect of IVs on the change in precipi-
tation  reduces  greatly  south  of  60°N,  since  the  >  1  S/N
ratios extend to cover the whole equatorial belt and over the
Indian Ocean (Fig.  9b).  In  the  long term,  the  effect  of  IVs
on the change in precipitation reduces further south of 60°N.
The IVs have a large impact on the change in precipitation
in the areas between 10°–30°N and between 50°–30°S, such
as  in  the  subtropical  Pacific,  small  regions  of  the  Indian
Ocean and Atlantic Ocean, the South China Sea, land areas
in southern China, and western Africa. 

4.3.    Future change in the Asian summer monsoon

In  both  the  near-term  and  mid-term  projections,  the
FGOALS-g3  ensemble  mean  shows  drying  in  most  of  the
South Asian monsoon region but wetting over the southeast-
ern  Tibetan  Plateau  and  Bay  of  Bengal;  while  for  the  East
Asian monsoon,  it  presents  wetting in the north but  drying
in the south, and for the western North Pacific monsoon, wet-
ting  dominates  (Figs.  5b and d).  However,  most  of  these
changes are weak relative to the strong IVs (S/N < 1). Similar
to the change in precipitation, significant low-level circula-
tion changes emerge only over South Asia and the western
North Pacific (in the mid-term projection; Fig. 5d). Anticy-
clonic  changes  over  South  Asia  due  to  the  weakened
Walker circulation under warming could impair the effect of
increased moisture on precipitation (Chen and Zhou, 2015).
In contrast to other places in the monsoon region, the robust
strengthening  of  precipitation  over  the  Tibetan  Plateau
begins  as  early  as  in  the  near-term projection  (Figs.  5b, d,
and f). In the long-term projection, the increase in precipita-
tion in the wetting regions becomes more robust and the dry
regions shrink. 

4.4.    Future change in climate extremes

Under the SSP5-8.5 scenario, TXx is projected to warm
continuously over the globe, except in the North Atlantic sub-

 

Fig. 8. The projected change in SAT between (a) 2021–40, (b)
2041–60,  and  (c)  2080–99  under  the  SSP5-8.5  scenario  and
1995–2014.  The  dots  denote S/N >1  at  this  grid  point.  The
average  change  in  SAT  over  the  globe  (GM)  and  the  PCC
between future SAT change and Fig.  2d are shown in the top
right corner. Units: °C.
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polar gyre region (Figs. 6d–f), which is consistent with the
projected mean temperature changes (Fig. 8). The global pat-
tern  of  changes  in  extreme  high  temperature  projected  by
the FGOALS-g3 ensemble is generally consistent with that
in the multiple CMIP6 models, pointing to a faster warming
over  land  than  over  ocean  [see  Fig.  11.11  in  IPCC  AR6
(Seneviratne et al., 2021)]. Averaged over global land areas,
TXx is projected to warm by 0.63°C (0.54°C–0.76°C), 1.39°C
(1.28°C–1.46°C),  and 3.24°C (3.14°C–3.32°C) in the near-
term,  mid-term,  and long-term periods,  respectively,  above
the 1995–2014 level in the FGOALS-g3 ensemble.

As global warming continues in the future, extreme pre-
cipitation  is  projected  to  increase  over  most  regions  of  the
globe, with decreases confined to some subtropical regions
(Figs. 7d–f). The global pattern of changes in extreme precipi-
tation  projected  by  the  FGOALS-g3  ensemble  is  generally
consistent with that in the multiple CMIP6 models [see Fig.

11.16  in  IPCC  AR6  (Seneviratne  et  al.,  2021)].  Averaged
over  global  land  areas,  Rx1day  is  projected  to  increase  by
1.47% (0.56%–2.34%), 4.31% (3.30%–5.07%), and 12.24%
(11.24%–13.12%)  in  the  near-term,  mid-term,  and  long-
term  periods,  respectively,  under  the  SSP5-8.5  scenario
above the 1995–2014 level in the FGOALS-g3 ensemble. 

5.    Summary

A super-large  ensemble  simulation  with  110  members
has  been  carried  out  by  using  the  fully  coupled  model
FGOALS-g3  developed  at  the  IAP,  CAS.  The  simulation
has the largest realizations to date from the perspective of sin-
gle-model initial-condition large ensembles and is regarded
as a major contribution from the Chinese climate modeling
community to global climate research. The simulation covers
both the historical climate, starting from 1850, and a future
projection  up  to  2099  under  SSP5-8.5.  The  FGOALS-g3
super-ensemble  can  be  used  for  studying  climate  change,
including  the  response  of  external  forcings  and  the  role  of
IVs.

FGOALS-g3  can  reproduce  the  historical  evolution  of
average  SAT  over  the  globe  well  during  1850–2014.  The
large-scale spatial features of SAT are simulated well. How-
ever, there are systematic biases in some regions. The larger
cold biases mainly lie to the north of 60°N (over the Arctic
Ocean)  and  to  the  south  of  60°S,  around  high  terrain  like
plateau or mountainous regions.

The observed change in  SAT between 1995–2014 and
1961–1990  is  captured  by  the  FGOALS-g3  ensemble  but
with  large  IVs  in  the  North  Atlantic  Ocean  subpolar  gyre.
The  polar  warming  amplification  (the  warmest  change)  in
the  Arctic  Ocean  can  be  captured  in  some  members,  and
large  IVs  exist.  The  ensemble  mean  underestimates  the
polar warming amplification in the high latitudes of the North-
ern Hemisphere (over the Arctic Ocean) during 1995–2014.
This  underestimation  may  be  related  to  the  climatological
mean cold bias and excess sea ice there.

The  evolution  of  average  historical  land  precipitation
over the globe can be captured by the FGOALS-g3 ensemble
mean. The observed distribution of precipitation over global
land areas can be captured by the ensemble mean, including
the  tropical  land  precipitation  belt  in  the  monsoon  regions
and the Amazon. The simulated land precipitation is clearly
underestimated over land in the tropics (30°S–30°N) and over-
estimated  over  high  terrain  like  plateau  or  mountainous
regions and the Maritime Continent.

The  change  in  the  distribution  of  land  precipitation
between  1995–2014  and  1961–90  is  significantly  uneven
and with very large IVs. The possible increase in precipitation
is located in the high latitudes.

In terms of extreme highs in SAT and precipitation during
1995–2014,  the FGOALS-g3 ensemble captures the spatial
features well, albeit with some underestimations. Over land,
the hottest temperature exhibits an overall latitudinal struc-
ture, being generally warmer in the tropics and cooler in the
northern high latitudes and mountainous regions in both obser-

 

Fig.  9. Similar  to  Fig.  8  but  for  precipitation.  The  average
precipitation  change  over  the  globe  (GM)  and  the  PCC
between future precipitation change and Fig.  4d are shown in
the top right corner. Units: mm d−1.
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vations and the FGOALS-g3 ensemble. Extreme precipitation
is  generally  stronger  in  the  tropics  and  monsoon  regions
than over the rest of the land areas in both observations and
the FGOALS-g3 ensemble.

Under  the  SSP5-8.5  scenario,  the  patterns  of  change
remain  almost  unchanged  relative  to  1995–2014  in  the
FGOALS-g3 ensemble  mean in  the  near,  middle,  and long
term. In the middle and long term, the polar warming amplifi-
cation in the Arctic Ocean becomes more obvious. At these
scales, the obvious cooling in the North Atlantic Ocean subpo-
lar  gyre  is  due  to  the  significantly  weakened  AMOC.  The
extreme high SAT is projected to warm continuously as the
projected mean temperature changes. The continuous warm-
ing  could  lead  to  an  increase  in  land  precipitation,  and  the
changes  in  the  distribution  of  precipitation  remain  almost
unchanged  relative  to  1995–2014.  Extreme  precipitation  is
projected  to  increase  over  most  regions  of  the  globe,  with
decreases confined to some subtropical areas.

For  the  Asian  monsoon,  the  summer  precipitation  and
monsoonal circulation can be captured but with broadly under-
estimated precipitation. However, over the South China Sea
and southeastern Tibetan Plateau, the summer precipitation
is overestimated. Under the SSP5-8.5 scenario, summer pre-
cipitation increases over the central-western Tibetan Plateau
in  the  near  term  and  becomes  significant  and  extends  to
almost the entire Tibetan Plateau in the long term. 

6.    Data records

The  variables  analyzed  in  this  study  based  on  the
FGOALS-g3  110-member  historical  and  SSP5-8.5  simula-
tions have been uploaded to a data bank available at http://
www.doi.org/10.11922/sciencedb.01332. The model outputs
are in the Network Common Data Form (NetCDF), version
4, and in the form of a native grid. These data can be processed
and visualized by common computer programming languages

(e.g., Python) and professional software such as NCAR Com-
mand Language (NCL) and Ferret. The outputs from ocean
and sea ice components are curvilinear grids. 

7.    Usage notes

The  atmospheric  and  land  model  components  of
FGOALS-g3  have  the  same  equal  area-weighted  grid.  The
horizontal zonal and meridional grids are 180 and 80, respec-
tively.  There  are  26  vertical  levels  for  the  atmospheric
model component. The original ocean and sea-ice model com-
ponents of  FGOALS-g3 outputs are on a tripolar  grid with
two poles in the Northern Hemisphere continent. The zonal
and meridional grid numbers are 360 and 218, respectively.
The first-order conservation interpolation method can interpo-
late the tripolar ocean into a 1° latitude–longitude even rectan-
gle grid. There are 30 vertical levels for the ocean model com-
ponent.  The  horizontal  resolution  of  CICE4 is  the  same as
that  in  LICOM3,  and  the  resolution  of  CAS-LSM  is  the
same  as  that  in  GAMIL3.  The  horizontal  resolution  of
FGOALS-g3 used for the super-large ensemble is comparable
to  other  CMIP6  models  with  large  ensembles  (Table  4),
coarser than that of CESM2 (Danabasoglu et al., 2020), and
finer than that of CanESM5 (Swart et al., 2019). The numbers
of vertical layers of the FGOALS-g3 oceanic and atmospheric
components  are  less  than  those  of  CESM2 and  CanESM5.
Further  details  regarding  each  vertical  level  of  GAMIL3
and LICOM3 and can be found in Li et al. (2020a) and Lin
et al. (2020), respectively.

The outputs of the atmospheric and oceanic model com-
ponents of FGOALS-g3 are listed in Tables 2 and 3, respec-
tively. The outputs of the sea-ice and land model components
are  omitted  here.  Only  the  analyzed  variables  are  listed  in
Table 5. The total storage is listed in Table 6. All outputs of
experiments are in the form of a native grid. The data can be
accessed  from the  website  and  some of  them can  be  made

Table 4.   The resolutions of the atmospheric and ocean components of the climate models FGOALS-g3, CESM2, and CanESM5.

Model Atmosphere Ocean

FGOALS-g3 2° × 2.25°, L26 1° × 0.76°, L30
CESM2 1.25° ×0.9˚, L32 ~1.125° × 0.44°, L60

CanESM5 T63 (2.8° × 2.8°), L49 ~1.4° × 0.9°, L45

Table 5.   Details of the variables analyzed in this study.

Name Description Horizontal resolution Vertical resolution Frequency

TREFHT Surface air temperature (SAT) 200 km 1 layer Monthly
PRECT total precipitation rate 200 km 1 layer
U850 Zonal wind at 850 mbar 200 km 1 layer
V850 Meridional wind at 850 mbar 200 km 1 layer

Psi_euler Meridional stream function due to Euler Latitude 30 layers
Psi_eddy Meridional stream function due to eddy Latitude 30 layers
PRECT Total precipitation rate 200 km 1 layer Daily

TREFMXAV daily SAT maximum 200 km 1 layer
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