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ABSTRACT

A  positivity-preserving  conservative  semi-Lagrangian  transport  model  by  multi-moment  finite  volume  method  has
been  developed  on  the  cubed-sphere  grid.  Two kinds  of  moments  (i.e.,  point  values  (PV moment)  at  cell  interfaces  and
volume  integrated  average  (VIA  moment)  value)  are  defined  within  a  single  cell.  The  PV  moment  is  updated  by  a
conventional  semi-Lagrangian  method,  while  the  VIA  moment  is  cast  by  the  flux  form  formulation  to  assure  the  exact
numerical conservation. Different from the spatial approximation used in the CSL2 (conservative semi-Lagrangian scheme
with second order polynomial function) scheme, a monotonic rational function which can effectively remove non-physical
oscillations is reconstructed within a single cell by the PV moments and VIA moment. To achieve exactly positive-definite
preserving, two kinds of corrections are made on the original conservative semi-Lagrangian with rational function (CSLR)
scheme.  The  resulting  scheme  is  inherently  conservative,  non-negative,  and  allows  a  Courant  number  larger  than  one.
Moreover,  the  spatial  reconstruction  can  be  performed  within  a  single  cell,  which  is  very  efficient  and  economical  for
practical implementation. In addition, a dimension-splitting approach coupled with multi-moment finite volume scheme is
adopted on cubed-sphere geometry, which benefitsthe implementation of the 1D CSLR solver with large Courant number.
The  proposed  model  is  evaluated  by  several  widely  used  benchmark  tests  on  cubed-sphere  geometry.  Numerical  results
show that  the proposed transport  model  can effectively remove nonphysical  oscillations and preserve the numerical  non-
negativity, and it has the potential to transport the tracers accurately in a real atmospheric model.
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Article Highlights:

•  Only  one  single  cell  is  used  to  reconstruct  the  approximate  spatial  profile,  which  is  very  efficient  and  economical  for
practical application.

•  The proposed model is inherently conservative on the cubed-sphere grid.
•  The  model  can  effectively  suppress  nonphysical  oscillations  around  discontinuities  and  preserve  positivity

simultaneously.
•  By using a semi-Lagrangian approach, the proposed model can be allowed with a large Courant number.

 

 
 

 

1.    Introduction

Global advection transport describes the motion of vari-
ous passive tracers in the atmosphere, which is a basic pro-

cess  in  atmospheric  dynamics.  The  advection  transport
model  is  important  in  developing  general  circulation  mod-
els  (GCMs).  The  traditional  latitude-longitude  grid  is  very
easy  for  application  but  has  singularities  at  the  poles.
Moreover, its nonuniform grid system would also seriously
affect  computational  efficiency.  To  address  these  issues,
quasi-uniform  grid  systems  without  singularities  or  with
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weak singularities, such as the cubed-sphere grid, Yin-Yang
grid, and icosahedral grid are becoming more and more popu-
lar  in  developing  global  transport  models.  Among  those
grids,  the  cubed-sphere  grid  is  usually  preferred  due  to  its
computational  merits,  such  as  locally  structured  grid  and
quasi-uniform  grid.  Recently,  many  transport  models  have
been developed on the cubed-sphere grid, such as the discon-
tinuous Galerkin transport models (Nair et al., 2005; Guo et
al.,  2014, 2016),  the  conservative  semi-Lagrangian  multi-
tracer  (CSLAM)  model  (Lauritzen  et  al.,  2010),  the  finite
volume transport  model  (Norman and Nair,  2018),  and the
multi-moment transport models (Chen et al., 2011; Tang et
al.,  2018).  In  this  study,  the  cubed-sphere  grid  with
gnomonic projection is adopted for our transport model.

The  semi-Lagrangian  method  is  a  popular  choice  for
developing a global transport model, since it allows a large
time  step  without  reducing  accuracy.  The  traditional  semi-
Lagrangian method defines a set of parcels that arrive at the
Euler computational grid at every time step, and then these
parcels  are  traced  back  to  find  their  departure  locations  at
the  previous  time  step.  A  review  of  the  semi-Lagrangian
method  can  be  seen  in Staniforth  and  Côté  (1991).
However, the traditional semi-Lagrangian method has a seri-
ous shortcoming regarding mass conservation. To deal with
this, many efforts have been made to develop the conservat-
ive  semi-Lagrangian  method.  The  finite-volume  semi-Lag-
rangian (FVSL) method is a popular one which can be prob-
ably separated into two categories (departure volume based
and  flux  form  based).  The  departure  volume  based  FVSL
method initially finds the departure volume and then remaps
the  departure  volume  from  the  given  Euler  computational
grid. Examples of using this method can be seen in Nair and
Machenhauer  (2002), Nair  et  al.  (2002), Zerroukat  et  al.
(2002),  and Lauritzen  et  al.  (2010).  The  flux  form  based
FVSL method calculates the flux traveling across the inter-
faces  of  a  cell  and uses  a  flux form formulation to  update.
Lin and Rood (1996) is a typical example of this kind.

Nakamura  et  al.  (2001) proposed  a  flux-form  FVSL
method based on their previous Constrained Interpolation Pro-
file  (CIP)  scheme  (Yabe  and  Aoki,  1991),  calling  it  CIP-
CSL.  In  their  method,  the  point  values  at  cell  boundaries
and the cell-averaged value are used to reconstruct the piece-
wise interpolation profile.  The point  values  are  updated by
the  semi-Lagrangian  approach,  while  the  cell-average  or
volume-average values are calculated by the flux-form formu-
lation.  The semi-Lagrangian approach permits  a  large  time
step,  and  the  flux-form  formulation  of  updating  cell-aver-
age  values  makes  the  scheme  inherently  conservative  in
terms  of  cell-integrated  average  values. Xiao  and  Yabe
(2001) introduced a slope limiter in the CIP-CSL scheme to
suppress  oscillations  around  discontinuities,  but  the  stencil
for  spatial  reconstruction  extended  from  one  cell  to  three
cells. Instead of the cubic polynomial function used in CIP-
CSL2, Xiao et al. (2002) utilized a rational interpolation as
an alternative, calling it the CSLR scheme, which used only
one  cell  as  stencil  to  reconstruct  the  interpolation  function
and  could  remove  nonphysical  oscillations  simultaneously.

However, this scheme can’t completely preserve positivity.
In  this  paper,  we  make  some  modifications  on  the  CSLR
scheme to make it non-negative and extend it to the cubed-
sphere grid to develop a global transport model.

The paper is organized as follows. In section 2, we intro-
duce  the  algorithm  of  the  CSLR  method  and  its  modifica-
tions on the Cartesian geometry. In section 3, we extend this
formula  to  the  cubed-sphere  grid.  Section  4  presents  sev-
eral kinds of benchmark tests to evaluate the performance of
the proposed global  transport  model.  And a brief  summary
is given in section 5. 

2.    CSLR methods on Cartesian geometry
 

2.1.    CSLR method in one dimension
 

2.1.1.    Spatial reconstruction

i = 1,2, ...,N

To  reconstruct  the  spatial  approximation  profile,  two
kinds of moments are introduced in each cell, as illustrated
in Fig. 1. Point value (PV) moments at cell boundaries and
the  volume  integrated  average  (VIA)  moment  in Ci
( ) are defined as:

●  The PV moments 

Pqi± 1
2

(t) = q
(
xi± 1

2
, t
)
, (1)

●  The VIA moment 

Vqi (t) =
1
∆x

∫ x
i+ 1

2

x
i− 1

2

q (x, t)dx , (2)

q (x, t) ∆x = xi+ 1
2
− xi− 1

2
where  is  the  transport  quantity  and 
is the grid spacing.

i
In the CSLR1 method, a rational function is reconstruc-

ted within a single cell  

Ri (x) =

ai+2bi

(
x− xi− 1

2

)
+ (3ci+βibi)

(
x− xi− 1

2

)2
+2βici

(
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)3

[
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(
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2

)]2 ,

(3)

and three constraint conditions are applied as 

Ri

(
xi− 1

2

)
= Pqi− 1

2
, (4)

 

Ri

(
xi+ 1

2

)
= Pqi+ 1

2
, (5)

 

 

Fig. 1. Illustration of moments in one dimension.
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∫ x
i+ 1

2

x
i− 1

2

Ri (x)dx = Vqi , (6)

after which the coefficients can be determined as 

ai = Pqi− 1
2
, (7)

 

bi =
1
∆x

[
γi

(
2Vqi− Pqi+ 1

2

)
+ Vqi−2Pqi− 1

2

]
, (8)

 

ci =
1
∆x2

[
γi

(
Pqi+ 1

2
− Vqi

)
− Vqi+

Pqi− 1
2

]
, (9)

 

βi =
1
∆x


∣∣∣∣Pqi− 1

2
− Vqi

∣∣∣∣+ε∣∣∣∣Vqi− Pqi+ 1
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∣∣∣∣+ε −1

 , (10)

βi

γi = 1+βi∆x ε

ε = 1×10−20

where  is predetermined in Eq. (3) [see Xiao et al. (2002)
for  details], ,  and  is  a  very  small  number,
such  as ,  for  avoiding  a  zero  denominator  in
Eq. (10). 

2.1.2.    Moments updating

Consider the following one-dimensional transport equa-
tion, 

∂q
∂t
+
∂ (uq)
∂x
= 0 , (11)

uwhere  is the velocity.
● Updating the PV moments:
The PV moments are updated by the traditional semi-Lag-

rangian approach. Rewriting Eq. (11) in an advection form
gives 

∂q
∂t
+u

∂q
∂x
= −q

∂u
∂x

, (12)

−q∂u/∂x
and it can be viewed as an advection equation plus a source
term, .  The  advection  part  is  calculated  by  the
semi-Lagrangian concept 

P̃q
n+1
i− 1

2
= Rn

I

(
ξi− 1

2

)
, (13)

ξi− 1
2

t = n∆t xi− 1
2

t = (n+1)∆t ∆t
I
ξi− 1

2

where  is  the  departure  point  at  previous  time  step
 corresponding to the arrival  point  at  next  time

step ,  where  is  the  time  interval,  the  sub-
script  is the index of the cell which contains the departure
point , and departure point is simply calculated by
 

ξi− 1
2
= xi− 1

2
−

ui− 1
2
+u

(
ξ∗

i− 1
2

)
2

∆t , (14)

u
(
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i− 1
2
= xi− 1

2
−ui− 1

2
∆t ξ∗

i− 1
2

ξ∗
i− 1

2

where  is  the  velocity  at  the  first  guess  point

. In general,  would not be identical
with the point at the cell interface, so the velocity at the first
guess  point  is  calculated  by  linear  interpolation  using

ξ∗
i− 1

2

known velocity at two interfaces of the cell which contains
.
After the “source term” in Eq. (12) is simply approxim-

ated  by  a  central  difference  formulation,  the  semi-discret-
ized form of the transport equation can be written as 

Pq
n+1
i− 1

2
= P̃q

n+1
i− 1

2
−∆tP̃q

n+1
i− 1

2

ui+ 1
2
−ui− 3

2

∆xi−1+∆xi
. (15)

● Updating the VIA moment:
The VIA moment is updated by the flux-form concept 

Vq
n+1
i = Vq

n
i −

(
gi+ 1

2
−gi− 1

2

)
/∆xi , (16)

gi+ 1
2

q xi+ 1
2

[n∆t, (n+1)∆t]

xi+ 1
2

where  is the flux as  goes through the boundary  dur-
ing time interval , which is calculated by ana-
lytically integrating the interpolation function along the tra-
jectory of  

gi+ 1
2
=

∫ x
i+ 1

2

ξ
i+ 1

2

q (x, tn)dx . (17)

 

2.1.3.    Modifications for positivity preserving

qmin

Preserving  the  positivity  of  certain  physical  quantities
requires that the minimum value  should not be less than
zero. However, the point values calculated by Eq. (15) may
produce  negative  values.  Since  the  conservation  of  the  PV
moment is not required in the context of the multi-moment
finite  volume  scheme,  an  easy  and  effective  modification
for the PV moments is used: 

Pq
n
i− 1

2
=max(0, Pq

n
i− 1

2
) . (18)

Despite  this  modification,  in  the  specific  case  when  a
“valley” shape near  the lower boundary is  transported,  the
negative values may still  appear. As illustrated in Fig. 2, if
the  PV  moments  at  the  cell  boundary  are  bigger  than  the
VIA moment, the reconstructed rational function would pro-
duce  “undershoots ”.  Thus,  a  further  modification  of  the
approximation profile is needed: 

 

Fig.  2.  Illustration  of  the  rational  reconstruction  when  a
“valley” is advected.
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Ri (x) = Vq
n
i , if Vq

n
i /qmax < ε and Vq

n
i <

Pq
n
i− 1

2
and

Vq
n
i <

Pq
n
i+ 1

2
, (19)

qmax
ε ε = 10−3
where  is the maximum value of transport quantity and

 is a small parameter, such as . It should be noted
that  the  modification  of  Eq.  (19)  can  guarantee  the  spatial
approximation profile is above zero, and by using the flux-
form formula of  VIA moment we can obtain an absolutely
positive result. Therefore, after utilizing these two modifica-
tions the numerical result can strictly preserve positivity.

β = 0

In this paper, the scheme using Eq. (3) for spatial recon-
struction  is  called  CSLR1,  and  the  scheme  with  two-step
modifications is called CSLR1-M hereafter.  When  in
Eq. (3), the scheme reduces to CSL2 (Yabe et al., 2001).

Given  the  known  PVs  and  VIAs  at  the  previous  time
step, the CSLR1-M algorithm updating procedure can be sum-
marized as follows:

1)  Using Eq.  (3)  and the  modification of  Eq.  (19),  the
reconstructed profile within each cell can be determined.

2) Point values are updated by Eq. (13) and Eq. (15).
3) Cell-averaged values are updated by Eq. (16).
4) Modifying the PV moments by Eq. (18) ensures posit-

ive PV moments at next time step.
It is noted that given the monotonicity of rational func-

tion  and  the  PVs  at  cell  boundaries  as  predicted  variables,
the  CSLR1-M  scheme  can  easily  facilitate  a  positive-pre-
serving property, as shown in this paper. 

2.2.    CSLR methods in two dimensions

A  second  order  Strang  dimension-splitting  time-step-

ping  (Strang,  1968)  technique  is  adopted  to  extend  the  1D
algorithm  to  the  two-dimensional  Cartesian  case.  For  the
sake  of  simplicity,  we  collectively  define  the  1D  CSLR1
and CSLR1-M algorithm as 

CSLR
(

Pq
n
,Vq

n
,u, Pq

n+1
,Vq

n+1)
, (20)

Pq
n

Vq
n

u
t = n∆t

Pq
n+1

Vq
n+1

which means given the known point values  at cell inter-
faces,  volume  integrated  values ,  and  the  velocity  at
time , we can use the 1D CSLR algorithm to update
the PVs  and VIAs .

Ci j

In the two-dimensional case (see Fig. 3), four kinds of
moments are introduced within cell :

●  Volume integrated average (VIA): 

Vqi, j (t) =
1
∆x∆y

∫ x
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2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

q (x,y, t)dxdy , (21)

∆x ∆y x ywhere  and  are grid spacing in the - and -directions,
respectively.

●  Point value (PV): four point-values located at vertices 

Pqi± 1
2 , j±

1
2

(t) = q
(
xi± 1

2
,y j± 1

2
, t
)
, (22)

x●  Line-integrated average values along -direction 

Lxqi, j± 1
2

(t) =
1
∆x

∫ x
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2

x
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2

q
(
x,y j± 1

2
, t
)
dx , (23)

 

 

Fig. 3. Illustration of moments defined in a two-dimensional case.
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y●  Line-integrated average value along -direction 

Lyqi± 1
2 , j

(t) =
1
∆y

∫ y
j+ 1

2

y
j− 1

2

q
(
xi± 1

2
,y, t

)
dy . (24)

Consider the two-dimensional transport equation in the
Cartesian coordinates: 

∂q
∂t
+
∂ (uq)
∂x
+
∂ (vq)
∂y
= 0 , (25)

u v x ywhere  and  are  the  velocity  in  the -  and -directions,
respectively.

By  using  the  dimension-splitting  technique,  the  trans-
port Eq. (25) is split into two 1D equations: 

∂q
∂t
+
∂ (uq)
∂x
= 0 , (26)

 

∂q
∂t
+
∂ (vq)
∂y
= 0 . (27)

∆tThe updating procedures for  a  time step  are as  fol-
lows:

∆t/2
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(x) x

x

CSLR
(

Lyq
n
,Vq

n
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(1)
,Vq

(1))
Lyq

n

y

x ∆t/2

1)  Update  Eq.  (26)  for .  By  using  the

 algorithm  [where  the  super-

script (1) means the result of step 1 and hereafter the super-
script  means the result of step  similarly], PV moments
and line integrated values along the -direction are updated.

And  by ,  in  which  is

viewed as  point  values in  the 1D algorithm, the line-integ-
rated  values  along  the -direction  and  VIA  moments  are
updated. The four kinds of moments defined in our method
are all updated in the -direction for .

∆t

CSLR
(
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(1)
, Lyq
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(2)
, Lyq

(2))
CSLR

(
Lxq

(1)
,Vq

(1)
,

v, Lxq
(2)
,Vq

(2))
2)  Similarly,  update  Eq.  (27)  for  by  using  the

 and 

 algorithms.

∆t/23)  Update  Eq.  (26)  for  another  by  using  the

CSLR
(

Pq
(2)
, Lxq

(2)
,u, Pq

n+1
, Lxq

n+1)
CSLR

(
Lyq

(2)
,Vq

(2)
,

u, Lyq
n+1
,Vq

n+1)  and 

 algorithms.
 

3.    Extension to the cubed-sphere grid

(α, β) = [−π/4, π/4]

In  this  section,  we  extend  the  proposed  scheme  to  the
cubed-sphere grid to develop a global transport model. The
quasi-uniform  cubed-sphere  grid  (Sadourny,  1972)  with
equiangular  central  projection  is  adopted  in  this  paper,  as
shown  in Fig.  4,  which  has  six  identical  cube  faces  with
local  coordinate .  It  is  worth  mention-
ing  that  the  conventional  tropic-belt  arrangement  (Nair  et
al., 2005) is used in this paper although the staircase arrange-
ment (Chen, 2021) is a good interlock pattern which has bet-
ter symmetry for patch information exchange. The two-dimen-
sional transport equation in local coordinates can be written
as
 

∂
(√

Gq
)

∂t
+
∂
(
u1
√

Gq
)

∂α
+
∂
(
u2
√

Gq
)

∂β
= 0 , (28)

√
G

(
u1,u2

)
(α,β)

(x, y) (α, β)

where  is the Jacobian of transformation and  are
the contravariant components on the local coordinate .
Details  of  the  transformation  calculation  can  be  found  in
(Nair et al., 2005). Note that the transport equation in the com-
putational space of the cubed-sphere grid is the same as the
two-dimensional  Cartesian  coordinate’s  transport  equation,
besides substituting  with , which makes it conveni-
ent to update the solutions as in the 2D Cartesian case.

(ξ, η, ζ)
As shown in Fig.  5,  we  divided  the  cubed-sphere  grid

into three directions , and Eq. (28) is split into three
sequential  1D equations  along  three  directions  (Guo  et  al.,
2014):
 

∂
(√

Gq
)

∂t
+
∂
(
Uξ

√
Gq

)
∂ξ

= 0 , (29)
 

 

 

12×12×6Fig. 4. Schematic of a cubed-sphere grid with  meshes.
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Uξ Uη Uζ ξ η ζwhere , , and  are the velocity along -, -, and -dir-
ections, respectively.

∆t

Then, the numerical solutions are updated by the split-
ting algorithm. In each direction,  the moments  are updated
by the one-dimensional algorithm, similar to the case in the
two-dimensional  Cartesian  geometry.  Given  the  known
point values, line-integrated values, and cell-integrated val-
ues,  the  final  updating  procedures  on  a  sphere  for  a  time
step  are summarized as follows:
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1)  Update  in -direction  for  by  using

 (where  is the line-integ-

rated average value along the -direction) and 

(where  the  mark  means  the  direc-

tion perpendicular to , i.e.  is the line-integrated aver-
age values along the direction perpendicular to , and 
and  are the line-integrated average values along the dir-

η ζection perpendicular to  and , respectively);
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3)  Update  in -direction  for  by  using

 and 

;

η ∆t/24) Update in -direction for another  as in step 2;
ξ ∆t/25) Update in -direction for  as in step 1.

ξ∗
i− 1

2

Note  that  the  cubed-sphere  grid  is  not  continuous
across  the  cube  patch  boundaries,  and  some  special  treat-
ments  are  needed.  In  Eq.  (14),  if  the  first  guess  point 
moves  across  the  cube  patch  boundary,  we  first  calculate
the time that the arrival point reaches the cube patch bound-
ary: 

t∗ =

∣∣∣∣∣∣∣ xi− 1
2
− xb

ui− 1
2

∣∣∣∣∣∣∣ , (32)

xbwhere  is  the  coordinate  of  cube  patch  boundary.  Then,
the departure point is calculated by: 

ξi− 1
2
= xb−ub (∆t− t∗) , (33)

 

 

Fig.  5.  Schematic  for  three  directions  on  the  cubed-sphere  grid.  Top  left  is  the ξ-direction  along  the α-
direction on Patch 1, Patch 2, Patch 3, and Patch 4; Top right is the η-direction along the β-direction on Patch
1, Patch 3, Patch 5, and Patch 6; bottom is the ζ-direction along the β-direction on Patch 2 and Patch 4 and
along the α-direction on Patch 5 and Patch 6.
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ub xbwhere  is the velocity at . At cube patch boundaries, the
‘source term’ is calculated by one-side difference instead of
the central difference in Eq. (15).

We should note that the flux across the cube patch bound-
aries  is  calculated  only  once  in  this  study.  As  shown  in
Fig. 6, A is the arrival point on a patch boundary and Ad is
the  corresponding  departure  point  on  Patch  4.  The  point
value of point A is calculated on Patch 4, and the flux across
A is calculated by integrating the spatial approximation pro-
file  on  Patch  4  along  the Ad−A line  segment.  If Ad is  on
Patch 1, the same process is executed for Patch 1, and so on
for each patch boundary. 

4.    Numerical simulations

To  verify  the  performance  of  the  proposed  transport
model, several widely used benchmark tests, including solid
body  rotation,  moving  vortices,  and  deformational  flow
tests are performed on the spherical mesh.

The  normalized  errors  proposed  by Williamson  et  al.
(1992) are used: 

l1 =

∫
Ω

|q−qt |dΩ∫
Ω

|qt |dΩ
, (34)

 

l2 =

√√√√√√√√√√√
∫
Ω

(q−qt)2dΩ∫
Ω

qt
2dΩ

, (35)

 

l∞ =
max |q−qt |

max |qt |
, (36)

Ω q qtwhere  is  the  whole  computational  domain  and  and 

refer  to  numerical  solutions  (volume-integrated  average  in
our paper) and exact solutions, respectively. 

4.1.    Solid-body rotation tests

(λ,θ)

The solid-body rotation test (Williamson et al., 1992) is
widely  used  in  two-dimensional  spherical  transport  model-
ing  to  evaluate  the  performance  of  a  transport  model.  The
wind components in the latitude-longitude coordinates 
are defined as: 

us (λ,θ) = u0 (cosθcosα+ sinθcosλsinα) , (37)
 

vs (λ,θ) = −u0 sinλsinα , (38)

(us,vs) u0 = 2πR/1036800

α

where  is  the  velocity  vector, 
(1036800 s equals 12 days), which means it takes 12 days to
complete a full  revolution on the sphere, R is  the radius of
the sphere, and  is a parameter which controls the rotation
angle.  In  this  test,  two kinds  of  initial  conditions  are  used,
including a cosine bell and a step cylinder. 

4.1.1.    Solid body rotation of a cosine bell

The initial condition of a cosine bell test is specified as: 

q (λ,θ,0) =
{

(h0/2)[1+ cos(πrd/r0)], if rd < r0 ,

0, if rd ⩾ r0 ,
(39)

rd (λ, θ)
(3π/2, 0) r0 = 7πR/64

h0 = 1

where  is the great circle distance between  and the cen-
ter of the cosine bell, located at ,  is the
radius of the cosine bell, and .

32×32×6The  normalized  errors  on  meshes  and  with
256  time  steps  compared  with  other  existing  published
semi-Lagrangian  schemes,  the  PPM-M  scheme  (Zerroukat
et  al.,  2007)  and  CSLAM-M  (Lauritzen  et  al.,  2010),  are
presented  in Table  1.  The  result  shows  that  CSLR1  and
CSLR1-M get almost the same result. And our scheme is com-

Table  1.   Comparison  of  the  normalized  errors  of  rotation  of  a
cosine bell after one revolution with other published schemes.

Scheme l1 l2 l∞

α=0
CSLR1(CSLR1-M) 0.116 0.097 0.114

PPM-M 0.101 0.095 0.115
CSLAM-M 0.075 0.075 0.141

α=π/4
CSLR1(CSLR1-M) 0.083 0.081 0.139

PPM-M 0.078 0.086 0.159
CSLAM-M 0.048 0.060 0.130

α=π/2
CSLR1(CSLR1-M) 0.077 0.067 0.080

PPM-M 0.109 0.102 0.118
CSLAM-M 0.075 0.075 0.141

α=π/2−0.05
CSLR1(CSLR1-M) 0.078 0.068 0.088

PPM-M 0.109 0.102 0.124
CSLAM-M 0.070 0.069 0.133

 

Fig. 6. Illustration of departure points along patch boundary.
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α = π/2 α = π/2−0.05
parable  to  the  PPM-M  scheme,  and  the  result  in  the  near-
pole  flow  direction  (  and )  is  better
than the CSLAM-M scheme.

α = π/4

l∞

To check the influence of the weak singularities at  the
eight  vertices  of  the cubed-sphere gird,  this  test  is  conduc-
ted with  to  pass  through four  vertices.  The history
of normalized errors (CSLR1 and CSLR1-M are almost the
same, so we only present the result  of CSLR1-M here) are
shown in Fig. 7. We can see that the normalized errors have
little fluctuations (except the  errors at  around day 4 and
day 10) when the flow passes four weak singularities.

α = π/2
l1 = 0.052 l2 = 0.046 l∞ = 0.061

To  demonstrate  the  ability  of  the  CSLR1-M  scheme
using a large Courant  number to transport,  we use 72 time
steps  (local  maximum Courant  number  is  about  1.78)  with
rotation angle  to complete one revolution. The nor-
malized errors are , , and . 

4.1.2.    Solid body rotation of a step cylinder

A  non-smooth  step  cylinder  is  calculated  to  evaluate

the  non-oscillatory property.  The initial  distribution is  spe-
cified as 

q (λ,θ,0) =

 1000, if rd < r1 ,
500, if r1 ⩽ rd < r2 ,
0, if rd ⩾ r2 ,

(40)

rd (λ,θ)
(3π/2,0) r1 = 2/3R

r2 = 1/3R

where  is  the  great  circle  distance  between  and
, which is the center of the step cylinder, 

and .
α = π/4

qmax = 1034.23 qmin = −2.45
qmax = 1001.85 qmin = 0

In this test,  we set ,  which is the most challen-
ging case of the rotation test where the step cylinder moves
through four vertices and along two boundary edges of the
cubed-sphere  grid  to  complete  a  full  revolution.  Here,  we
use 90×90×6 meshes and 720 time steps to conduct this test.
The numerical results after 12 days are shown in Fig. 8, and
we can see that the CSL2 scheme will generate obvious oscil-
lations around the discontinuities. By using the CLSR1 and
CSLR1-M  approaches,  these  nonphysical  oscillations  are
effectively removed. The maximum and minimum value of
CSL2 are  and , and for CLSR1
and CSLR1-M they are  and . The his-
tory of relative mass errors is given in Fig. 9, which shows
that  the  relative  mass  errors  are  up  to  the  tolerance  of
machine  precision,  therefore  the  proposed  global  transport
model is exactly mass conservative during the simulation pro-
cedure. 

4.2.    Moving vortices on the sphere

The second benchmark test we used is the moving vor-
tices  test  proposed  by Nair  and  Jablonowski  (2008).  The
wind  component  of  this  test  is  a  combination  of  the  solid
body rotation test and two vortices, and it is much more com-
plicated than the solid body rotation test. The velocity fields
on the sphere are specified as: 

u (λ,θ, t) =us (λ,θ)+Rωr [sinθc (t)cosθ− cosθc (t)×
cos(λ−λc (t)) sinθ] , (41)

 

v (λ,θ, t) = vs (λ,θ)+Rωr [cosθc (t) sin(λ−λc (t))] , (42)
 

 

Fig. 7. History of normalized errors of the solid body rotation
of a cosine bell for one revolution on grid N = 32 (number of
cells  in  one  direction  on  each  cell),  256  time  steps  and  with
α = π/4.

 

 

Fig. 8. Numerical results of solid body rotation of the step cylinder after one revolution (12 days). (a) is the result of CSL2,
(b) is the result of CSLR1, and (c) is the result of CSLR1-M.
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ωr (θc (t)) =
V
rρ

, (43)
 

V (ρ) = u0
3
√

3
2

sech2ρ tanhρ , (44)
 

ρ (θc (t)) = ρ0 cosθc (t) , (45)

us vs

α = π/4 ρ0 = 3 λc (t)
θc (t) t

λc (t) θc (t)

where  and  are calculated by Eqs. (37) and (38), and the
rotation angle of this test is set to be . , 
and  are the center of the moving vortex at time , and
the calculation procedure of  and  can be found in
(Nair and Jablonowski, 2008).

The tracer field is defined as: 

q
(
λ′, θ′, t

)
= 1− tanh

(
ρ

γ
sin

(
λ′−ωrt

))
, (46)

γ
(λ′, θ′)

where  is  a  parameter  to  control  the  smoothness  of  the
tracer  field,  is  the  rotated  spherical  coordinates,
which can be calculated by: 

λ′ (λ,θ)= tan−1

 cosθ sin
(
λ−λp

)
cosθ sinθp cos

(
λ−λp

)
− cosθp sinθ

 , (47)

 

θ′ (λ,θ) = sin−1
(
sinθ sinθp+ cosθcosθp cos

(
λ−λp

))
, (48)(

λp, θp

)
= (π, π/2−α)

γ = 10−2

t = 0

and  is  the  North  Pole  of  the  rotated
spherical  coordinate.  In this  test,  we followed Norman and
Nair  (2018) to  set  to  conduct  a  large  gradient  in
tracer distribution to check the non-oscillatory property and
the performance of positivity preserving. When  in Eq.
(46), we get the initial condition.

This test is conducted on 80 × 80 × 6 meshes and uses

l1 = 5.295×10−2 l2 = 0.1295
l∞ = 0.5667

400 time steps to move forward 12 days. The contour plots
in Fig. 10 show that compared with the exact solution, our
proposed  scheme  can  simulate  this  complicated  procedure
well. The plot along the equator is presented in Fig. 11, and
it shows that there are no obvious oscillations around large
gradients.  The normalized errors of  CSLR1 and CSLR1-M
are  almost  the  same,  being , ,
and , respectively. The histories of minimum val-
ues are shown in Fig. 12, where we can see that the CSLR1
scheme  would  produce  negative  values  during  the  simula-
tion procedure, while the minimum values of CSLR1-M can
completely  preserve  positivity  (the  minimum  values  are
within the machine precision). 

4.3.    Deformational flow test

The last benchmark test used in our paper is the deforma-
tional  flow  test  proposed  by Nair  and  Lauritzen  (2010),
which  is  the  most  challenging  test  case.  The  nondivergent
and time-dependent flow fields are defined as: 

u (λ,θ, t) = κsin2λ′ sin(2θ)cos
(
πt
T

)
+

2π
T

cosθ , (49)
 

v (λ,θ, t) = κ sinλ′ cosθcos
(
πt
T

)
, (50)

κ = 2 T = 5 λ′ = λ− (2πt/T )where , , and .
Two kinds of initial conditions are checked here, includ-

ing the twin slotted cylinders case to evaluate the positivity
preserving  property  and  correlated  cosine  bells  to  evaluate
the  nonlinear  correlations  between  tracers  (Lauritzen  and
Thuburn, 2012). By the given flow fields, the initial distribu-
tions  will  be  deformed  into  thin  bars  during  the  first  half
period, then return to its initial state during the second half
period. 

 

 

Fig. 9.  The time history of relative mass error for solid body rotation of the
step cylinder test case by the CSLR1-M scheme.
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4.3.1.    Deformation of twin slotted cylinders

The initial condition is defined as: 

q (λ,θ,0) =



1 ri ⩽ r0; |λ−λi| ⩾
r0

6
; i = 1,2

1 r1 ⩽ r0; |λ−λ1| <
r0

6
;θ− θ1 < −

5r0

12
1 r2 ⩽ r0; |λ−λ2| <

r0

6
;θ− θ2 >

5r0

12
0 otherwise

, (51)

r0 = 0.5 ri (i = 1,2)

(λ1, θ1) = (5π/6,0) (λ2, θ2) = (7π/6,0)

where  and  represent the great circle dis-
tances between the center of the two slotted cylinders and a
given point. The centers of the two slotted cylinders are loc-
ated  at  and ,  respect-
ively.

The  numerical  results  of  deformational  flow  of  the
CSLR1-M scheme with  90 × 90 × 6  meshes  and with  390
time steps (local maximum Courant number is about 3) are
shown in Fig. 13. As shown in Fig. 13b, the two slotted cylin-
ders  are  deformed  into  two  thin  filaments  by  the  back-
ground  flow  field  during  the  first  half  period. Figure  13c

 

 

Fig.  10.  Contour  plot  of  moving  vortices  after  12  days.  (a)  is  the  exact
solution, (b) is the result of the CSLR1-M scheme.

 

Fig. 11.  Plot along the equator for the moving vortices test at
12 days.
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l1 = 0.3287 l2 = 0.3321
l∞ = 0.9415

gives the counters of the slotted cylinders at the final time,
and  it  is  indicated  that  the  proposed  scheme  can  correctly
reproduce this complicated deformational flow and does not
produce  oscillations.  The  histories  of  minimum  values  are
shown in Fig.  14,  which  indicates  that  the  CSLR1 scheme
would  produce  negative  values,  while  the  CSLR1-M
scheme  keeps  minimum  values  within  the  tolerance  of
machine precision, which can be viewed as non-negativity.
The  Normalized  errors  are , ,  and

 for both the CSLR1 and CSLR1-M schemes. 

4.3.2.    Deformation of correlated cosine bells

To  check  the  ability  of  preserving  nonlinearly  correl-
ated  relations  between  two  tracers,  we  used  two  kinds  of
tracers. One is the quasi-smooth twin cosine bells: 

qcb (λ,θ,0) =
{

0.1+0.9hi (λ,θ), if ri < r0 (i = 1,2) ,
0.1, otherwise ,

(52)

hi =
1
2

[
1+ cos

(
πri

r0

)]
i = 1,2where  for .

The other one is the correlated cosine bells: 

qccb = ψ
(
qcb

)
, (53)

ψ (q) = −0.8q2+0.9where .
90×90×6

t = T/2

lr = 1.05×10−3 lu = 2.40×10−5

l0 = 5.57×10−4

This test is conducted on  meshes with 1800
time steps. The scatter plot of numerical result at  is
shown in Fig. 15. The solution of cosine bells is in the x-direc-
tion, and the correlated cosine bells is in the y-direction. The
mixing diagnostics are , , and

,  respectively  (see Lauritzen  and  Thuburn,
2012)  for  the  detail  definition  of  these  three  parameters).
The  CSLR1-M  scheme  is  built  using  a  monotone  rational
polynomial with modest accuracy, which always overly flat-
tens the maximum and minimum values, as shown in the bot-
tom-right  corner  of Fig.  15.  In  the  whole,  the  scattering
points  of  the  CSLR1-M  scheme  are  almost  located  inside
the  convex  hull  which  means  that  the  CSLR1-M  scheme
can  preserve  nonlinearly  correlated  relations  between
tracers well. 

5.    Summary

In this paper, a non-negativity and conservative semi-Lag-
rangian  transport  scheme  based  on  a  multi-moment  finite
volume  method  has  been  developed  on  the  cubed-sphere
grid. By using the PV moment and VIA moment, a rational
function  is  constructed  as  a  spatial  approximation  function
within  a  single  cell  instead  of  the  non-monotonic  CSL2
scheme to suppress the numerical oscillations and keep the
monotonicity. In terms of multi-moment concepts, the VIA
moment is cast by utilizing the flux form formulation to guar-
antee  the  exact  numerical  conservation.  In  the  CSLR1
scheme,  the  semi-Lagrangian  method  is  adopted  to  update
the PV moments, which keeps good properties of the semi-
Lagrangian scheme. To simplify the implementation in curvi-
linear  (cubed-sphere)  geometry,  a  dimension-splitting  time
stepping strategy is combined with the multi-moment finite
volume  method.  In  the  case  of  a  valley  of  the  transported
field,  two kinds of  modifications are  conducted on the ori-
ginal CSLR1 scheme for exactly positive-definite preserva-
tion.  Note  that  the  improved  CSLR1-M  scheme  dose  not
degrade  the  accuracy  of  the  original  CSLR1  scheme.  The
numerical  results  show  that  the  CSLR1-M  scheme  is  non-
oscillatory  and  can  preserve  the  non-linear  correlations
between tracers. In addition, the semi-Lagrangian approach
permits a large time step, which can greatly improve computa-
tional efficiency. The quality of the present transport model-
ling has  been demonstrated by the  widely  used benchmark
tests  on  a  cubed-sphere  grid.  The  results  reveal  that  the
developed  transport  modelling  not  only  can  effectively
remove nonphysical oscillations, but it can also preserve the
non-negativity  of  numerical  solutions,  which  indicates  that
it has the potential to simulate the various tracers accurately
for real applications. When the mass sources such as evapora-
tion, condensation, etc. are involved in real simulation, they
can be added to each PV variable through a fractional step
in the multi-moment model after the tracers are advected by
the  CSLR  scheme.  Furthermore,  a  positivity  constraint  is

 

Fig.  12.  The histories  of  minimum values qmin of  the  moving
vortices test. (a) is the result of the CSLR1 scheme, (b) is the
result of the CSLR1-M scheme.
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Fig. 13. Numerical result of deformational flow of slotted cylinder after one period by
the  CSLR1-M  scheme.  (a)  is  the  exact  solution,  (b)  is  the  numerical  solution  at  half
cycle, (c) is the numerical solution after one cycle.
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also imposed on the source terms.
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