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ABSTRACT

This  study  explores  the  structures  of  the  correlations  between  infrared  (IR)  brightness  temperatures  (BTs)  from the
three  water  vapor  channels  of  the  Advanced  Baseline  Imager  (ABI)  onboard  the  GOES-16  satellite  and  the  atmospheric
state.  Ensemble-based  data  assimilation  techniques  such  as  the  ensemble  Kalman  filter  (EnKF)  rely  on  correlations  to
propagate innovations of BTs to increments of model state variables. Because the three water vapor channels are sensitive
to  moisture  in  different  layers  of  the  troposphere,  the  heights  of  the  strongest  correlations  between  these  channels  and
moisture in clear-sky regions are closely related to the peaks of their respective weighting functions. In cloudy regions, the
strongest  correlations appear  at  the cloud tops of  deep clouds,  and ice hydrometeors  generally have stronger  correlations
with BT than liquid hydrometeors. The magnitudes of the correlations decrease from the peak value in a column with both
vertical  and  horizontal  distance.  Just  how  the  correlations  decrease  depend  on  both  the  cloud  scenes  and  the  cloud
structures, as well as the model variables. Horizontal correlations between BTs and moisture, as well as hydrometeors, in
fully cloudy regions decrease to almost 0 at about 30 km. The horizontal correlations with atmospheric state variables in
clear-sky regions are broader, maintaining non-zero values out to ~100 km. The results in this study provide information on
the  proper  choice  of  cut-off  radii  in  horizontal  and  vertical  localization  schemes  for  the  assimilation  of  BTs.  They  also
provide insights on the most efficient and effective use of the different water vapor channels.
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Article Highlights:

•  Different infrared channels are correlated with different layers of the atmosphere.
•  Cloud-affected brightness temperatures have different horizontal and vertical correlation structures compared with clear-

sky ones.
•  The  horizontal  and  vertical  structures  of  the  correlations  imply  localizations  that  facilitate  the  assimilation  of  multiple

channels.
 

 
 

 

1.    Introduction

Ensemble-based  data  assimilation  techniques,  such  as
the ensemble Kalman filter (EnKF), play an important role
in  recent  advances  in  the  assimilation  of  all-sky  infrared
(IR) brightness  temperatures  (BTs)  into  regional  numerical
weather  prediction  (NWP)  models.  Different  variations  of

the  EnKF  are  used  in  numerous  observing  system  simula-
tion experiments (OSSEs; e.g., Otkin, 2010, 2012; Zupanski
et al.,  2011; Jones et al.,  2013, 2014; Cintineo et al.,  2016;
Zhang et al.,  2016a; Minamide and Zhang, 2017) and real-
data studies (e.g., Zhang et al., 2016a, 2018, 2019a, b, 2021;
Honda  et  al.,  2018a, b; Minamide  and  Zhang,  2018;
Okamoto et al.,  2019; Otkin and Potthast, 2019; Sawada et
al.,  2019; Chan et al.,  2020; Jones et al.,  2020). The EnKF
uses flow-dependent background error covariances, and sev-
eral studies show that the EnKF is more suitable for convect-
ive phenomena at the mesoscales and the storm scales than tra-
ditional  variational  techniques  (e.g., Meng  and  Zhang,
2008; Zhang and Zhang, 2012; Schwartz and Liu, 2014; John-
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son et al., 2015).
The EnKF relies on ensemble-based correlations and cov-

ariances between observables in observation space and vari-
ables in model space to propagate information from innova-
tions (mismatches between observations and their model simu-
lated  equivalents)  to  increments  (corrections  to  model  pro-
gnostic variables determined by the EnKF). This allows the
EnKF to update model prognostic variables, whether or not
these  variables  are  included  in  the  observation  operators
that  convert  model  states  to  simulated  observations.  For
example, the first regional EnKF application of Snyder and
Zhang  (2003) reveal  that  assimilating  radar  radial  velocity
observations can accurately update temperatures. The struc-
ture  and  evolution  of  the  correlations  and  covariances  are
closely  related  to  the  underlying  dynamics  of  the  atmo-
sphere  and  can  be  used  to  assess  potential  impacts  of  data
assimilation (e.g., Poterjoy and Zhang, 2011).

Current operational and research EnKF applications usu-
ally use tens to a hundred ensemble members due to limited
computational  resources.  The  number  of  ensemble  mem-
bers is much smaller than both the degrees of freedom in the
NWP  model  and  the  number  of  assimilated  observations.
This results in the background error covariance matrices of
the EnKF not being full rank, a problem often referred to as
“rank deficiency” or “rank problem” of  the  EnKF
(Houtekamer and Zhang, 2016). One outcome of rank defi-
ciency is spurious sample correlations (covariances) at long
distances (Houtekamer and Mitchell, 1998), also referred to
as  sampling  errors  (Anderson,  2012),  which  can  lead  to
degraded analysis accuracy (Poterjoy et al., 2014; Necker et
al.,  2020a; Wu et  al.,  2020).  Although increasing the num-
ber of ensemble members used in the EnKF to several hun-
dred  or  several  thousand  mitigates  the  impact  of  sampling
errors and reduces long-distance spurious correlations (e.g.,
Miyoshi et al.,  2014; Kondo and Miyoshi,  2016; Necker et
al.,  2020b),  such  an  approach  remains  largely  impractical
for  both  operational  and  research  applications.  A  common
solution is to apply covariance localization to restrict the influ-
ence of each observation within a certain distance from the
observation (Houtekamer and Mitchell, 1998). Localization
is  now  an  essential  component  of  any  EnKF  algorithm
(Hamill  et  al.,  2001; Anderson,  2012).  Unlike  variational-
based data assimilation techniques in which increments are
determined by the observation operator and prescribed correla-
tions,  increments  in  the EnKF are  primarily  determined by
localized  correlations/covariances  obtained  from  the
ensemble members.

For  IR  BT  assimilation,  vertical  localization  is  not
straightforward  and  remains  an  open  research  question,
primarily because IR BTs are integrated quantities affected
by deep layers of the atmosphere. Although several vertical
localization schemes for BT assimilation are proposed (e.g.,
Fertig  et  al.,  2007; Campbell  et  al.,  2010; Lei  et  al.,  2016,
2020),  the  majority  of  previous  studies  that  assimilate  IR
BTs  via  the  EnKF  and  a  regional  NWP  model  use  either
broad localization cut-off radii or no localization at all in the

vertical  direction.  (A  cut-off  radius  is  the  minimum  dis-
tance at which the influence of an observation reduces to 0.
A cut-off radius is also referred to as a radius of influence,
or ROI, in the literature.) However, broad vertical localiza-
tion  sometimes  leads  to  inconsistencies.  For  example,
Zhang et al. (2021; hereafter Z21) shows that spurious correla-
tions due to sampling errors sometimes violate physical rela-
tionships  between  BTs  and  the  state  variables.  In  these
instances, assimilation of different satellite channels leads to
opposing increments and different outcomes. In Z21, broad
vertical  localization  eventually  contributed  to  spurious
cloud  development  and  incorrect  convection  initiation  at
lower altitudes, when assimilating BTs from a channel most
sensitive  to  higher  altitude  water  vapor  properties,  degrad-
ing the quality of the subsequent forecasts.

Following  the  investigations  in  Z21,  the  present  study
provides  a  more  comprehensive  examination  of  the  hori-
zontal and vertical structures in the correlations between all-
sky  IR  BTs  from  the  three  water  vapor  channels  of  the
Advanced Baseline Imager (ABI) onboard the GOES-16 satel-
lite and the atmospheric state variables at storm scales. We
analyze  these  correlations  using  EnKF  experiments  from
Z21  that  target  a  tornadic  supercell  thunderstorm  event.
This  event  and  the  impact  of  assimilating  conventional,
radar, and satellite observations using the EnKF on its fore-
cast  are  explored  by Zhang  et  al.  (2018, 2019b),  and  Z21.
The present study provides insights regarding the proper local-
ization of the BTs based on the characteristics of their correla-
tions with the state variables, and how best to assimilate satel-
lite BTs more efficiently and effectively.

The EnKF experiments  are  briefly  recapped in  section
2, with descriptions of the methods we use to examine the cor-
relations  also  appearing  in  this  section.  Sections  3  and  4
present  the  vertical  and  horizontal  structures,  respectively,
in  the  correlations  between  the  BTs  and  atmospheric  state
variables. A summary is provided in section 5. 

2.    Data and methods

This section briefly summarizes the EnKF experiments
that we use in this study, the definitions of regions with differ-
ent  cloud  scenes  and  cloud  structures,  and  the  calculations
of the correlations using the EnKF experiments. 

2.1.    The  EnKF  experiments  of  a  tornadic  supercell
thunderstorm event

The cycling EnKF experiments of the 12 June 2017 tor-
nadic  supercell  thunderstorm  event  across  southeastern
Wyoming,  southwestern  Nebraska,  and  northern  Colorado
of the United States are used to examine the structure of the
correlations  between  BTs  and  atmospheric  state  variables.
Zhang  et  al.  (2018) provides  an  overview of  this  event,  as
well as an EnKF experiment assimilating only IR BT observa-
tions. Zhang et al. (2019b) builds on Zhang et al. (2018) by
comparing the stand-alone and combined impacts of assimila-
tion of radar observations and satellite IR BTs on this event.
Finally, Z21 explores the benefits of ABI IR BTs compared
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with BTs from its predecessor imager on improving the ana-
lyses  and predictions of  this  event.  Z21points  out  potential
deficiencies if vertical localization is not properly applied to
the BTs during assimilation.

The  Pennsylvania  State  University  (PSU)  Weather
Research  and  Forecasting  (WRF)  EnKF  data  assimilation
system  (the  PSU  WRF-EnKF  system; Zhang  et  al.,  2009;
Weng and Zhang, 2012) is used for the EnKF experiments.
This system adopts the ensemble square root filter (EnSRF;
Houtekamer and Mitchell, 2001) variant of EnKF. The Com-
munity  Radiative  Transfer  Model  (CRTM; Han  et  al.,
2006),  version  2.3.0,  is  used  to  produce  simulated  IR  BTs
from model prognostic fields. The system uses adaptive obser-
vation  error  inflation  (AOEI; Minamide  and  Zhang,  2017)
and  adaptive  background  error  inflation  (ABEI; Minamide
and Zhang, 2019) to treat the nonlinearity of the CRTM obser-
vation operator and the non-Gaussianity of the BTs. The sys-
tem  uses  the  fifth-order  compact  function  of Gaspari  and
Cohn (1999) for background error covariance localization to
treat  sampling  errors  and  the  relaxation  to  prior  perturba-
tion  (RTPP; Zhang  et  al.,  2004)  method  to  maintain  suffi-
cient  ensemble  spread,  with  both  necessitated  by  the  lim-
ited number (40) of ensemble members in the EnKF experi-
ments.

The PSU WRF-EnKF system in this study uses version
3.8.1  of  the  fully  compressible,  non-hydrostatic,  Advanced
Research  WRF  (ARW)  model  (Skamarock  et  al.,  2008).
The  model  domain  consists  of  401  ×  301  ×  61  grids  with
1-km horizontal  grid spacing, 19 levels within 1 km above
the surface, and the uppermost level located at 50 hPa. The
system  also  adopts  physical  parameterization  schemes  that
are  suitable  for  the  simulation,  including:  the  double-
moment Thompson et al. (2008) microphysics scheme with
mixing  ratios  of  cloud  liquid,  cloud  ice,  rain,  snow,  and
graupel,  and  number  concentrations  of  cloud  ice  and  rain;
the  unified  Noah  land  surface  model  (Ek  et  al.,  2003);  the
Monin−Obukhov  Janjic  Eta  surface  layer  scheme  (Janjic,
1996);  the  Mellor−Yamada−Janjic  TKE  scheme  (Janjić,
1994)  for  planetary  boundary  layer  (PBL)  processes;  and
the  Rapid  Radiative  Transfer  Model  for  General  Circula-
tion  Models  (RRTMG)  longwave  and  shortwave  radiation
schemes (Iacono et al., 2008).

The  EnKF  experiments  used  in  this  study  adopt  cyc-
ling EnKF data assimilation from 1900 UTC to 2040 UTC
on 12 June 2017 after a one-hour spin-up period from 1800
UTC  to  1900  UTC.  Here,  we  primarily  focus  on  the
“CH10 ”  experiment  of  Z21  (the  baseline  experiment
therein),  which  assimilates  conventional  surface  observa-
tions  every  20  minutes  and  BTs  from  the  7.3-μm
wavelength channel 10 of ABI with a raw spatial resolution
of 2.5 km in the study region and a temporal sampling resolu-
tion of 5 minutes. This channel is sensitive to water vapor in
the lower troposphere. The IR BTs are assigned pseudo obser-
vation  heights  of  either  250  hPa  if  the  corresponding  ABI
channel  14  (11.2-μm  wavelength  window  channel)  BT  at
the same location is lower than 285 K or 620 hPa otherwise.

In the CH10 experiments, the vertical localization ROI is 5
times the pseudo observation height of each BT in units of
model levels. For example, if a clear-sky BT observation is
assigned to 620 hPa, corresponding to the 25th model level,
its vertical localization ROI is 5 × 25, or 125, model levels.
The horizontal localization ROI for all BTs is 30 km. Zhang
et al. (2018) provides more detail on the assimilation of the
IR BTs, and Zhang et al. (2019b) describes parallax correc-
tions that correct for the geographical location errors of the
IR BTs resulting from the projection of cloud impacted radi-
ances to the surface ellipsoid. 

2.2.    Definitions of cloud scenes and regions using cloud-
top pressure (CTP)

With  the  EnKF  experiments  in  hand,  we  calculate  the
cloud-top pressure (CTP) for each model vertical column of
every member using the EnKF priors. To this end, we first
identify  the highest  grid  cell  in  each column for  which the
total  hydrometeor  mixing  ratio  of  cloud  liquid,  cloud  ice,
rain,  snow, and graupel  exceeds 10−6 kg kg−1.  CTP is  then
obtained by interpolating the total hydrometeor mixing ratio
to a value of 10−6 kg kg−1 using the total hydrometeor mix-
ing ratios and pressures for this grid cell and the one above
it. The threshold of 10−6 kg kg−1 is also used by Kerr et al.
(2015) and Hayatbini et al. (2019). The probability of cloud
for  a  given  vertical  column  is  defined  as  the  fraction  of
ensemble  members  for  which  cloud  exists  somewhere
within the column.

Figure 1 provides an example of the CTPs of the mem-
bers in the prior of the last EnKF assimilation cycle at 2040
UTC of the CH10 experiment. Clouds, as revealed by simu-
lated BTs (Fig. 1a), are consistent with the ensemble mean
CTPs  (Fig.  1b).  Moreover,  the  CTPs  are  often  consistent
across the ensemble members. For example, for deep clouds
with  low  BTs  (Fig.  1a),  their  mean  CTP,  the  lowest  CTP
(i.e.,  highest  altitude  cloud  top)  of  any  member,  and  the
highest CTP (i.e., lowest altitude cloud top) of any member
are  consistently  less  than  300  hPa  (Figs.  1b−d),  and  their
standard deviation of CTP is smaller than 50 hPa (Fig. 1e).
In  fact,  in  columns  for  which  the  probability  of  cloud  is  1
and  the  standard  deviation  of  CTP is  smaller  than  50  hPa,
the majority of the ensemble members has cloud tops at pres-
sures  less  than  300  hPa,  and  the  remaining  members  have
cloud  tops  at  pressures  greater  than  about  700  hPa  (figure
not shown).

We define three types of cloud scenes based on the prob-
ability  of  cloud in columns of  the model  domain:  1)  clear-
sky  scene,  or  the  subset  of  columns  for  which  none  of  the
members have any cloud (probability = 0); 2) partly cloudy
scene, or the subset of columns in which some, but not all,
members  have  clouds  (0  <  probability  <  1);  and  3)  fully
cloudy scene, or the subset of columns for which all mem-
bers  have  some  cloud  (probability  =  1).  Within  the  fully
cloudy  scene,  we  further  define  the  following  three  cloud
structure  regions  based  on  CTP:  1)  the  high  altitude  cloud
region,  or  the  subset  of  fully  cloudy columns in  which  the
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greatest CTP over all members is less than 200 hPa (i.e., all
members have CTP less than 200 hPa; 200 hPa is used here
instead of 300 hPa to further reduce the standard deviation
of  the  CTPs  for  the  columns);  2)  the  low  altitude  cloud
region, or the subset of fully cloudy columns for which the
lowest CTP over all  members is greater than 700 hPa (i.e.,
all  members have a CTP greater  than 700 hPa);  and 3) the
mixed  altitude  cloud  region,  or  the  subset  of  fully  cloudy
columns  left  once  the  high  and  low  altitude  cloud  regions
are  removed.  Note  that  CTPs  of  some  members  in  the
mixed  altitude  cloud  region  can  be  less  than  200  hPa  or
greater than 700 hPa. 

2.3.    Calculation  of  correlations  between  IR  BTs  and
atmospheric state variables

We calculate  the sample correlations (Pearson correla-
tion coefficients) between IR BTs and the atmospheric state
variables over the ensemble members comprising the priors
from the EnKF data assimilation cycling.  We then average
the correlations over the scenes and regions defined in the pre-
vious subsection, time, and vertical levels, as necessary.

Before calculating the correlations,  we first  interpolate
the atmospheric state variables from the original terrain-fol-
lowing  model  levels  to  constant  pressure  levels.  For  ver-
tical  columns  of  correlations,  we  calculate  the  correlations

 

 

Fig. 1. (a) Simulated ABI channel 14 BTs obtained by applying the CRTM to the ensemble mean fields, (b) ensemble mean
CTP, (c) pressures of lowest altitude cloud tops of any ensemble member, (d) pressures of highest altitude cloud tops of any
ensemble member, (e) standard deviation of CTPs, and (f) probability over all members of cloud somewhere in the vertical
column of the EnKF prior of the CH10 experiment at 2040 UTC 12 June 2017. We did not include the observations in the
figure because the EnKF analysis cloud-affected radiances are almost identical to them.
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between the BTs and the atmospheric state variables for the
same column and subsequently average the columns within
each cloud scene and cloud structure region. For horizontal
correlations,  we  calculate  pairs  of  correlations  and  hori-
zontal  distances  between  the  BT  associated  with  one
column and the atmospheric state variables within any other
column. These horizontally displaced correlations are com-
puted for vertical levels from 800 hPa to 100 hPa in 50 hPa
intervals.  Because  we  are  not  able  to  store  in  computer
memory the 1.44 × 1010 correlation coefficients at each ver-
tical level between the 1.2 × 105 (i.e.,  400 × 300) BTs and
1.2  ×  105 variable  values  at  that  level,  we  use  up  to  1200
(i.e.,  1%  of  the  columns  in  the  model  domain)  randomly
sampled  BTs  to  do  so.  If  a  cloud  scene  or  cloud  structure
region contains more than 1200 columns, we calculate the cor-
relations  between  the  BTs  from  1200  randomly  sampled
columns  within  the  scene  or  region  and  variable  values
across  all  columns  comprising  the  scene  or  region.  If  a
scene or region contains less than 1200 columns, BTs from
all of the columns are used to compute the correlations. Cor-
relation-distance  pairs  are  binned  across  5-km  intervals
using  their  distances,  and  the  correlations  within  each  bin
are averaged. Time averages across all 21 EnKF data assimila-
tion cycles of the experiment of vertical and horizontal correl-
ations  are  computed,  with  correlations  at  each  time
weighted by the number of columns within the correspond-
ing scene or region at that time.

When averaging the correlations with respect to the hori-
zontal  distance  over  vertical  levels,  the  absolute  values  of
the  bin-averaged  horizontal  correlations  at  each  vertical
level are used. This ensures that negative correlations at one
vertical  level  do not  cancel  positive  correlations  at  another
vertical level, thereby preserving their magnitudes when aver-
aged over vertical levels. (Hereafter, we refer to these vertic-
ally averaged correlations as “vertical mean absolute correla-
tions”; this is the only quantity in the study based on abso-
lute values.)

We  investigate  the  correlations  between  the  three  IR
water  vapor  channels  of  ABI—channel  8  (6.2-μm
wavelength),  channel  9  (6.9-μm  wavelength),  and  channel
10  (7.3-μm  wavelength)—and  the  atmospheric  state  vari-
ables  of  temperature  (T),  the  two  components  of  the  hori-
zontal  wind  (U, V)  and  the  mixing  ratios  of  water  vapor
(Qv), cloud liquid (Qc), cloud ice (Qi), rain (Qr), snow (Qs),
and graupel (Qg).

The  weighting  functions  of  ABI  water  vapor  channels
8,  9,  and 10 peak at  approximately  350 hPa,  440 hPa,  and
620  hPa,  respectively,  in  clear-sky  conditions  for  the  US
standard  atmospheric  profile  (Schmit  et  al.,  2017; CIMSS,
2020). Thus, they are sensitive to moisture within different
layers of the troposphere. We calculate the channel weight-
ing  functions  for  every  column  of  each  member  using
optical depths obtained from CRTM with scattering effects
excluded. They are interpolated to pressure levels and aver-
aged across all ensemble members at all EnKF data assimila-
tion  cycles  within  each  cloud  scene  and  cloud  structure

region. To facilitate comparing them to each other, we normal-
ized  the  averaged  weighting  functions  so  that  the  summa-
tion of each weighting function equals 1. 

3.    Vertical structures in the correlations

Figure  2 shows the  time-averaged vertical  correlations
between  the  BTs  and U, V, T,  and Qv for  the  clear-sky
scenes.  The  correlations  between  the  BTs  and  dynamical
fields (Figs. 2a, b) are generally weak with magnitudes no lar-
ger than 0.4. These correlations may be associated with meso-
scale  and  synoptic  scale  environmental  conditions.  On  the
case study day, the region covered by the model domain is
characterized  by  southwesterly  cold  air  advection  in  the
upper  troposphere  and  southerly  dry  air  advection  in  the
lower  troposphere.  Therefore,  the  correlations  between  the
BTs  and U/V are  generally  positive  in  the  upper  tropo-
sphere  and  negative  in  the  lower  troposphere.  However,
these correlations with dynamical fields may not be applic-
able to other events with different environments and underly-
ing dynamics.

The  correlations  between  the  BTs  and  thermodynamic
fields (Figs. 2c, d) are stronger than for the dynamic fields.
The correlations with T and Qv have similar shapes but oppos-
ite signs, as expected. The correlations of  T and Qv with chan-
nel 8 peak the highest at around 300−350 hPa. Their correla-
tions with channel 10 peak the lowest at around 450−500 hPa,
whereas their correlations with channel 9 peak between the
other two at around 350−400 hPa. The magnitudes of the cor-
relations  decrease  when  moving  either  upward  or  down-
ward  away from a  peak.  The  shapes  and peak  locations  of
the vertical correlations of these channels with T and Qv are
consistent  with  the  weighting  function  of  each  channel
(Fig.  3a).  The  largest  weights  for  channel  8  occur  in  the
upper  troposphere,  whereas  for  channel  10  the  largest
weights occur in the middle to lower troposphere. In a fash-
ion similar to the vertical correlations, the weights decrease
with increasing vertical distance from their peak locations.

Figure  3a exhibits  weighting  functions  averaged  over
all  columns,  for  all  members,  of  all  21  data  assimilation
cycles for the relevant scene and region. To illustrate the vari-
ability occurring across the clear-sky columns, the probabil-
ity  density  functions  (PDFs)  of  the  peak locations,  of  each
member’s  weighting  function,  for  each  column  across  all
data assimilation cycles are illustrated in Fig. 3b. Within the
clear-sky scenes, the PDFs are quite narrow for all three chan-
nels (Fig. 3b). Moreover, the peaks in the PDFs are clearly
separate,  especially  for  channel  8  and  channel  10.  More
than 97% of the peaks from channel 8 are at pressures less
than 400 hPa (corresponding to high altitudes in the tropo-
sphere), and more than 95% of the peaks for channel 10 are
at pressures greater than 400 hPa (corresponding to low alti-
tudes within the troposphere).

As revealed by Z21, weak average correlations between
BT and Qv at some vertical levels illustrated in Fig. 2 may
be a result of averaging moderate positive and negative correl-
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ation  values  together,  rather  than  having  weak  correlations
everywhere at this level. To demonstrate this point in the con-
text  of  this  study,  time-averaged  PDFs  of  the  correlations
between the channel BTs and Qv at different pressure levels
within clear-sky scene columns are illustrated in Fig.  4.  At
300 hPa (Fig. 4a), which is close to the peaks of the weight-
ing functions for channels 8 and 9, these two channels have
strong  negative  correlations  with Qv,  and  almost  no  posit-
ive  correlations  exist  at  this  level  for  these  two  channels.
However, when moving downward to 500 hPa (Fig. 4b) and
700 hPa (Fig. 4c), the number of positive correlations gradu-
ally increase for these two channels. Their PDFs at 700 hPa
(Fig. 4c) show a Gaussian distribution centered on 0, suggest-
ing  that  they  are  indistinguishable  from  random  Gaussian
noise with a mean value of 0. Similar shifts of correlations
toward 0 in the PDF, coupled with an increasing number of
positive correlations, also appear for channel 10 when mov-
ing away from 500 hPa (close to the peak of  its  weighting
function; Fig. 4b) to 300 hPa (Fig. 4a) and 700 hPa (Fig. 4c).
Considering  radiative  transfer  processes  in  columns  with
monotonically  decreasing  temperature  with  height  and  no
lower-tropospheric  inversion,  correlations  between  the  IR
BTs and Qv should be generally negative. The positive correl-
ations  in Fig.  4 are  likely  spurious  and  the  result  of
sampling errors arising from limited ensemble size.

Figure  5 shows  the  vertical  correlations  between  the
BTs  and  the  atmospheric  state  variables  for  the  high  and
low altitude cloud regions accompanied by the PDF of  the
CTPs for these two regions combined. A notable character-
istic  of Fig.  5 is  the  different  structures  of  correlations  for
the high altitude cloud region versus the low altitude cloud
region across  the three channels.  In the high altitude cloud
region,  the  correlations  for  different  channels  overlap  with
each other, unlike for the low altitude cloud region whose cor-
relations are similar to those in the clear-sky region (Fig. 2d),
in  the  middle  to  upper  troposphere.  For  the  high  altitude
cloud  region,  BTs  from  all  three  channels  are  primarily
determined  by  the  cloud-top  temperatures  of  these  high
clouds, leading to nearly identical BTs and correlations for
the  three  of  them.  Cloud  tops  for  columns  in  the  low  alti-
tude  cloud  region  are  primarily  at  pressures  greater  than
700 hPa (Fig. 5, black lines). These CTPs are much greater
than the pressures at which the peaks of the weighting func-
tions for the three channels occur. As a result, the low alti-
tude  clouds  do  not  strongly  impact  the  BTs  of  these  three
channels, with their BTs mostly a result of radiation originat-
ing from the troposphere above these low clouds. As a res-
ult,  the  structures  and  magnitudes  of  the  correlations
between  the  BTs  and T and Qv in  the  low  altitude  cloud
region  (Figs.  5c, d)  are  similar  to  those  for  the  clear-sky

 

 

Fig. 2. Time averages of the vertical correlations between the BTs and (a) U, (b) V, (c) T, and (d) Qv for clear-sky scenes.
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scene (Figs. 2c, d). The positive correlations in the lower tro-
posphere  between  the  BTs  and Qv (Fig.  5d,  dashed  lines),
occurring at altitudes below those to which channels 8 and 9
are sensitive (Fig. 3a), may be a result of the limited sample
size for the low altitude cloud regions.

In both the high and low altitude cloud regions, correla-
tions  between  the  BTs  and  dynamic  fields  are  again  relat-
ively weak (Figs. 5a, b). Kerr et al. (2015) hypothesized that
the  feedbacks  between  the  model  dynamics  and  the  storm
environment  may  have  produced  the  nonzero  correlations
between  cloud-top  temperatures  and  horizontal  winds  in
their  idealized  supercell  experiments.  Peaks  in  the  correla-
tions  between  the  BTs  and T and Qv in  the  high  altitude

cloud region are located around 200 hPa (Figs. 5c, d), near
the  cloud  tops,  and  higher  than  for  the  low  altitude  cloud
region and the clear-sky scenes (Figs. 2c, d). Vertical correla-
tions  of  BT  with Qv (Fig.  5d)  are  noticeably  broader  than
those with T (Fig. 5c) in the high altitude cloud region, prob-
ably  because  the  underlying dynamics  of  moist  convection
in  severe  thunderstorms facilitate  relationships  between Qv

and  the  BTs  across  a  deeper  range  of  the  troposphere.  A
noticeable  feature  of  the  correlations  between BT and T in
the  high  altitude  cloud  region  is  a  large  spike  at  pressures
just  less  than  200  hPa  (Fig.  5c).  This  spike  is  related  to
those  in  the  normalized  averaged  weighting  functions
(Fig.  3c)  and  the  PDFs  of  the  weighting  function  peaks

 

 

Fig. 3. (a), (c), (e) Normalized averaged weighting functions and (b), (d), (f) PDFs of the peaks of the weighting functions of
all the ensemble members for the three water vapor channels of ABI in (a), (b) clear-sky scenes, (c), (d) high altitude cloud
regions, and (e), (f) low altitude cloud regions.
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(Fig. 3d) of the high altitude cloud region because the BTs
in  this  region  are  strongly  modulated  by  the  properties  at
cloud top. Because the BTs for columns in the low altitude
cloud  region  are  mostly  sensitive  to  the  clear-sky  tropo-
sphere  above  the  low  altitude  clouds,  the  weighting  func-
tions (Fig. 3e) and the PDFs of the weighting function peaks
(Fig. 3f) in the low altitude cloud region are similar to those
in  the  clear-sky scene  (Figs.  3a, b),  although the  PDFs are
much noisier due to a much smaller sample size for the low
altitude cloud region. The small sample size of the low alti-
tude cloud region may also contribute to the positive correla-
tions  between Qv in  the  mid-troposphere  and  BT,  which
itself is a byproduct of a negative correlation between Qv in
the upper troposphere and Qv in the middle troposphere. We
would not expect this positive correlation to remain if a lar-
ger sample size covering more scenarios is used in the ana-
lysis.

Hydrometeor  mixing  ratios  exhibit  negative  correla-
tions  with  BTs  in  the  high  altitude  cloud  region  as  more
hydrometeors  are  often  associated  with  higher  (colder)
cloud tops. Ice hydrometeors (cloud ice, snow, and graupel;
Figs. 5f, h, i) have stronger correlations than liquid hydromet-
eors  (cloud  liquid  and  rain; Figs.  5e, g).  Correlations  with
ice hydrometeors have peaks at 200 hPa (Figs. 5f, h, i), con-
sistent with the peak associated with Qv at cloud top (Fig. 5d).
The  correlations  with  liquid  hydrometeors  peak  around
300  hPa  (Figs.  5e, g).  The  stronger  correlations  with  ice
hydrometeors  suggest  potentially  greater  influences  by
them, as compared to the liquid hydrometeors, on the BTs.
The correlations between the BTs and liquid hydrometeors
at  pressures  greater  than  300  hPa  are  not  significantly
weaker than those between the BTs and ice hydrometeors at
these  pressures.  These  results  indicate  that  both  the  liquid
and ice hydrometeors may have comparable contributions to
the correlations at these lower altitudes, whereas the ice hydro-
meteors  contribute  greatest  at  the  higher  altitudes  where
liquid  hydrometeor  contents  are  low.  The  correlations
between the BTs and all of the hydrometeors are weak and
noisy in  the  low altitude cloud region (Figs.  5e−i)  because
the BTs are most sensitive to the clear-sky layers above the
low clouds.  The definition of the low altitude cloud region
ensures  that  the  mixing ratios  of  all  hydrometeors  must  be
lower than 10−6 kg kg−1 at pressures less than 700 hPa.

Columns for the different cloud scenes and cloud struc-
ture regions discussed above are generally consistent within
a scene or region type. Therefore, the structures in the correla-
tions  that  result  from  them  are  generally  well-defined  and
clearly associated with the underlying dynamic and thermody-
namic  processes.  However,  the  structures  in  the  correla-
tions are more complex for partly cloudy scenes and mixed
altitude cloud regions (Fig. 6). PDFs of CTP for these scene
and region types show that the mixed altitude cloud regions
mostly contain hydrometeors with CTPs from about 150 hPa
to  500  hPa  (Fig.  6,  solid  black  lines).  The  partly  cloudy
scenes mostly contain clouds with CTPs at pressures greater
than 600 hPa, together with some clouds with CTPs around

 

Fig.  4. Time  averages  of  the  PDFs  of  the  correlations
between  the  BTs  and  the  clear-sky  scene  BTs  at  vertical
levels  of  (a)  300 hPa,  (b)  500 hPa,  and (c)  700 hPa.  The
narrow peaks in the PDF close to correlation values of −1,
especially  noticeable  in  (a)  and  (b),  are  the  result  of  a
deleterious  impact  of  the  boundary  conditions  along  the
southwestern corner of the model domain.
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400 hPa (Fig. 6, dashed black lines). During convection initi-
ation, the timing of initiation and the development of clouds
and  precipitation  vary  considerably  across  ensemble  mem-
bers, leading to similar CTP PDFs like those in Fig. 6. This
time is also when the ensemble forecasts have some of their
greatest uncertainties (e.g., Zhang et al., 2016b). Therefore,
broad  vertical  correlations  in  the  partly  cloudy  scenes  and
mixed altitude cloud regions come as no surprise.

Compared  with  the  correlations  for  the  high  altitude
cloud  regions,  peaks  in  the  correlations  between  the  BTs

and hydrometeor mixing ratios for the mixed altitude cloud
regions move downward in altitude to around 300 hPa. This
drop  in  altitude  of  the  peak  locations  corresponds  to  the
broader  distribution  of  CTPs  centered  around  300  hPa  for
the mixed altitude cloud regions (Figs. 6b−f). Peaks in the cor-
relations of the BTs and Qv also move downward. However,
the altitudes of the peaks for the three channels are slightly
different. Channel 8 has the highest altitude peak, and chan-
nel 10 has the lowest altitude peak (Fig. 6a), although not as
low as  its  peak for  clear-sky scenes  (Fig.  2d).  Considering

 

 

Fig. 5. Time averages of the vertical correlations between the BTs and (a) U, (b) V, (c) T, (d) Qv, (e) Qc, (f) Qi, (g) Qr, (h) Qs,
and (i) Qg for  the high and low altitude cloud regions.  The PDF of CTP for all  member columns within either  of  the two
cloud structure regions is illustrated by the same black line in all subpanels.
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that  a  notable  number  of  the  CTPs  within  the  mixed  alti-
tude  cloud  regions  are  at  pressures  less  than  500  hPa,  the
shifts  of  correlation  peaks  from  channel  8  to  channel  10
(Fig. 6a, solid-colored lines) suggest that the correlations in
the  mixed  altitude  cloud  regions  are  averages  of  profiles
that  contain  both  high-altitude-cloud-like  correlation  pro-
files  and  low-altitude-cloud-like  (and  comparable  to  clear-
sky-like) correlation profiles.

The effect  of  this  averaging is  amplified for  the partly
cloudy  scenes,  where  one  correlation  profile  for  a  given
column  often  contains  contributions  from  ensemble  mem-
bers  with  and  without  clouds.  With  a  considerable  portion

of  CTPs  at  pressures  greater  than  600  hPa  for  the  partly
cloudy scenes, correlations with Qv are similar to those for
the clear-sky scenes and the low altitude cloud regions. For
the partly cloudy scenes, the correlations with the hydromet-
eors, except for Qr, show a similar shift in the vertical loca-
tions  of  their  peaks.  Moreover,  the  correlations  with  chan-
nel  10  BTs  are  stronger  in  magnitude  in  the  lower  tropo-
sphere  compared  with  BTs  from  the  other  two  channels.
Unlike  the  low  altitude  cloud  regions,  the  partly  cloudy
scenes  contain  a  notable  number  of  CTPs  at  pressures
greater than 500 hPa, sufficient to produce reasonable correla-
tions.

 

 

Fig. 6. Time averages of the vertical correlations between the BTs and (a) Qv,  (b) Qc,  (c) Qi,  (d) Qr,  (e) Qs,  and (f) Qg for
partly cloudy scenes and mixed altitude cloud regions. The PDFs of CTP across all members are also illustrated for the partly
cloudy scenes (dashed black lines) and the mixed altitude cloud regions (solid black lines).
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In short,  we find that the vertical structures of correla-
tions  between  the  IR  BTs  and  the  atmospheric  state  vari-
ables depend on both the cloud scenes and the cloud struc-
ture regions, as well as consistency, or a lack thereof, across
ensemble members of each type. We now examine how the
correlations change with horizontal distance for different ver-
tical levels in the atmosphere. 

4.    Horizontal structures in the correlations

We  now  focus  on  the  change  in  the  correlations
between  the  BTs  and  the  atmospheric  state  variables  with
respect  to  horizontal  distance. Figure  7 shows  time  aver-
ages of the layer mean of the correlations between the BTs
and Qv with  respect  to  horizontal  distance  at  different  ver-
tical levels from 800 hPa to 100 hPa in 50 hPa steps for the
clear-sky and fully cloudy scenes. We only show distances

from 0 km to 150 km in the figure in order to better reveal
details  within  50  km.  The  leftmost  column  within  each  of
the six panels in Fig. 7, i.e., the averages of the absolute val-
ues  of  the  correlations  between  the  BTs  and Qv values
within 5 km horizontally of them, shows characteristics that
are consistent with our analysis on the vertical structures in
the correlations in the previous section. For example, for the
clear-sky  scenes,  the  strongest  correlations  for  channels  8,
9,  and 10 appear  at  about  300 hPa,  350 hPa,  and 450 hPa,
respectively,  and  the  strongest  correlations  in  the  fully
cloudy scenes occur around 250 hPa for all three channels.
As Fig.  7 illustrates,  the  horizontal  scales  of  the  correla-
tions for the clear-sky scenes are much longer than those for
the fully cloudy scenes. The longest horizontal scales in the
correlations appear in the upper troposphere.

Correlations  at  200  hPa,  300  hPa,  and  450  hPa  are
shown in Fig. 8 to facilitate further comparisons; the x-axis

 

 

Fig. 7. Time averages of the layer-mean correlations between the BTs and Qv with respect to horizontal distance for vertical
levels from 100 hPa to 800 hPa in 50 hPa steps. The time averages are over all 21 EnKF data assimilation cycles for (a), (d)
channel 8,  (b),  (e)  channel 9,  and (c),  (f)  channel 10 for (a),  (b),  (c)  the clear-sky scenes,  and (d),  (e),  (f)  the fully cloudy
scenes.
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of Fig. 8 has an upper limit of 300 km because the sample
sizes with distances exceeding 300 km are very small.  The
200-hPa  pressure  level  is  above  all  cloud  tops,  and  chan-
nels  8  and  10  have  maxima  in  their  weighting  functions
near 300 hPa and 450 hPa, respectively. Consistent with our
previous  analysis  on  the  vertical  structures  in  the  correla-
tions  (Fig.  2d),  for  the  clear-sky  scenes,  channels  8  and  9
have  their  strongest  correlations  at  300  hPa  (Figs.  8a, b),
whereas channel 10 has its strongest correlations at 450 hPa
for  horizontal  distances  less  than  approximately  70  km
(Fig. 8c; where the yellow and pink lines intersect). The mag-
nitudes of the correlations cease to decrease beyond approxim-
ately 100 km to 150 km, which is in agreement with the ver-
tical mean absolute correlations (defined in section 2.3) for
the clear-sky scenes (Fig. 9a). The broad horizontal correla-
tions between the BTs and Qv for the clear-sky scenes res-

ult from the atmospheric state variables being more horizont-
ally homogeneous in clear-sky scenes rather than in cloudy
ones.  This  conclusion  is  also  supported  by  Z21  who  show
that assimilating coarser spatial resolution BTs with broader
localizations does not degrade the accuracy of the EnKF ana-
lysis for the clear-sky scenes.

For fully cloudy scenes, all three channels at the two ver-
tical  levels  below  cloud  top  show  similar  characteristics.
The  magnitudes  of  the  correlations  decrease  rapidly  with
increasing distance and remain close to 0 when the distance
exceeds about 30 km (Figs. 8d, e, f and Fig. 9c). The much
shorter correlation length scale for the fully cloudy scenes is
not surprising given that most dynamics within severe thun-
derstorms occur at similar or smaller scales. Because the cor-
relations at 200 hPa for the fully cloudy scenes are for a ver-
tical  level  above  the  cloud  tops,  slightly  stronger  correla-

 

 

Fig. 8. Time averages of the layer-mean correlations between the BTs and Qv with respect to horizontal distance. The time
averages  are  over  all  21  EnKF data  assimilation  cycles  at  200  hPa,  300  hPa,  and  450  hPa  for  (a),  (d)  channel  8,  (b),  (e)
channel 9, and (c), (f) channel 10 for (a), (b), (c) the clear-sky scenes, and (d), (e), (f) the fully cloudy scenes. Correlations
for horizontal distances longer than 300 km are omitted due to very small sample sizes of model grids at these distances.
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tions exist beyond 30 km (Figs. 7d, e, f and Figs. 8d, e, f).
Given that the horizontal ROI for the BTs in the EnKF

data assimilation cycling of experiment CH10 is 30 km, we
applied  the  same analysis  on  the  results  of  another  experi-
ment  from  Z21,  called  the  CH10-5KM  experiment,  that
both the horizontal spacings and the ROI of the assimilated
BTs are doubled compared with the CH10 experiment. The
results  obtained  using  the  CH10-5KM  experiment  with  a
60-km horizontal  ROI  (Figs.  9b, d)  are  almost  identical  to
those  obtained  using  the  30-km  ROI  in  the  CH10  experi-
ment (Figs. 9a, c). These results suggest that the cut-off dis-
tance  of  30  km  is,  at  least  for  this  event,  inherent  to  the
nature  of  the  thunderstorms  rather  than  modulated  by  the
ROI applied during the EnKF data assimilation cycling.

The  vertical  mean  absolute  correlations  between  the

BTs and hydrometeors for the fully cloudy scenes (Fig. 10)
are consistent with their vertical correlations (Fig. 5). The cor-
relations  for  the  ice  particles  (i.e.,  cloud  ice,  snow,  and
graupel) are stronger than those for the liquid particles (i.e.,
cloud liquid and rain). For all five hydrometeor species, the
correlations drop to 0 at around 30 km (Fig. 10), consistent
with the correlations between the BTs and Qv for  the fully
cloudy  scene  (Fig.  9c).  The  consistency  of  the  correlation
cut-off  distances  between  the  BTs  and  the  different  atmo-
spheric  state  variables  for  the  fully  cloudy  scenes  again
reflect  the  scales  of  the  underlying  dynamical  processes
within this severe thunderstorm.

The correlations  between the  BTs and T for  the  clear-
sky scenes (Figs. 11a, b, c) have similar structures with the
correlations between the BTs and Qv (Figs. 7a, b, c), except

 

 

Fig. 9. Averages over all 21 EnKF data assimilation cycles and all vertical levels of the absolute values of the layer-mean
correlations between the BTs and Qv with respect to horizontal distance for (a), (b) the clear-sky scenes, and (c), (d) the fully
cloudy scenes for the (a), (c) CH10 and (b), (d) CH10-5KM EnKF experiments. Correlations for horizontal distances longer
than 300 km are omitted due to very small sample sizes of model grids at these distances.
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for being mostly positive and weaker in magnitude. These res-
ults, too, are consistent with the structures in the vertical cor-
relations (Figs. 2c, d). However, for the fully cloudy scenes,
the  magnitudes  of  the  correlations  between  the  BTs  and  T
drop rapidly with distance for all vertical levels (Figs. 11d,
e, f). The vertical absolute mean correlations remain almost
unchanged  beyond  10  km  (Figs.  12d, e, f),  noticeably
shorter  than  the  30-km  length  scale  of  the  correlations
between the BTs and Qv. The correlations between the BTs
and  dynamical  fields  for  the  fully  cloudy  scenes  remain
unchanged beyond 30 km (Figs.  12d, e, f),  suggesting  that
this scale is once again associated with the storm dynamics. 

5.    Summary

To address the problem of vertical localization of satel-
lite radiance observations in an EnKF data assimilation sys-
tem  that  has  sampling  errors  resulting  from  limited
ensemble  size,  we analyze EnKF experiments  that  assimil-
ate  conventional  and  satellite  observations  for  the  analysis
and prediction of the tornadic supercell thunderstorm event
on  12  June  2017  in  the  central  United  States.  The  hori-
zontal  and  vertical  structures  in  the  correlations  between
infrared (IR)  BTs observed by the three water  vapor  chan-
nels  of  the  Advanced  Baseline  Imager  (ABI)  onboard  the
GOES-16  satellite  and  the  atmospheric  state  variables  are
investigated  in  detail.  The  three  ABI  water  vapor  chan-
nels—channel  8  (6.2-μm  wavelength),  channel  9  (6.9-μm
wavelength), and channel 10 (7.3-μm wavelength)—are sens-
itive to moisture within different  layers of the troposphere,
hence motivating our study of them.

Three cloud scenes—clear-sky, partly cloudy, and fully
cloudy—are defined based on the probability of clouds. The
fully cloudy scenes are further divided into three cloud struc-
ture  regions—high  altitude  cloud,  low  altitude  cloud,  and
mixed  altitude  cloud—based  on  the  vertical  distribution  of
cloud top pressure (CTP). Not surprisingly, the vertical struc-
tures in the correlations depend on the cloud scenes and the
cloud  structure  regions.  Under  clear-sky  conditions,  ver-
tical correlations between the infrared (IR) BTs and temperat-
ure (T),  or  moisture (Qv),  resemble the structure of  the BT
weighting  functions.  Vertical  correlations  and  the  weight-
ing functions of channel 8, channel 9, and channel 10 peak
at  approximately  320  hPa,  400  hPa,  and  500  hPa,  respect-
ively.  When  moving  away  vertically  from  the  level  of  the
peak  correlation  for  a  channel,  correlations  generally
become smaller in magnitude. Further examination of probab-
ility  density  functions  (PDFs)  of  the  vertical  correlations
between BT and water vapor mixing ratio (Qv) at three differ-
ent  vertical  levels  for  each  channel  indicate  a  shift  of  the
PDF  peaks  from  negative  values  to  approximately  0  with
increasing  vertical  separation  from  the  layers  with  the
largest  magnitudes,  suggesting  the  existence  of  potentially
spurious  correlations.  For  example,  PDFs  of  the  correla-
tions between ABI channel 8/9 and Qv at 700 hPa resemble
a  Gaussian  distribution  with  a  mean  value  of  0,  implying

 

Fig.  10. Averages  over  all  21  EnKF  data  assimilation
cycles  and all  vertical  levels  of  the absolute  values of  the
layer-mean  correlations  between  the  BTs  and
hydrometeors  with  respect  to  horizontal  distance  for  (a)
channel  8,  (b)  channel  9,  and (c)  channel  10  for  the  fully
cloudy scenes. Correlations for horizontal distances longer
than 300 km are omitted due to very small sample sizes of
model grids at these distances.
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that these PDFs of correlations are indistinguishable from ran-
dom Gaussian noise.

In  cloudy  regions,  the  vertical  correlations  between
BTs and atmospheric state variables are determined by both
the  structures  of  the  clouds  and  their  coherence  across  the
ensemble  members.  When  all  ensemble  members  contain
high  clouds  (i.e.,  high  altitude  cloud  regions  within  fully
cloudy  scenes),  the  BTs  are  mostly  sensitive  to  the  atmo-
spheric state at cloud top and more sensitive to ice hydromet-
eors (i.e., cloud ice, snow, and graupel) than liquid hydromet-
eors  (i.e.,  cloud  liquid  and  rain).  For  these  high  altitude
cloud  regions,  little  difference  exists  across  the  three  ABI
water vapor channels. When all ensemble members contain
low  clouds  (i.e.,  low  altitude  cloud  regions  within  fully
cloudy scenes), all of which are well below the altitudes at
which the weighting functions of the ABI water vapor chan-
nels  peak,  the  BTs  are  mostly  sensitive  to  the  troposphere
above these clouds. For these low clouds, the vertical struc-
tures in the correlations resemble those under clear-sky condi-
tions.  However,  a  more  common  situation  in  an  EnKF

approach to severe storm forecasting, especially during con-
vection  initiation,  is  a  combination  of  clouds  at  different
heights  (i.e.,  mixed  altitude  cloud  regions  within  fully
cloudy scenes) or a combination of cloudy and clear-sky con-
ditions across the members (i.e.,  partly cloudy scenes). For
these  cases,  the  vertical  structures  in  the  correlations
become combinations of high altitude cloud correlation pro-
files and clear-sky correlation profiles, depending on the spe-
cific  combination  of  cloud  scenes  and/or  cloud  structure
regions. This makes correlation localization in the vertical dir-
ection more ambiguous in these regions.

The  horizontal  structures  in  the  correlations  contain
some of the characteristics of the vertical structures in the cor-
relations. For example, the largest magnitude correlations gen-
erally  occur  either  at  the  heights  of  the  weighting  function
peaks in clear-sky or low altitude cloud columns or at cloud
top in high altitude cloud columns. The magnitudes of the cor-
relations  decrease  with  increasing  horizontal  separation
between the BT column and the column of the atmospheric
state variables. The reductions in the magnitudes of the correl-

 

 

Fig. 11. Similar to Fig. 7, but for correlations between the BTs and T.
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ations  with  distance  are  slower  for  clear-sky  scenes  com-
pared  with  fully  cloudy  scenes.  The  horizontal  cut-off  dis-
tance (a.k.a., radius of influence) of the correlations, or the
distance  beyond  which  the  magnitudes  of  the  correlations
cease to decrease, is much broader for the clear-sky scenes
(~100 km) than the high and mixed altitude cloud regions of
the  fully  cloudy scenes  (~30 km).  This  difference  between
the cut-off  distances of  the correlations in clear-sky scenes
versus  fully  cloudy  scenes  is  not  surprising,  given  that  the
atmospheric state variables for the clear-sky scenes are usu-
ally  more  homogeneous  than  for  fully  cloudy  regions,
where large spatial variabilities in the atmospheric state vari-
ables exist. The horizontal correlations between the BTs and
the hydrometeors, as well as the dynamical fields, also consist-
ently  exhibit  this  30-km  cut-off  distance  in  fully  cloudy
scenes,  implying  that  this  length  scale  may  be  inherently
determined by the scale of the underlying dynamic and ther-
modynamic  processes  of  the  severe  thunderstorms
examined in this study.

The results of this study provide information on the local-
ization of all-sky IR BTs in both horizontal and vertical direc-
tions  for  convection-allowing  regional  EnKF  applications,
although  we  must  be  cautious  in  generalizing  results  from
the single case period in this study. For horizontal localiza-
tion,  a  much broader  ROI,  together  with  less  dense  BTs is
appropriate  for  clear-sky  scenes  as  compared  to  cloudy
ones.  This  result  is  also  supported  by  Z21  who  found  that
using thinned BTs with enlarged ROIs does not degrade the
accuracy of the analysis in clear-sky scenes. For vertical local-
ization, schemes based on the vertical structures in the correla-
tions and/or  weighting functions of  each channel  appear to
be  appropriate,  in  which  the  weighting  functions  facilitate
adaptively assigning pseudo heights  to  each of  the BTs.  In
fact, the global group filter (GGF) that is used to generate ver-
tical localization functions in Lei et al. (2020) has shapes sim-
ilar to the absolute values of the vertical correlations. Their
fitted Gaspari−Cohn localization function shares the same ver-
tical  peak  location  with  that  of  the  vertical  correlations.

 

 

Fig. 12. Averages over all 21 EnKF data assimilation cycles and all vertical levels of the absolute values of the layer-mean
correlations between the BTs and T, U, and V with respect to horizontal distance for (a), (d) channel 8, (b), (e) channel 9, and
(c), (f) channel 10 for (a), (b), (c) clear-sky scenes and (d), (e), (f) fully cloudy scenes. Correlations for horizontal distances
longer than 300 km are omitted due to very small sample sizes of model grids at these distances.
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Other  techniques,  such  as  sampling  error  correction  (SEC;
Anderson, 2012) is also applicable in tandem with vertical loc-
alization as it  loosens accuracy requirements in the estima-
tion of the vertical ROI. The vertical structures in the correla-
tions  also  suggest  the  potential  of  assimilating  multiple  IR
channels over clear-sky scenes when proper vertical localiza-
tion is applied, in which case each channel will impact a dif-
ferent layer of the troposphere to which it is most sensitive.
Assessing the value of ABI channel 9, whose weighting func-
tions have significant overlap with those of ABI channels 8
and 10, is a natural next step. With appropriate vertical localiz-
ations for each channel, a more accurate analysis throughout
the entire troposphere should be attainable in comparison to
when only one channel is assimilated.

Our  analysis  also  reveals  that  constraining  boundary
layer  clouds  using  any  of  the  water  vapor  channels
examined  in  this  study  may  be  problematic  because  the
weighting functions  for  all  three  channels  peak at  altitudes
much  higher  than  these  clouds.  Boundary  layer  clouds  are
sometimes  associated  with  structures  such  as  gust  fronts
that  are  precursors  of  subsequent  convection  initiation,  so
information about these low clouds is of value in data assimil-
ation.  Whereas  the  ABI  IR  water  vapor  channels  may  not
provide useful information on boundary layer clouds, ABI’s
IR window channels or visible channels may. For assimila-
tion of the IR window channels, large errors in the model sur-
face emissivity and/or model surface temperature will deleteri-
ously  impact  the  modeled  radiative  transfer  calculations,
potentially limiting the value of direct assimilation of observa-
tions  from  these  channels.  To  circumvent  these  problems,
new methods need to be advanced, such as the channel syn-
thesizing  technique  proposed  by Lu  and  Zhang  (2018).  To
advance assimilation of visible channel radiances, Scheck et
al. (2020) and Schröttle et al. (2020) have incorporated fea-
tures into the forward radiative transfer operator that facilit-
ates the assimilation of visible reflectances, during the day-
time, into a NWP model. How to best constrain cloud fields,
especially  for  boundary  layer  clouds,  using  a  combination
of different channels deserves further investigation.
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