Skip to main content
Log in

Background Characteristics of Atmospheric CO2 and the Potential Source Regions in the Pearl River Delta Region of China

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Mole fractions of atmospheric CO2 (XCO2) have been continuously measured from October 2014 to March 2016 at the Guangzhou Panyu Atmospheric Composition Site (23.00°N, 113.21°E; 140 m MSL) in the Pearl River Delta (PRD) region using a cavity ring-down spectrometer. Approximately 66.63%, 19.28%, and 14.09% of the observed values were filtered as background, pollutant source, and sink due to biospheric uptake, respectively, by applying a robust local regression procedure. Their corresponding mean values were 424.12 ± 10.12 ppm (×10−6 mol mol−1), 447.83 ± 13.63 ppm, and 408.83 ± 7.75 ppm. The background XCO2 levels were highest in spring and winter, moderate in autumn, and lowest in summer. The diurnal XCO2 was at a minimum from 1400–1600 LST (Local Standard Time) and a maximum at 0500 LST the next day. The increase of XCO2 in spring and summer was mainly associated with polluted air masses from south coastal Vietnam, the South China Sea, and the southeast Pearl River Estuary. With the exception of summer, airflow primarily from marine regions southeast of Taiwan that passed over the Pearl River Estuary had a greater impact on XCO2, suggesting an important potential source region.

摘要

城市群大气CO2是全球碳循环的重要组成部分, 对全球增温以及区域气候变化具有显著作用。相对于背景区域而言, 人们对城市地区大气CO2的了解比较有限。探明城市群大气CO2的本底/非本底特征及潜在源区, 对约束和提高大气CO2的模式评估具有重要意义。2014年10月至2016年3月期间, 利用光腔衰荡技术在广州番禺大气成分站(23.00°N, 113.21°E; 140 m MSL)连续在线观测了大气CO2的摩尔分数(XCO2)。利用平均移动过滤法筛分了观测数据的本底、非本底信号。采用72小时后向轨迹聚类分析了大气CO2的长距离输送特征, 结合潜在来源贡献算法区分了CO2的潜在源区。结果表明:在观测期间, 大约66.63%, 19.28%和14.09%的CO2分别为本底值、污染源以及由植被吸收引起的吸收汇, 其浓度分别为424.12 ± 10.12 ppm (×106 mol mol1), 447.83 ± 13.63 ppm 和 408.83 ± 7.75 ppm。大气CO2的本底浓度在春、冬季最高, 秋季居中, 夏季最低, 其日变化均在1400–1600(北京时)出现最低值, 在次日的0500时达到最高值。春、夏季XCO2的抬升主要受到了来自越南南部、南海以及珠江口东南部海域污染气团的影响。除夏季外, 其他季节来自台湾东南部海域再迂回珠江口的气团对XCO2有显著作用, 是重要的潜在源区.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ara Begum, B., E. Kim, C. H. Jeong, D. W. Lee, and P. K. Hopke, 2005: Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos. Environ., 39, 3719–3724, https://doi.org/10.1016/j.atmosenv.2005.03.008.

    Google Scholar 

  • Bousquet, P., A. Gaudry, P. Ciais, V. Kazan, P. Monfray, P. G. Simmonds, S. G. Jennings, and T. C. O’Connor, 1996: Atmospheric CO2 concentration variations recorded at Mace Head, Ireland, from 1992 to 1994. Physics and Chemistry of the Earth, 21, 477–481, https://doi.org/10.1016/S0079-1946(97)81145-7.

    Google Scholar 

  • Briber, B. M., L. R. Hutyra, A. L. Dunn, S. M. Raciti, J. W. Munger, 2013: Variations in Atmospheric CO2 Mixing Ratios across a Boston, MA Urban to Rural Gradient. Land, 2, 304–327, https://doi.org/10.3390/land2030304.

    Google Scholar 

  • Chevallier, F., and Coauthors, 2011: Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column. Geophys. Res. Lett., 38, L24810, https://doi.org/10.1029/2011GL049899.

    Google Scholar 

  • Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang, 1994: Evidence for inter-annual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network. J. Geophys. Res., 99, 22831–22855, https://doi.org/10.1029/94JD01951.

    Google Scholar 

  • Draxler, R. R., and G. D. Rolph, 2003: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, Silver Spring, MD.[Available online from http://www.arl.noaa.gov/ready/hysplit4.html]

  • Fang, S. X. and Coauthors, 2011: Measurement of atmospheric CO2 mixing ratio by cavity ring-down spectroscopy (CRDS) at the 4 background stations in China. Acta Scientiae Circumstantiae, 31, 624–629, https://doi.org/10.13671/j.hjkxbb.2011.03.021. (in Chinese with English abstract)

    Google Scholar 

  • Fang, S. X., L. X. Zhou, P. P. Tans, P. Ciais, M. Steinbacher, L. Xu, and T. Luan, 2014: In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmospheric Chemistry and Physics, 14, 2541–2554, https://doi.org/10.5194/acp-14-2541-2014.

    Google Scholar 

  • Fang, S. X., P. P. Tans, M. Steinbacher, L. X. Zhou, T. Luan, and Z. Li, 2016: Observation of atmospheric CO2 and CO at Shangri-La station: Results from the only regional station located at southwestern China. Tellus B, 68, https://doi.org/10.3402/tellusb.v68.28506.

  • Gillette, D. A., W. D. Komhyr, L. S. Waterman, L. P. Steele, and R. H. Gammon, 1987: The NOAA/GMCC continuous CO2 record at the South Pole, 1975–1982. J. Geophys. Res., 92, 4231–4240, https://doi.org/10.1029/JD092iD04p04231.

    Google Scholar 

  • Gurney, K. R., D. L. Mendoza, Y. Y. Zhou, M. L. Fischer, S. Geethakumar, and S. De La Rue du Can, 2009: High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol., 33, 5535–5541, https://doi.org/10.1021/es900806c.

    Google Scholar 

  • Houghton, R. A, 2003: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B, 55, 378–390, https://doi.org/10.3402/tellusb.v55i2.16764.

    Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 676–679

  • Keeling, C. D., R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl Jr., P. R. Guenther, L. S. Waterman, and J. F. S. Chin, 1976: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28, 538–551, https://doi.org/10.1111/j.2153-3490.1976.tb00701.x.

    Google Scholar 

  • Keeling, R. F., 2008: Atmospheric science: Recording Earth’s vital signs. Science, 319, 1771–1772, https://doi.org/10.1126/science.1156761.

    Google Scholar 

  • Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836, https://doi.org/10.1038/ngeo689.

    Google Scholar 

  • Luan, T., L. X. Zhou, S. X. Fang, B. Yao, H. Y. Wang, and Z. Liu, 2014: Atmospheric CO2 data filtering method and characteristics of the molar fractions at the Longfengshan WMO/GAW regional station in China. Environmental Science, 3, 2864–2870, https://doi.org/10.13227/j.hjkx.2014.08.004. (in Chinese with English abstract)

    Google Scholar 

  • Luan, T., S. X. Fang, L. X. Zhou, B. Yao, and Z. Liu, 2015: Comparison of two flagging approaches to the observed CO2 mole fractions at the Longfengshan WMO/GAW regional station in China. China Environmental Science, 35, 321–328. (in Chinese with English abstract)

    Google Scholar 

  • Mai, B. R., X. J. Deng., X. Q. An., X. T. Liu, F. Li., and X. Liu, 2014: Spatial and temporal distributions of tropospheric CO2 concentrations over Guangdong province based on satellite observations. China Environmental Science, 34, 1098–1106. (in Chinese with English abstract)

    Google Scholar 

  • Masarie, K. A., and P. P. Tans, 1995: Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res., 100, 11593–11610, https://doi.org/10.1029/95JD00859.

    Google Scholar 

  • Mays, K. L., P. B. Shepson, B. H. Stirm, A. Karion, C. Sweeney, and K. R. Gurney, 2009: Aircraft-based measurements of the carbon footprint of Indianapolis. Environ. Sci. Technol., 43, 7816–7823, https://doi.org/10.1021/es901326b.

    Google Scholar 

  • Newman, S., and Coauthors, 2012: Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring, 2010. Atmospheric Chemistry and Physics Discussions, 12, 5771–5801, https://doi.org/10.5194/acpd-12-5771-2012.

    Google Scholar 

  • Peters, G. P., G. Marland, C. Le Quéré, T. Boden, J. G. Canadell, and M. R. Raupach, 2012: Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Change, 2, 2–4, https://doi.org/10.1038/nclimate1332.

    Google Scholar 

  • Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 104, 18925–18930, https://doi.org/10.1073/pnas.0708986104.

    Google Scholar 

  • Piao, S. L., J. Y. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, and T. Wang, 2009: The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009–1013, https://doi.org/10.1038/nature07944.

    Google Scholar 

  • Polissar, A. V., P. K. Hopke, P. Paatero, Y. J. Kaufmann, D. K. Hall, B. A. Bodhaine, E. G. Dutton, and J. M. Harris, 1999: The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ., 33, 2441–2458, https://doi.org/10.1016/S1352-2310(98)00423-3.

    Google Scholar 

  • Prinn, R. G., and Coauthors, 2000: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res., 105, 17751–17792, https://doi.org/10.1029/2000JD900141.

    Google Scholar 

  • Rayner, P. J., M. R. Raupach, M. Paget, P. Peylin, and E. Koffi, 2010: A new global gridded data set of CO2 emissions from fossil fuel combustion: Methodology and evaluation. J. Geophys. Res., 115, D19306, https://doi.org/10.1029/2009JD013439.

    Google Scholar 

  • Reimann, S., and Coauthors, 2005: Low European methyl chloroform emissions inferred from long-term atmospheric measurements. Nature, 433, 506–508, https://doi.org/10.1038/nature03220.

    Google Scholar 

  • Rosenstiel, T. N., M. J. Potosnak, K. L. Griffin, R. Fall, and R. K. Monson, 2003: Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 421, 256–259, https://doi.org/10.1038/nature01312.

    Google Scholar 

  • Rosenzweig, C., W. Solecki, S. A. Hammer, S. Mehrotra, 2010: Cities lead the way in climate-change action. Nature, 467, 909–911, https://doi.org/10.1038/467909a.

    Google Scholar 

  • Ruckstuhl, A. F., S. Henne, S. Reimann, M. Steinbacher, M. K. Vollmer, S. O’Doherty, B. Buchmann, and C. Hueglin, 2012: Robust extraction of baseline signal of atmospheric trace species using local regression. Atmospheric Measurement Techniques, 5, 2613–2624, https://doi.org/10.5194/amt-5-2613-2012.

    Google Scholar 

  • Sirois, A., and J. W. Bottenheim, 1995: Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J. Geophys. Res., 100, 2867–2881, https://doi.org/10.1029/94JD02951.

    Google Scholar 

  • Strong, C., C. Stwertka, D. R. Bowling, B. B. Stephens, and J. R. Ehleringer, 2011: Urban carbon dioxide cycles within the Salt Lake Valley: A multiple-box model validated by observations. J. Geophys. Res., 116, D15307, https://doi.org/10.1029/2011JD015693.

    Google Scholar 

  • Tai, A. P. K., L. J. Mickley, C. L. Heald, and S. L. Wu, 2013: Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use. Geophys. Res. Lett., 40, 3479–3483, https://doi.org/10.1002/grl.50650.

    Google Scholar 

  • Tans, P. P., I. Y. Fung, and T. Takahashi, 1990: Observational contrains on the global atmospheric CO2 budget. Science, 247, 1431–1438, https://doi.org/10.1126/science.247.4949.1431.

    Google Scholar 

  • Thompson, R. L., A. C. Manning, E. Gloor, U. Schultz, T. Seifert, F. Hänsel, A. Jordan, and M. Heimann, 2009: In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany. Atmospheric Measurement Techniques, 2, 573–591, https://doi.org/10.5194/amt-2-573-2009.

    Google Scholar 

  • Tsutsumi, Y., K. Mori, M. Ikegami, T. Tashiro, and K. Tsuboi, 2006: Long-term trends of greenhouse gases in regional and background events observed during 1998–2004 at Yonagunijima located to the east of the Asian continent. Atmos. Environ., 40, 5868–5879, https://doi.org/10.1016/j.atmosenv.2006.04.036.

    Google Scholar 

  • Wang, Y., J. W. Munger, S. Xu, M. B. McElroy, J. Hao, C. P. Nielsen, and H. Ma, 2010: CO2 and its correlation with CO at a rural site near Beijing: Implications for combustion efficiency in China. Atmospheric Chemistry and Physics, 10, 8881–8897, https://doi.org/10.5194/acp-10-8881-2010.

    Google Scholar 

  • WMO, 2014: Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2013. World Meteorological Organization.

  • Young, P. J., A. Arneth, G. Schurgers, G. Zeng, and J. A. Pyle, 2009: The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmospheric Chemistry and Physics, 9, 2793–2803, https://doi.org/10.5194/acp-9-2793-2009.

    Google Scholar 

  • Zang, K. P., L. X. Zhou, S. X. Fang, Y. P. Wen, B. Yao, F. Zhang, L. X. Liu, 2011: A new system for calibration and propagation of mixed CO2 and CH4 standard. Environmental Chemistry, 30, 511–516. (in Chinese with English abstract)

    Google Scholar 

  • Zhang, D., Y. Wang, Y. R. Feng, and Y. C. Fang, 2014: Analysis and forecasting of high-humidity weather in Guangdong in February and March. Meteorological Science and Technology, 42, 302–308, https://doi.org/10.3969/j.issn.1671-6345.2014.02.021. (in Chinese with English abstract)

    Google Scholar 

  • Zhang, F., and L. X. Zhou, 2013: Implications for CO2 emissions and sinks changes in western China during 1995–2008 from atmospheric CO2 at Waliguan. Tellus B, 65, 19576, https://doi.org/10.3402/tellusb.v65i0.19576.

    Google Scholar 

  • Zhang, F., L. X. Zhou, and L. Xu, 2013: Temporal variation of atmospheric CH4 and the potential source regions at Waliguan, China. Science China Earth Sciences, 56, 727–736, https://doi.org/10.1007/s11430-012-4577-y.

    Google Scholar 

  • Zhang, F., L. X. Zhou, and Y. Z. Wang, 2015: Evaluation on the impacts of different background determination methods on CO2 sources and sinks estimation and seasonal variations. Environmental Science, 36, 2405–2413, https://doi.org/10.13227/j.hjkx.2015.07.011. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

This research work was funded by the National Key R&D Program of China (Grant No. 2018YFC021 3902, 2019YFC0214605, 2016YFC0202000), the open project of the Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology (KDW 1803), the Scientific and Technological Innovation Team Project of Guangzhou Joint Research Center of Atmospheric Sciences, China Meteorological Administration (Grant No.201704), the Science and Technology Research Project of Guangdong Meteorological Bureau (Grant No. GRMC2018M01). The availability of the data used in this study is fully described in section 2 of this paper. The authors thank the developers of the HYSPLIT-4. Constructive suggestions from Dr. Timothy LOGAN, as well as from the anonymous reviewers, are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boru Mai.

Additional information

Article Highlights

• Background CO2 mole fractions in the PRD region have been identified.

• Seasonal potential source regions of CO2 mole fractions are determined.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, B., Deng, X., Zhang, F. et al. Background Characteristics of Atmospheric CO2 and the Potential Source Regions in the Pearl River Delta Region of China. Adv. Atmos. Sci. 37, 557–568 (2020). https://doi.org/10.1007/s00376-020-9238-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-020-9238-z

Key words

关键词

Navigation