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ABSTRACT

A coupled earth system model (ESM) has been developed at the Nanjing University of Information Science and Tech-
nology (NUIST) by using version 5.3 of the European Centre Hamburg Model (ECHAM), version 3.4 of the Nucleus for
European Modelling of the Ocean (NEMO), and version 4.1 of the Los Alamos sea ice model (CICE). The model is referred
to as NUIST ESM1 (NESM1). Comprehensive and quantitative metrics are used to assess the model’s major modes of climate
variability most relevant to subseasonal-to-interannual climate prediction. The model’s assessment is placed in a multi-model
framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic pre-
cipitation climatology, but has difficulty in capturing the spring—fall asymmetry and monsoon precipitation domains. The
ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and
spatial structures of the central Pacific (CP)-ENSO and eastern Pacific (EP)-ENSO; however, the equatorial SST variability,
biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal
variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden—Julian Oscillation
(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the
T42 version, the high resolution version (T159) demonstrates improved simulation with respect to the climatology, interan-
nual variance, monsoon—-ENSO lead-lag correlation, spatial structures of the leading mode of the Asian—Australian monsoon
rainfall variability, and the eastward propagation of the MJO.
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1. Introduction of ENSO was a primary endeavor in the 1980s and 1990s,
starting from the ground-breaking work of ENSO prediction
with a coupled model of intermediate complexity (Cane et al.,
1986; Zebiak and Cane, 1987) to numerical modeling and
prediction of ENSO using CGCMs (Mechoso et al., 1995;
Latif et al., 2001; Davey et al., 2002). Accordingly, the
dynamical prediction of global climate anomalies emerged
using atmospheric global climate models (AGCMs) forced
by forecasted SST as boundary forcing, i.e., the two-tier ap-
proach (Bengtsson et al., 1993). It was later found that mon-
soon variability is not only a response to ENSO, but also
strongly involves local atmosphere—ocean interaction (Wang

Since the pioneering work of Manabe and Bryan (1969),
immense progress has been made in the development of cou-
pled global climate models (CGCMs) and earth system mod-
els (ESMs). Such model development has been continuously
inspired by tremendous scientific and societal demands in dy-
namical climate prediction and future projection of the re-
sponse of the climate system and earth system to anthro-
pogenic forcing.

On the climate prediction front, simulation and prediction
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et al., 2000; Lau and Nath, 2000). Thus, even using the
strongest observed SST anomalies associated with the un-
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precedented 1997-98 ENSO event, an AGCM alone failed
in simulating the Asian monsoon precipitation anomalies due
to neglecting the atmospheric feedback to the ocean (Wang et
al., 2005). The results of multi-model hindcast experiments
indicate that monsoon prediction requires a coupled model
and one-tier approach for seasonal prediction (Wang et al.,
2004, 2005). Today’s climate prediction models include at-
mosphere, ocean, land, and sea ice components and their in-
teractive processes.

On the future projection front, stimulated by the
first Global Change Symposium in 1984, the International
Geosphere-Biosphere Programme was established in 1986
by the International Council of Scientific Unions. The need
to study global change propelled the modeling community to
couple the physical climate system with biogeochemical pro-
cesses and human influence, transforming the focus from cli-
mate system models (CSMs) to ESMs. The ESM aims to pre-
dict global environmental changes involving interactions be-
tween the atmosphere, hydrosphere, lithosphere, cryosphere,
biosphere and anthroposphere (i.e. human activity). Starting
from the beginning of the 21st century, the ESM provides an
effective tool for comprehensively studying the earth system.

In recent decades, Chinese atmospheric and oceanic com-
munities have been making great efforts to develop CSMs
and ESMs to meet the demands of climate prediction and fu-
ture projection in China. The first CSM built in China was
the Flexible Global Ocean—Atmosphere-Land System gird
version 1.0 (FGOALS-g1.0) model by the Institute of Atmo-
spheric Physics (IAP), Chinese Academy of Sciences (CAS)
(Yu et al., 2008). Another CSM was built at the Beijing Cli-
mate Center (BCC-CM1) (Ding et al., 2000). The perfor-
mance of both FGOALS-g1.0 and BCC-CM1 was compre-
hensively evaluated in the Coupled Model Intercomparison
Project Phase 3 (CMIP3). After CMIP3, modeling groups in
China made great efforts to improve their CSMs, including
increasing model resolution, improving physical parameter-
ization, and implementing more component models and up-
grading to ESMs. For example, the ESM of Beijing Normal
University (BNU-ESM) (Ji et al., 2014) and that of the First
Institute of Oceanography (FIO-ESM) (Qiao et al., 2013)
were developed based on the structure of version 4 of the
Community Climate System Model (CCSM4). BNU-ESM is
characterized by its land surface model, the Common Land
Model (Dai et al., 2003, 2004), and FIO-ESM made a first
attempt to incorporate a surface wave model into its structure
(Qiao et al., 2013). These four model groups participated in
CMIP5. Alongside these developments, a new coupler, the
Community coupler (C-coupler), has been developed at Ts-
inghua University (Liu et al., 2014).

Recently, a coupled ESM has been developed at Nanjing
University of Information Science and Technology (NUIST),
referred to as NESM. The objectives in developing NESM are
to meet the multiple needs for seamless climate prediction,
projecting future global environment changes, and modeling
paleoclimate changes and high-impact climate events. The
strategy for the development of NESM was initially, as a first
step, to take full advantage of existing world-class compo-
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nent models and to focus on the coupled physics. This will
then be followed by continual improvement of the compo-
nent models and the addition of more components through
close collaboration with other modeling groups. A special
endeavor of the NESM project is to realistically simulate the
major climate processes that are unique to the Asia-Pacific re-
gion, such as monsoon and ENSO. In developing the model,
it is hoped that application can be achieved in subseasonal-to-
decadal forecasting at national meteorological and oceano-
graphic operational centers. Furthermore, another target for
the model is to participate and contribute as much as possible
to international modeling projects, such as the subseasonal-
to-seasonal (S2S) project and the forthcoming World Climate
Research Program/Coupled Model Intercomparison Project
Phase 6 (CMIP6).

In the present paper, we briefly introduce (in section 2)
the basic features of the first version of NESM, i.e. NESM1.
Our major aim at this point in the model’s development is
to assess its capacity in simulating short-term climate vari-
ability. The evaluation strategy, metrics and methods used to
achieve this are described in section 3, followed by a presen-
tation of the model evaluation results in section 4. The as-
sessment focuses on the model’s capability in simulating the
primary modes of climatology and S2S variability. A more
comprehensive evaluation of the simulation of land surface,
sea ice, and oceanic processes and variability, as well as tele-
connection patterns, will be reported in future work.

2. Development of NESM1

NESM1 consists of three component models: version 5.3
of the Max Planck Institute’s ECHAM atmospheric mode,
version 3.4 of the Nucleus for European Modelling of the
Ocean (NEMO), and version 4.1 of the Los Alamos sea ice
model (CICE). The three component models are coupled
via a fully parallelized coupler: version 3.0 of the Ocean—
Atmosphere—Sea-Ice—Soil (OASIS, v3.0) Model Coupling
Toolkit (OASIS3-MCT). The land surface model is included
in the ECHAM component. Each component of the coupled
system is briefly described in the following subsections.

2.1. The ECHAM (v5.3) atmospheric model

The ECHAM atmospheric general circulation model is
introduced in detail in Roeckner et al. (2003). However, a
brief description is also summarized here. ECHAM v5.3
employs a spectral dynamical core with a triangular trunca-
tion of spherical harmonics and a semi-implicit leapfrog time
difference scheme. A flux-form semi-Lagrangian scheme is
used for the passive tracer (all water components and chem-
ical substances). The shortwave radiation scheme uses the
Eddington approximation for the integration over the zenith
and azimuth angles and the delta-Eddington approximation
for the reflectivity of a layer (Fouquart and Bonnel, 1980).
The longwave radiation scheme uses the Rapid Radiative
Transfer Model (RRTM) (Mlawer et al., 1997). A mass flux
parameterization scheme for cumulus convection (Tiedtke,
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1989) is used for shallow, mid-level and deep convection.
The stratiform cloud scheme contains a cloud microphysical
scheme (Lohmann and Roeckner, 1996) with separate prog-
nostic equations for the vapor, liquid, and ice phases. The
land surface is coupled with the atmosphere via an implicit
scheme in ECHAM v5.3.

2.2. The NEMO (v3.4) ocean model

NEMO v3.4 is a framework of ocean related models, in-
cluding OPA (Ocean PArallelise) for the ocean dynamics and
thermodynamics, LIM (Louvain-la-Neuve Sea Ice Model) for
the sea-ice dynamics and thermodynamics, TOP (Tracer in
the Ocean Paradigm) for the biogeochemistry and sources-
minus-sinks of carbon (Madec and NEMO team, 2012). It
is an ocean model originally based on OPAS8.2 and developed
under the NEMO framework. NESM1 uses the NEMO ocean
part (OPA).

The primitive equations for the ocean model are written
in a curvilinear coordinate system, with a z-coordinate par-
tial step formulation (Barnier et al., 2006). The model is dis-
cretized on a staggered grid (Arakawa C grid) with masking
of land areas. In the momentum equation, the total energy and
potential enstrophy are conserved in the limit of horizontally
nondivergent flow (Le Sommer et al., 2009). The Total Vari-
ance Dissipation (TVD) scheme (Zalesak, 1979) is used to
calculate the advection of tracers. The mixed layer dynamics
is parameterized using the Turbulent Kinetic Energy (TKE)
closure scheme (Madec et al., 1998). Double diffusion mix-
ing is adopted with a heat—salt buoyancy flux ratio of 1.6 and
a maximum vertical mixing of salinity of 1 x 10™% m? s~
The incoming solar radiation is distributed in the surface lay-
ers of the ocean using penetration parameters (Lengaigne et
al., 2009).

2.3. The CICE (v4.1) sea ice model

The NEMO ocean model has the CICE (Hunke and Lip-
scomb, 2010) model as a module, which employs a zero-
layer thermodynamic model with one layer of ice and one
layer of snow in the vertical direction. Ice surface tempera-
ture, atmosphere-to-ice fluxes, and the conductive heat flux
through the ice to the ocean have to be calculated in the
atmospheric component. This has been used by EC-Earth
(Hazeleger et al., 2010) and HadGEM3 (Hewitt et al., 2011).
In NESM1, the CICE module is not used in NEMO, but is in-
stead treated as a component model, and the multi-layer ther-
modynamic scheme is employed with four vertical ice layers
and one snow layer. This is more efficient in that the CICE
model can determine the net ice characteristics of the grid cell
and provide the exchanging fluxes.

NESM1 employs the CICE v4.1 tripolar grid configura-
tion with the Elastic—Viscous—Plastic (EVP) scheme for inter-
nal ice stress. The delta-Eddington radiative scheme is used
for computing the albedo and shortwave fluxes. The subgrid-
scale ice thickness distribution (ITD) divides the ice pack into
five ice categories and an open water category, which have
different thicknesses, different surface properties, and differ-
ent melt and growth rates, as computed by the thermodynam-
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ics. The lower bounds of ice thickness used in NESM1 are 0,
0.6, 1.4, 2.4 and 3.6 m. The layered thermodynamic scheme
is used to determine the changes of thickness and the vertical
temperature profile in each category.

2.4. The OASIS3-MCT coupler

The OASIS3-MCT interfaced with MCT (Larson et al.,
2005) is used to synchronize, interpolate and exchange the
coupling fields among the atmospheric, oceanic and sea-
ice component models. In NESM1, all interpolation coef-
ficients are pre-computed based on re-gridding weights and
addressed by using the Spherical Coordinate Remapping and
Interpolation Package (SCRIP) library, which is included in
OASIS3-MCT. As a parallel coupler, it implements a fully
parallel re-gridding (as a parallel matrix vector multiplica-
tion) and parallel distributed exchanges of the coupling fields.
All model processes are involved to transfer information over
the coupler subdomains, and parallel file inputs/outputs are
also supported.

2.5. The coupling strategy and methodology

To avoid climate drift in the coupled system, heat and
freshwater flux conservation interpolation are applied to keep
the global energy balance (e.g., Hewitt et al., 2011; Xiang et
al., 2012). There are 36 variables in total to be exchanged
among the three model components, and the coupling fre-
quency is once per day, which is managed by the OASIS3-
MCT coupler.

For the ocean—atmosphere coupling, the ECHAM atmo-
spheric model drives the ocean model with surface wind
stress, heat and freshwater fluxes, while the NEMO ocean
model sends SST and ocean surface currents back to the at-
mospheric model. In the ocean—ice coupling system, NEMO
receives information on the ice fraction, ocean-ice stress,
melting freshwater flux, salt flux, net ocean-ice heat flux, and
penetrative shortwave radiation through ice to the ocean, and
provides information on the SST, sea surface salinity (SSS),
surface currents, sea surface slope, and ice freezing/melting
flux to the CICE model. Finally, for the atmosphere—ice cou-
pling, CICE provides information on the ice fraction, ice sur-
face temperature, and ice surface albedo to ECHAM. Mean-
while, ECHAM sends information on the atmospheric level
height, zonal and meridional winds, specific humidity, air
density, air potential temperature, air temperature, downward
shortwave and longwave radiation, and rainfall and snowfall
fluxes to the CICE model.

Note that the heat fluxes between the ocean and atmo-
sphere are calculated in ECHAM, while several other fluxes
are calculated in CICE (e.g., latent and sensible heat fluxes)
for the atmosphere—ice coupling. The reason is twofold.
First, some of the fluxes depend strongly on the state of the
ice, indicating that an implicit, simultaneous determination
of the ice state and surface fluxes is necessary for consistency
and stability. Second, due to various ice types coexisting in a
single grid cell, it is more efficient for the ice model to deter-
mine the net ice characteristics of a grid cell and provide the
corresponding fluxes to the other model components.
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2.6. Experimental design

Two versions of NESM1 were used in this study. In
NESM1 (T42), the atmospheric component resolution is
T42L31, which corresponds to a horizontal resolution of
about 2.8° and 31 vertical layers extending from the surface
to 10 hPa. The horizontal resolution for the ocean model is
about 2° x 2° over the extratropical region and about 2° (lon)
x0.5° (lat) over the tropical region. It has 31 layers with a 10
m resolution for the upper 10 layers. The horizontal resolu-
tion for the sea ice model is about 1° (lon) x0.5° (lat) with
four ice layers and one snow layer. NESM1 (T159) has the
same configuration as NESM1 (T42), except that the atmo-
spheric model horizontal resolution is T159 (about 0.75°). In
order to evaluate the forced response and internal feedback
of the two versions of NESM1, two sets of experiments were
conducted with the external forcing (greenhouse gases, solar
constant etc.) fixed at the level of the year 1990. A 100-year
free coupled run was performed after a 300-year spin up with
NESMI1 (T42). In the NESM1 (T159) simulation, we used
the same ocean and sea-ice model and their configurations
as for NESM1 (T42). An additional 30-year simulation was
carried out after a further 10-year spin up using the ocean and
sea-ice initial conditions from NESM1 (T42). The study used
the T42 results, except for precipitation simulation, where the
T159 results were used. Unless specific mention is made of
T159, NESMI1 in this paper is an abbreviation of NESM1
(T42).

3. Evaluation strategy, metrics and methods

Continuing improvement of ESMs requires systematic
evaluation and tracking of models’ performances. Two types
of fundamental processes need to be diagnosed: (1) the
forced response of the climate system to external forcing,
such as solar radiation, which is primarily reflected in the
annual cycle; and (2) internal feedback processes within the
atmosphere or the coupled climate system, such as Madden—
Julian Oscillation (MJO), ENSO, and other modes of climate
variability.

Given that societal needs for prediction from weekly
to seasonal time scales are great (Vitart et al., 2012), our
evaluation of NESMI is primarily aimed at S2S prediction.
More specifically, we focus on the climatology, ENSO, mon-
soon variability, and intraseasonal oscillation (ISO). The ma-
jor variables examined are precipitation, a key element of
the hydrological cycle and atmospheric dynamics, SST, and
surface circulation, which are important indicators of the
atmosphere—ocean coupling.

The observational data used to validate the simula-
tions include: (1) Global Precipitation Climatology Project
(GPCP), version 2.2 (Huffman et al., 2009); (2) the im-
proved Extended Reconstructed Sea Surface Temperature
(SST) dataset, version 2 (ERSST V2) (Smith and Reynolds,
2004); (3) the atmospheric fields from the National Centers
for Environmental Prediction (NCEP)/Department of Energy
(DOE) Reanalysis II (Kanamitsu et al., 2002); (4) wind stress
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from the NCEP Real-time Marine (http://esrl.noaa.gov/psd/)
dataset; and (5) gridded daily outgoing longwave radiation
(OLR) (Liebmann and Smith, 1996) from the National Cen-
ter for Atmospheric Research (NCAR). For comparison, we
also use University of Hawaii POEM2 model results (Xi-
ang et al., in preparation) and historical simulations of 20
CGCMs that participated in CMIP5. The pattern correla-
tion coefficient (PCC) and normalized root-mean-square er-
ror (NRMSE), often used as validation measures for simu-
lated two-dimensional fields (Wang et al., 2009), are em-
ployed. The threat score is used to measure the simulation
skill in the monsoon domain, which is defined by the num-
ber of “hit” grids divided by the sum of “hit”, “missed”, and
“false-alarm” grids (Wang et al., 2011).

The mean climatology in coupled models is recognized as
critical for realistic simulation of the ISO, monsoon variabil-
ity, and ENSO-monsoon teleconnection (Turner et al., 2005;
Lee et al., 2010; Waliser, 2011). We evaluate SST climatol-
ogy in terms of (1) the long-term mean (figure not shown) and
(2) the annual cycle of the equatorial Pacific SST and associ-
ated zonal wind stress. The annual mean SST is crucial for
realistic simulation of tropical precipitation and circulation.
The annual cycle of the equatorial SST is vital for testing the
model’s capability in capturing the equatorial atmosphere—
ocean interaction and the simulation of ENSO’s amplitude
and phase locking (Mitchell and Wallace, 1992; Nigam and
Chao, 1995). The diagnostic metrics for evaluation of the cli-
matology of precipitation follow the approach proposed by
Wang et al. (2011), which includes (1) the annual mean, (2)
the solstice and equinoctial asymmetric modes of the annual
cycle, and (3) the global monsoon (GM) precipitation inten-
sity and domain. The performance in the GM precipitation
domain reflects the model’s capability in simulating the sea-
sonal distribution of precipitation, as well as the total amount
of annual precipitation at each location.

The ENSO is of central importance for determining trop-
ical and global teleconnection, and thus it is a major source
of global climate predictability on seasonal to interannual
time scales. Our ENSO evaluation metrics consist of (1) the
monthly mean SST variance pattern, (2) the spatial structure
of the dominant empirical orthogonal function (EOF) mode
of the Pacific SST during the Northern Hemisphere winter,
(3) the phase lock of ENSO evolution to the annual cycle, (4)
the power spectrum of Nifio3 index, and (5) the spatiotem-
poral structure of the two types of ENSO, i.e., the Eastern
Pacific (EP)- and Central Pacific (CP)-ENSO.

The importance of the monsoon variability can never be
over-emphasized, as it affects the daily lives of two thirds
of the world’s population. In contrast to ENSO prediction,
the simulation and seasonal prediction of Asian—Australian
monsoon (AAM) rainfall variability have long been a great
challenge (Sperber and Palmer, 1996; Gadgil and Sajani,
1998; Goswami, 1998; Wang et al., 2008b; Wang et al.,
2014). The difficulty in simulating and predicting the Asian
summer monsoon’s seasonal rainfall is in part due to limita-
tions in predicting the monsoon’s intrinsic internal variability.
The performance in simulating the variation of the GM and
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Fig. 1. Annual cycle of (a) SST anomalies (deviation from the climatological mean) (units: °C) and (b) zonal
wind stress (unit: N m~2) from observation (left) and NESM1 (T42) (right) averaged over the Pacific equatorial
region (5°S-5°N). ERSST v2 and NECP Real-time Marine wind stress data are used for comparison as the
observations. The pattern correlation coefficient (PCC) between observed and simulated patterns is indicated

in the top-right corner of the bottom panels.

(PCC = 0.78), especially the major oceanic convergence
zones over the tropics: the intertropical convergence zone
(ITCZ), the South Pacific convergence zone (SPCZ), and the
equatorial South Indian Ocean (IO) convergence zone. How-
ever, excessive precipitation presents over the north and south
of the equatorial regions (the so-called double ITCZ prob-
lem). The model produces the major precipitation zones in
the extratropical Pacific and Atlantic realistically, which are
associated with oceanic storm tracks. One salient feature is
that the precipitation is overestimated in the majority of ocean
basins, which may be related to the warm SST bias in the

tropical oceans and the intrinsic atmospheric model’s exces-
sive convergence in the ITCZ.

Wang and Ding (2008) defined two annual cycle modes
of precipitation according to EOF analysis of the climato-
logical monthly mean precipitation. The first EOF mode,
representing a solstice global monsoon mode, can be well
represented by the difference between June—July—August—
September (JJAS) and December—January—February—March
(DJFM) mean precipitation. The second EOF mode, rep-
resenting an equinox asymmetric mode, can be explained
by the difference between April-May (AM) and October—
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Fig. 2. The observed (GPCP v2.2) (left) and simulated (right) (a) annual mean, (b) first annual cycle (solstice mode,
JJAS minus DJFM), and (c) second annual cycle (equinoctial asymmetric mode, AM minus ON) of precipitation (units:
mm d—1). The simulated precipitation data are from NESM1 (T159). The pattern correlation coefficient (PCC) between
observed and simulated patterns, and the domain-averaged (40°S—60°N, 0°-360°) RMSE normalized by the observed

spatial standard deviation (NRMSE), are indicated in the top-right corner of the bottom panels.

November (ON) mean precipitation. The two leading annual-
cycle modes of precipitation account for 68% and 15% of
the total observed annual variation of precipitation, respec-
tively. Figure 2b indicates that the model reproduces the ob-
served first annual cycle (solstice) mode realistically with lit-
tle bias, but has difficulty in capturing the second annual cy-
cle (equinox) mode (Fig. 2c). It tends to overestimate the
solstice monsoon mode over the western Pacific monsoon re-
gion, and also overestimates the equinox asymmetric mode
over the Southern Hemisphere tropics.

The observed and simulated GM precipitation intensity
and monsoon domains are shown in Fig. 3. The GM pre-
cipitation intensity is defined by the ratio of local summer-
minus-winter mean precipitation over the annual mean pre-
cipitation and the GM precipitation domain is defined by
the regions where the summer-minus-winter precipitation ex-
ceeds 2.5 mm d~! and the GM precipitation intensity ex-
ceeds 0.55 (Wang and Ding, 2008; Lee and Wang, 2014).
NESMI1 (T159) reproduces the GM precipitation intensity

reasonably well with a PCC of 0.82, but underestimates the
intensity over the East Asian monsoon regions and overesti-
mates the intensity over the tropical oceans. The simulated
monsoon domains are less impressive, with a threat score of
0.52, but comparable with current CMIP5 models (Lee and
Wang, 2014).

4.2. ENSO simulation

NESM1 simulates the interannual variance of monthly
mean SST reasonably well (PCC = 0.84) (Table 1), but the
amplitude is significantly larger than observed, with a signifi-
cant westward shift of the variance center (figure not shown).
The PCC skill for the spatial distribution of the first EOF
mode of the averaged DJF tropical Pacific SST anomalies
(Fig. 4) is high (0.89). In order to compare the performance
of NESM1 in simulating ENSO with other CGCMs, the per-
formance of NESM1, POEM?2 and 20 CMIP5 CGCMs in
capturing the spatial distribution of monthly variance and the
first EOF mode of the tropical Pacific SST anomalies during
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Fig. 3. The global monsoon precipitation intensity (shading)
and domain (outlined by black lines and dotted) in (a) obser-
vation and (b) NESM1 (T159). The PCC between observed
and simulated patterns, the domain-averaged (30°S—45°N, 0°—
360°) RMSE normalized by the observed spatial standard de-
viation (NRMSE), and the threat score are indicated in the top-
right corner of (b).
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Fig. 4. Performance of NESMI1, POEM2 and 20 CMIP5
CGCMs in capturing the spatial distribution of the first EOF
mode of the averaged DJF tropical Pacific SST anomalies (ab-
scissa) and the monthly mean variance (ordinate) in terms of
the PCC skill. The tropical Pacific is the region (20°S—-20°N,
100°E-80°W).
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DJF are summarized in Fig. 4. It is noted that NESM1 is
among the top models with respect to the spatial distribution
of monthly variance and the dominant mode of DJF ENSO
variability.

ENSO phase locking to the seasonal cycle can be seen
clearly using the standard deviation (STD) of Nifio3 index for
each calendar month (An and Wang, 2001). NESM1 shows
similar results to those based on observations, which is char-
acterized by a maximum peak in November—January (Fig.
5a), although the seasonal variation in NESM1 is weaker.

(a) Monthly Nino3 STD

1.4
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0.8
0.6 +—————1——1——1—"—1
Jan FebMar AprMayJun Jul AugSep OctNovDec
(b) OBS Nino3 Power Spectra
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Fig. 5. (a) Monthly standard deviation (STD) of Nifio3 SST
anomalies, and power spectra of Nifio3 SST anomaly in (b) ob-
servation and (c) NESM1. The red and black solid lines in (a)
are from ERSST and NESM1, respectively. In (b) and (c), the
blue lines indicate red noise, and the red dashed lines indicate
the 95% confidence level.
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Moreover, the minimum Niflo3 standard deviation in NESM 1
is delayed by about 2 months with respect to observations.
The major observed peak of ENSO variability (Nifio3 index)
is about 2—7 years (Fig 5b). NESM1 simulates the frequency
of the Nifio3 SST anomaly well, with major peaks at 2 years
and 4-5 years (Fig. 5¢).

Recent studies have identified two types of El Nifio: CP-
El Nifio and the traditional EP-El Nifio, and their global cli-
mate impacts are distinctly different (Ashok et al., 2007; Yeh
et al., 2009; Kim et al., 2009; Ding et al., 2011). More fre-
quent occurrence of CP-EI Nifio in recent decades can be at-
tributed to greenhouse gas forcing (Yeh et al., 2009) as well
as natural decadal variability (Ashok et al., 2007; Xiang et
al., 2013). It is interesting to examine the different types
of ENSO in climate models because it is important to pre-
dict their different climate impacts and project their future
changes.

As discussed in Kao and Yu (2009), a combined
regression-EOF analysis is used to identify the two types
of ENSO. The spatial patterns of leading EOF modes for
CP- and EP-ENSO obtained over the domain (20°S-20°N
120°E-80°W) from observations and from NESM 1 are illus-
trated in Fig. 6. The loading coefficients for EOFs are scaled
by the square root of their corresponding eigenvalues to rep-
resent the STD of each EOF mode. The CP-ENSO is char-
acterized by SST variability centered in the central tropical
Pacific, and the EP-ENSO features SST variability extending
from the South American coast into the central Pacific along
the equator. NESM1 successfully reproduces the observed
spatial structures of CP- and EP-ENSO (PCC = 0.91 and
0.93, respectively). The observed and simulated explained
variances for CP-ENSO are 41.0% and 28.4%, respectively,
while for EP-ENSO they are 40.7% and 17.0%. The max-
imum STDs are used to quantify the intensities of the two
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types of ENSO. It is noted that the observed intensity of CP-
ENSO is close to 70% of the EP-ENSO intensity. However,
in NESM1, the CP- and EP-ENSOs have comparable ampli-
tudes, indicating that NESM1 overestimates the intensity of
CP-ENSO.

4.3. Monsoon rainfall variability

To evaluate NESM1’s capability in capturing the AAM
variability, we examine how NESM1 (T159) simulates the
first S-EOF mode of the AAM precipitation variability. Fig-
ure 7a presents the spatial patterns of the leading S-EOF
modes of AAM precipitation. The model reasonably repro-
duces the spatial structure of the leading S-EOF mode of the
AAM rainfall variability. However, NESM1 (T159) under-
estimates the rainfall variability over the equatorial western
Pacific and Maritime Continent. This is partially associated
with the westward shift of the ENSO SST anomalies. An-
other bias is found during SON and DJF, when the model
exhibits enhanced precipitation over the western tropical In-
dian Ocean, in strong contrast to the observed smaller pre-
cipitation anomalies. This bias may have some impacts on
Indian Ocean Dipole (IOD) simulation, given the tight rela-
tionship between ENSO and IOD (e.g., Saji and Yamagata,
2003). In summary, the model is able to capture the leading
S-EOF mode of the AAM rainfall variability in terms of its
association with ENSO, but demonstrates some errors in the
simulated spatial patterns, especially during the developing
phase of ENSO. It is also worth noting that the monsoon—
ENSO relationship, i.e., the first mode associated with ENSO
turnaround (Wang et al., 2008a), is realistically captured by
the model, as demonstrated in Fig. 7b.

Figure 8 shows the performance of NESM1 in simulat-
ing the variance of JJA precipitation in terms of the PCC
skill and season-averaged PCC skill for the first S-EOF mode

(a) CP-ENSO (b) EP-ENSO
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Fig. 6. The spatial patterns of the leading EOF modes for the (a) central Pacific (CP) and (b) eastern Pacific (EP) types
of ENSO obtained from observation (top) and NESM1 (bottom). The loading coefficients for EOFs are scaled by the
square root of their corresponding eigenvalues to represent the standard deviations (STD) of each EOF mode. Maxi-
mum Standard Deviation (MAX STD) is indicated in the top-right corner of all panels. The PCC between observed and
simulated patterns is indicated in the top-right corner of the bottom panels.
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(a) Leading S-EOF modes of the AAM precipitation
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Fig. 7. (a) Spatial patterns of the first S-EOF modes of the Asian—Australian monsoon (AAM) precipitation ob-
tained from observation (left) and NESM1 (T159) (right). The PCC between observed and simulated patterns is
indicated in the top-right corner of the right-hand panels. (b) Lead—lag correlation coefficients of Nifio3.4 SST
index with reference to the first S-EOF principal component obtained from observation and NESM1 (T159).
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(b) Lead-lag correlation coefficients
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Fig. 7. (Continued.)

of AAM precipitation in comparison with POEM2 and 20
CMIP5 CGCMs. NESMI is among the top models, espe-
cially for simulating the precipitation variance. Compared
with NESM1 (T42), NESM1 (T159) shows great improve-
ments in terms of simulating the AAM, which is also better
than 14 out of the 20 CMIP5 models.

44. ISO/MJO

We first evaluate the model’s performance based on vari-
ance of 20-100-day bandpass filtered precipitation. The
model can capture well the ISO variability in precipitation
and the 850 hPa zonal wind (U850) during both boreal win-
ter (NDJFMA) (PCC = 0.74 for precipitation, PCC = (.85 for
U850) and boreal summer (MJJASO) (PCC = 0.78 for pre-
cipitation and PCC = 0.85 for U850) (figure not shown). The
model also reproduces reasonably well the precipitation vari-
ability during MJJASO over the western North Pacific and
East Asian region, but tends to overestimate the variance over
the western Pacific in NDJFMA.

In order to isolate the characteristic spatial and temporal
scales on which the intraseasonal variability is organized, we
present in Fig. 9 the equatorial (averaged over 10°S—10°N)
wavenumber-frequency spectra of precipitation and 850 hPa
zonal wind. From observation, the precipitation spectrum
shows energy concentration between zonal wave numbers 1
and 3 and periods between 30 and 70 days with a spectral
peak at around 40 days. These scales distinguish the MJO
from other convectively coupled equatorial waves (Wheeler
and Kiladis, 1999). NESM1 shows that the energy is concen-
trated on a time scale longer than 80 days and a shorter spa-
tial scale of zonal wave number 2—4 for precipitation. These
biases mean that the simulated MJO has considerably slow
eastward propagation. The spectral power of equatorial 850
hPa zonal winds also shows stronger low-frequency variabil-
ity longer than 80 days, while the dominant zonal wave num-
ber is 1-2, as in the observations (Fig. 9d).

The commonly used metrics to measure ISO/MJO skill
are the Real-time Multivariate MJO (RMM) index (Wheeler
and Hendon, 2004), which is based on the nature of ISO/MJO
with convection coupling with baroclinic circulations. In
Fig. 10, we evaluate the model’s performance in captur-
ing the first two multivariate EOF modes of 20-100-day
variations in U850, 200 hPa zonal wind (U200), and OLR
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Fig. 8. The season-averaged PCC for the first S-EOF
mode of AAM precipitation (abscissa) and the PCC skill
for variance (ordinate) of precipitation in JJA simulated
by NESMI1 (T42 and T159), POEM2 and 20 CMIPS
CGCMS.

averaged between 15°S and 15°N (Wheeler and Hendon,
2004). Together, these two modes constitute the eastward
propagating MJO and explain about 40% of the filtered
variance (Fig. 10a), and they also represent the first two
leading predictable modes of MJO. The upper- and lower-
troposphere zonal winds are out of phase, thus demonstrating
the baroclinic structure of the MJO. There is a signal dis-
placement of the zonal wind maxima relative to the convec-
tion signal with low-level easterlies (westerlies) tending to
lead (trail) the convection maximum. NESMI1 captures the
OLR-circulation structure very well for both modes, except
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(b) U850
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Fig. 9. The wavenumber-frequency spectra of 10°S—10°N averaged (a) precipitation and (b) zonal wind at
850hPa (U850) during NDJFMA from observation (upper panel) and NESM1 (lower panel). The PCC between
observed and simulated patterns for precipitation and zonal wind at 850 hPa over wavenumbers 1-3 and a period
of 30-80 days are indicated in the top-right corner of the bottom panels.

for a westward shift of the minimum OLR in RMM?2. The
main weakness is that the simulated fractional variance of the
RMM1 (14%) is significantly lower than the observed coun-
terpart (20%), indicating that the model underestimates MJO
activity over the Indian Ocean.

Figure 10b presents the lead—lag correlation structures be-
tween the RMM1 and RMM?2 time coefficients from obser-
vation and NESM1. The positive correlation at negative time
lag (-10 days) is an indication that the RMM1 leads RMM2,
consistent with enhanced convection (negative OLR anoma-
lies) propagating from the Indian Ocean to the western Pa-
cificc. NESM1 simulates the lead—lag correlation structure
extremely well. From observation (NESM1), the maximum

correlation is about 0.79 (0.65) at the 9-day (10-day) lead.
However, since there is a westward shift of the minimum
OLR in RMM?2, the realistic lead—lag correlation between
the two modes alone does not mean the propagation speed
is correct. In fact, the spatial structural bias in RMM2 im-
plies a slow eastward propagation, consistent with what we
have seen from the wavenumber-frequency diagnostics.

5. Summary

A new coupled ESM, named NESMI, has been devel-
oped at NUIST, which employs the component models of
ECHAM (v5.3), NEMO (v3.4) and CICE (v4.1), coupled by
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Fig. 10. (a) The first two multivariate EOF modes (RMM1 and RMM?2) of 20-100-day bandpass filtered U850,
U200 and OLR averaged over 15°S—15°N from observation (top) and NESM1 (bottom) over all seasons. (b)
Lead-lag correlations of PC1 and PC2 over all seasons with positive correlation at negative time lags corre-
sponding to RMM1 leading RMM2 (Indian Ocean convection leading Maritime Continent convection) from

observation and NESM1.

the OASIS3-MCT parallel coupler. Model outputs from free
coupled runs were evaluated in terms of forced response (an-
nual cycle) and internal feedback modes (ENSO, monsoon,
and ISO). The quantitative measures used to judge the level
of success were the PCC and NRMSE. The results are pre-
sented in Table 1. The major strengths and weaknesses of
NESMI, as well as plans for future improvement, are sum-
marized as follows:

(1) Annual mean and annual cycle. NESM1 reproduces
the annual mean SST very well (PCC = 0.95), especially in
the equatorial oceans. The annual cycle of the equatorial SST
is also well simulated (PCC = 0.86), except a moderate delay
of maximum warming in the eastern Pacific (Fig. 1a). These
successes help the model’s simulation of ENSO. The simu-
lated mean precipitation is reasonably good (PCC = 0.81),
but suffers from the double ITCZ problem (Fig. 2a). The
model reproduces the observed first annual cycle (solstice)
mode reasonably realistically (PCC = 0.78), but has difficulty
in capturing the second annual cycle (equinox) mode (PCC

= 0.58) (Figs. 2b and c). NESMI (T159) reproduces the
GM precipitation intensity reasonably well (PCC=0.82) (Fig.
3), but underestimates the intensity over the East Asian mon-
soon regions and overestimates the intensity over the tropical
ocean.

(2) ENSO. The ENSO mode simulated by NESMI is
more impressive than other modes. NESMI1 captures very
well the following features: the spatial structure of the dom-
inant EOF mode of SST variability over the tropical Pacific
in DJF (PCC = 0.89); the ENSO phase locking to the annual
cycle, with a maximum peak in November—January; the spec-
trum of the Nifio3 SST anomaly, with major peaks at 2 years
and 4-5 years; and the spatial structures of the CP-ENSO
(PCC = 0.91) and EP-ENSO (PCC = 0.93) (Figs. 5 and 6).
Overall, the performance of NESM1 with respect to ENSO is
among the top third of CMIP5 models (Fig. 4). However, the
simulated equatorial SST variability is too strong and shows a
significant westward shift. The biennial component of ENSO
(Fig. 5c) and the amplitude of CP-ENSO (Fig. 6a) are over-
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estimated.

(3) Monsoon variability. NESM1 (T159) is among the
top CMIP5 models in reproducing the observed major pre-
cipitation variability patterns for JJA (PCC = 0.79, NRMSE
= 0.95) and DJF (PCC = 0.79, NRMSR = 0.79). Moreover,
the model simulates the monsoon—-ENSO lead-lag correla-
tion very well, and also simulates the spatial structures of the
leading S-EOF modes of the AAM rainfall variability reason-
ably well (averaged PCC =0.51) (Fig. 7), which is better than
14 out of 20 CMIP5 models (Fig. 8).

(4) ISO/MJO. NESMI1 captures well the spatial pat-
terns of the MJO and boreal summer intraseaonal oscilla-
tion (BSISO) variability, particularly for U850 during both
boreal winter and boreal summer (PCC = 0.85), although
the model simulates slower than observed MJO propagation
speed. The first two leading predictable MJO modes, RMM 1
and RMM2, are captured realistically (Fig. 10), implying that
the model reproduces very well the vertical and zonal struc-
ture of the coupled convection and circulation, except that the
simulated fractional variance of RMM1 is only two thirds of
its observed counterpart, indicating that the model underesti-
mates MJO activity over the Indian Ocean.

The performance of NESM1 was also compared with 20
coupled models that participated in CMIP5. It was found that
NESMI1 is among the top models with respect to the spatial
distribution of monthly SST variance, the dominant mode of
DJF ENSO variability, the spatial structures of the leading S-
EOF modes of the AAM rainfall variability, and particularly
for simulating the precipitation variance.

The results presented in this paper show that the over-
all performance of NESM1 is good, although some biases in
model simulations need to be further addressed. Increasing
the atmospheric model resolution seems mainly to affect the
simulation of precipitation, improving the mean precipitation
and interannual variability. The double ITCZ problem for
precipitation is not well understood, despite plaguing many
ESMs for a long time. The simulated MJO signal in NESM1
shows a slower eastward propagation than observation. These
shortcomings may be related to aspects of convection param-
eterization. Therefore, while NESM1 is an established ESM
framework, like all models it is subject to further develop-
ments. These developments will include improvements to
the existing components, as well as implementation of new
components, such as land dynamic vegetation and ocean bio-
chemistry, atmospheric chemistry, and interactive aerosols.
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