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ABSTRACT

Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide
optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have
successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint
technique. However, the application of 4DVar is still limited by the computer resources available at many
NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of
4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimension-
reduced projection (DRP), which is called “DRP-4DVar.” The proposed approach is based on dimension
reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal
solution in the reduced space by fitting observations with historical time series generated by the model to
form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear
approximation.

To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations,
some observing system simulation experiments are conducted using MM5 and a comparison is made between
adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.
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1. Introduction

With a growing number of observations available
from remote sensing techniques, it is necessary for sci-
entists to explore assimilation techniques that can take
advantage of these asynchronous observations. One of
the best choices for this purpose is four-dimensional
variational data assimilation (4DVar) because it opti-

mally fits the observations in the assimilation window
through the trajectory of the model solution while con-
straining the output with model dynamics and physics.
The introduction of the adjoint method to meteoro-
logical data assimilation in the 1980s (e.g., Lewis and
Derber, 1985; Le Dimet and Talagrand, 1986; Courtier
and Talagrand, 1987) and the incremental approach
by Courtier et al. (1994), made 4DVar feasible for
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scientific research and numerical weather predictions
(NWPs). It produces an optimal increment of initial
condition (IC), x′

a, at the initial time, t0, by mini-
mizing the cost function, J(x′), in the assimilation
window, [t0, tN ]:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J(x′
a) = min

x′
J(x′)

J(x′) =
1
2
(x′)TB−1x′+

1
2
[y′(x′)−y′

obs]
TO−1[y′(x′)−y′

obs]

, (1)

where the superscript T denotes the transpose, and all
the bold letters represent column vectors or matrices.
Using this increment, one can obtain the optimal IC
xa = xb + x′

a. In Eq. (1), x′ = x − xb is regarded
as a Lx-dimensional perturbation of the background
field xb at t0, B is the Lx × Lx background error co-
variance matrix (simply B-matrix hereinafter), y′

obs

is the Ly-dimensional observation increment that is
the difference between the observation, yobs, and the
observation simulation, yb, of the basic state, and y′

is a simulation of observation increments through the
observation operators and the prediction model. The
expressions for y′

obs,i and y′
i are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
obs =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y′
obs,1

y′
obs,2

...
y′

obs,N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

y′ = y′(x′) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y′
1(x

′)

y′
2(x

′)

...
y′

N (x′)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y′
1

y′
2

...
y′

N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(2)

where
⎧
⎪⎪⎨

⎪⎪⎩

y′
i(x

′) = yi(xb + x′) − yi(xb)

y′
obs,i = yobs,i − yi(xb) (i = 1, 2, . . ., N) ,

yi(x) = H [Mt0→ti(x, τ)]

(3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yobs =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

yobs,1

yobs,2

...
yobs,N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

yb = y(xb) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(xb)

y2(xb)

...

yN (xb)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

yb,1

yb,2

...

ybx,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4)

Note that y′
obs,i, y

′
i, yobs,i and yb,i are si-dimensional

column vectors at time ti (i = 1, 2, · · · , N ; Ly =
N∑

i=1

si), N is the number of observation times in the

assimilation window, xi = Mt0→ti(x, τ) is the nonlin-
ear model prediction initiated from t0 to ti with x as
the IC and τ as the time step, Hi is the observation
operator at ti, and O is the covariance matrix of the
observation error of yobs, composed of Oi, which is an
si × si observation error covariance matrix:

O =

⎡

⎢
⎢
⎢
⎣

O1 0 · · · 0
0 O2 · · · 0
...

...
. . .

...
0 0 · · · ON

⎤

⎥
⎥
⎥
⎦

. (5)

We assume that the observation errors are uncorre-
lated or white, and thus the O matrix is diagonal. For
the convenience of discussion, we also assume that the
relationship between y′

i and x′ is approximately linear
according to the first expression of Eq. (3). So:

y′
i = Lix

′ , (6)

where Li = H ′
iH

′
t0→ti

, H ′
i is the tangent linear op-

erator of Hi, and M ′
t0→ti

is the tangent linear model
of Mt0→ti . In this way, y′ also becomes an approxi-
mately linear variable with respect to x′ according to
Eq. (6) and the second expression of Eq. (2). That is:

y′ =

⎡

⎢
⎢
⎢
⎣

L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · LN

⎤

⎥
⎥
⎥
⎦

x′ . (7)

The optimal IC increment, x′
a, from the above

minimizations is consistent with the prediction model
and fits the observations in the assimilation window
through the model solution’s trajectory in an optimal
way, thereby playing an increasingly important role
in NWP (Daley, 1991; Zou and Kuo, 1996; Wang et
al., 2000; Xiao et al., 2000). This assimilation ap-
proach has to date been adopted by five operational
NWP centers for global analysis (Rabier et al., 2000;
Rawlins et al., 2007). However, the establishment of
the adjoint model is still a tremendous effort, and the
computational cost remains expensive.

Another approach, the ensemble Kalman filter
(EnKF), proposed by Evensen (1994) and based on
a representation ensemble to estimate background un-
certainty, has also attracted much attention. It is com-
paratively easy to implement since it does not require
the adjoint model. Many researchers have reported en-
couraging results with this approach (e.g. Houtekamer
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and Mitchell, 1998; Anderson, 2001; Bishop et al.,
2001; Whitaker et al., 2004; Houtekamer et al., 2005;
Szunoygh et al., 2005; Pu and Hacker, 2009). As se-
quential algorithms, asynchronous observations were
used at the analysis time (Houtekamer et al., 2005;
Szunoygh et al., 2005). All observations can be ana-
lyzed together by adopting the time sequence of en-
semble states between analysis times to account for
model state correlations in time as well as in space
(Lorenc, 2003), or exact observation times can be
taken into account in a natural way (Hunt et al., 2004).
Anderson (2003) mentioned that there are practical
limitations on the number of observations to be in-
cluded. More fundamentally, a finite ensemble size
limits the ability to fit detailed observations. It may be
better to consider hybrid methods. As Buehner (2005)
suggested, the ensembles from the EnKF could be used
to provide flow-dependent B-matrices to 4DVar at no
extra computational cost. Hunt et al. (2004) uni-
fied the extended Kalman filter and 4DVar approach
to introduce a four-dimensional Ensemble Kalman fil-
ter (4DEnKF). Liu et al. (2008, 2009) proposed an
ensemble-based 4DVar approach that used ensemble
forecasts to produce the flow-dependent background
error covariance and performed 4DVar minimization
to produce the analysis. Zhang et al. (2009) examined
the performance of coupling the deterministic 4DVar
with an EnKF to produce a superior hybrid approach
for data assimilation.

In this paper, a new economical approach to 4DVar
is presented using a strategy similar to the implemen-
tation of EnKF. The basic principle of the approach
is introduced in section 2. The B-matrix is discussed
in section 3, and the historical prediction samples are
presented in section 4. These are followed by a direct
localization strategy in section 5 and several observing
system simulation experiments (OSSEs) in section 6.
Finally, a summary and conclusions are provided in
section 7.

2. Methodology

In order to efficiently obtain the optimal IC in-
crement, x′

a, using the minimization given by Eq.
(1), we replaced the adjoint technique in MM5 with
an easy and fast method. Equation (1) shows that
the minimization of classical 4DVar is implemented
in the space of model variables (simply as “x-space”
hereinafter), which is actually a subspace of the Lx-
dimension Euclidean space, ELx , where Lx is the
length of vector x′. In general, Lx is a very big num-
ber whose value is about 106–108. The huge size of the
x-space is one of the key factors why 4DVar is so ex-
pensive. Some techniques have been adopted to speed

up the computations. For example, the ECMWF op-
erational system performs its 4DVar at a lower resolu-
tion to reduce the number of degrees of freedom. The
minimization for the new approach being reported in
the present paper is realized in a much reduced pro-
jection space, and as a result the computational cost
is reduced greatly. Therefore, the projection method
is the focus in describing the new approach.

Before introducing the new approach, it is neces-
sary to reformulate the cost function in Eq. (1) so
that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J(x′) =
1
2
(x′)TB−1x′+

1
2
(ỹ′(x′) − ỹ′

obs)
T(ỹ′(x′) − ỹ′

obs) ,

ỹ′(x′) = R−1y′(x′), ỹ′
obs = R−1y′

obs ,

(8)

where ỹ′
obs and ỹ′ are called the weighted observa-

tion increment and simulation of the weighted obser-
vation increment, respectively, and R is a diagonal ma-
trix representing the observation error standard devia-
tions under the usual assumption that O is a diagonal
matrix only including the observation error variance.
Thus, R and O satisfy the following equality:

O = RRT . (9)

We used ỹ′
obs and ỹ′ in Eq. (8) because they are non-

dimensional, which makes the cost function simpler.
Suppose m samples of ỹ′ : ỹ′

1, ỹ
′
2, · · · , ỹ′

m are gen-
erated using the observation operator, H , the matrix
of the observation error standard deviations, R, pre-
diction model, M , and the IC perturbation samples,
x′

1, x
′
2, · · · , x′

m, are related by:

ỹ′
k = ỹ′(x′

k) = R−1[H(M(xb + x′
k, τ))−

H(M(xb, τ))] ≈ L(xb,τ,R)x
′
k

(k = 1, 2, · · · , m)

, (10)

where

L(xb,ε,R) = R−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1 0 · · · 0

0 L2 · · · 0

...
...

. . .
...

0 0 · · · LN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (11)

according to Eq. (7), and H and M are defined by:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1 0 · · · 0

0 H2 · · · 0

...
...

. . .
...

0 0 · · · HN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mt0→t1 0 · · · 0

0 Mt0→t2 · · · 0

...
...

. . .
...

0 0 · · · Mt0→tN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(12)

Note that the assumption of tangent linear approxi-
mation here is influenced by nonlinearity of the obser-
vation operator and by the length of the assimilation
window. For this reason, we generally used a small IC
perturbation and a short assimilation window (e.g. 6
hours, or shorter). According to the practice of ensem-
ble forecast, multiple simulations of ỹ′ with slightly
different ICs of x′ can reduce the errors introduced by
chaos or sensitivity-dependence on the ICs, and thus
the ensemble mean of these simulations can offer a bet-
ter forecast. Inversely, if the observation of ỹ′ is avail-
able, a weighted mean of the multiple simulations can
be used to approach the observation and determine all
the weight coefficients. In this way, the same weight
coefficients can be used to obtain the weighted mean of
multiple ICs according to the linear relation between
ỹ′ and x′ in Eq. (7), which may provide abetter IC
for the forecast of ỹ′. Following this strategy, suitable
IC perturbations, x′

1, x
′
2, · · · , x′

m, are chosen to ensure
the linear independence of the samples, ỹ′

1, ỹ
′
2, · · · , ỹ′

m,
and then a weighted mean of these samples is used to
provide a forecast of ỹ′ as follows:

ỹ′ = α1ỹ
′
1 + α2ỹ

′
2 + · · · + αmỹ′

m = Pyα , (13)

where Py is the Ly×m−dimension projection matrix
composed of the samples ỹ′

1, ỹ
′
2, · · · , ỹ′

m, and α is a
m-dimension column vector whose components are the
weight coefficients, α1, α2, · · · , αm:

{
Py = (ỹ′

1, ỹ
′
2, · · · , ỹ′

m) ,

α = (α1, α2, · · · , αm)T .
(14)

It is easy to prove that the matrix P T
y Py is of full

rank when and only when the linear independence of
the samples ỹ′

1, ỹ
′
2, · · · , ỹ′

m is true. According to the
approximately linear relationship between x′ and y′

indicated in Eq. (7), the corresponding IC perturba-
tion, x′, can be expressed as the weighted mean of the

IC perturbations, x′
1, x

′
2, · · · , x′

m. That is:

x′ = α1x
′
1 + α2x

′
2 + · · · + αmx′

m = Pxα , (15)

Where Px is the projection matrix consisting of the IC
perturbations:

Px = (x′
1, x

′
2, · · · , x′

m) . (16)

In this case, the original 4DVar defined in the x-space
can be implemented in the m-dimension reduced space
by minimizing a new cost function:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xa = xb + x′
a = xb + Pxαa ,

J̃(αa) = min
α∈Em

J̃(α) ,

J̃(α) =
1
2
αTB−1

α α+

1
2
(Pyα − ỹ′

obs)
T(Pyα − ỹ′

obs) .

(17)

The solution to the above minimization problem is ex-
pressed as:

αa = (B−1
α + P T

y Py)−1P T
y ỹ′

obs . (18)

In order for the solution to Eq. (18) be found eas-
ily and of high quality, the IC perturbation samples,
x′

1, x
′
2, · · · , x′

m, are chosen to be only the most im-
portant growing modes of the atmosphere, of which
the initial uncertainties may develop rapidly. In this
way, m, the dimension of the matrices Bα and P T

y Py,
can be a very small number, and the inverse matrix
(B−1

α +P T
y Py)−1 in Eq. (17) can be easily calculated.

3. Estimation of the Bα matrix

The background error covariance matrix, B, is a
key part of variational data assimilation, and several
approaches have been proposed and evaluated in the
literature. EnKF uses an ensemble method to estimate
B. Assuming there are m ensemble members in the
x-space, B can then be estimated (Houtekamer et al.,
1996; Fisher, 1999) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B ≈ bbT ,

b =
1√

m − 1
×

(x′
1 − x′, x′

2 − x′, · · · , x′
m − x) ,

x′ =
1
m

(x′
1 + x′

2 + · · · + x′
m) .

(19)

In this paper, the historical time series of consistent
model forecast samples used to estimate B with the
ensemble method are projected to the reduced sub-
space. Therefore, the background error covariance ma-
trix, Bα, in the m-dimension reduced space can be
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estimated in the same way:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bα = bαbT
α ,

bα =
1√

m − 1
×

(α1 − α, α2 − α, · · · , αm − α) ,

α =
1
m

(α1 + α2 + · · · + αm) ,

(20)

where α1, α2, · · · , αm are, respectively, the projection
vectors of x′

1, x
′
2, · · · , x′

m in Em, or:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

α2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

· · · ,

αm =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(21)

Actually, bα in Eq. (19) is just the projection of b
onto the sample space, because it is easy to prove the
equality b = Px bα using Eq. (14). Based on Eq. (20),
bα is deduced to a very simple constant matrix only
with respect to the sample number, m:

bα =
1√

m − 1
×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 1
m

− 1
m

· · · − 1
m

− 1
m

1 − 1
m

· · · − 1
m

...
...

. . .
...

− 1
m

− 1
m

· · · 1 − 1
m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

m×m

.(22)

The problem is that bα is proven to be a singular ma-
trix, of which the rank is only (m − 1). That means

only (m − 1) degrees of freedom of the m-dimension
vector, α, are effective and the dimension of the pro-
jection space should be reduced to (m − 1). The re-
duced rank of bα will lead to underestimation of B. To
avoid the dimension reduction of the projection space,
a zero IC perturbation sample, x′

m+1 = xb − xb = 0,
is introduced to build a (m+1)-dimension Euclidean
space, Em+1, in which a (m+1)-dimension matrix, bα,
with m as its rank could be estimated. After giving up
the (m+1)th row and (m+1)th column of the matrix,
bα, i.e. after abandoning the “borrowed” zero per-
turbation sample, x′

m+1, bα is reduced to a full-rank
m-dimension matrix:

bα =
1√
m

×
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 1
m + 1

− 1
m + 1

· · · − 1
m + 1

− 1
m + 1

1 − 1
m + 1

· · · − 1
m + 1

...
...

. . .
...

− 1
m + 1

− 1
m + 1

· · · 1 − 1
m + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

m×m

. (23)

The reconstructed bα can improve the aforementioned
underestimation caused by the reduced rank. Actu-
ally, it is a kind of inflation technique.

4. Preparation of IC perturbation samples

According to the requirements given in section 2,
the IC perturbation samples, Px, should be properly
prepared so that the samples in Py are representa-
tive. In practice, this is rather difficult to do. This
is because the samples in Py are required to satisfy
the following two constraints: (1) the column vectors
of Py should be linearly independent or orthogonal
with each other: det (P T

y Py) �= 0 or r(ỹ′
i, ỹ

′
j) = 0

(i �= j, i, j = 1, 2, · · · , m); and (2) all the column vec-
tors of Py are significantly correlated with ỹ′

obs, i.e.
|r(ỹ′

i, ỹ
′
obs)| > ro (i = 1, 2, · · · , m), where r(y, z) rep-

resents the correlation coefficient between the vectors
y and z, and r0 is the threshold of correlation coef-
ficient for some significance level, β (e.g. β= 0.001),
which controls the quality of the matrix Py. The larger
the threshold, the closer to ỹ′

obs the weighted mean
forecast. Therefore, to prepare samples that are sig-
nificantly correlated with ỹ′

obs is very important for
the proposed 4DVar.

The proposed method to prepare the IC perturba-
tion samples is somewhat different from that of Qiu
and Chou (2006). The main idea of this method is to
use the historical time series of consistent model fore-
casts. For example, in this paper we used two 78-hour
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forecasts, respectively initiated from 24 and 48 hours
prior to the analysis time to generate the IC perturba-
tion samples (i.e. the x′ samples) and the correspond-
ing ỹ′ samples. Saving the model output every hour,
73 pairs of samples are generated from each forecast
when the assimilation window is 6 hours. In this way,
146 pairs of samples can be prepared. Let’s mark them
as:

{
X ′ = (x̂′

1, x̂
′
2, · · · , x̂′

146) ,

Y ′ = (ŷ′
1, ŷ

′
2, · · · , ŷ′

146) .
(24)

There are two steps to deal with these samples. The
first is quality control: some of the samples of which
the absolute value of the correlation coefficient with
ỹ′

obs is larger than or equivalent to the threshold r0

are chosen. Under the constraint of the threshold, only

some of the 146 pairs are left:
{

X ′
c = (x̂′

k1
, x̂′

k2
, · · · , x̂′

kf
) ,

Y ′
c = (ŷ′

k1
, ŷ′

k2
, · · · , ŷ′

kf
) ,

(25)

where f is the number of chosen samples (f � 146).
The second step is to find m independent samples so
that the correlations between them are as small as pos-
sible and that the matrix, Py, consisting of them satis-
fies det (P T

y Py) �= 0, or to seek m orthogonal dominant
modes from Y ′

c using EOF, where (m < f):

(Y ′
c )T Y ′

c = EyDET
y . (26)

In the above equation, Ey is a f × m-dimension ma-
trix including m orthogonal eigenvectors of (Y ′

c )T Y ′
c ,

D is a m×m-dimension diagonal matrix including m
eigenvalues of (Y ′

c )T Y ′
c on the diagonal line:

{
Ey = (e1, e2, · · · , em) ,

D = diag(σ1, σ2, · · · , σm) ,
eT

i ej =

{
1 when i = j

0 when i �= j
(i, j = 1, 2, · · · , m) , (27)

and ei(i = 1, 2, · · · , m) is an f -dimension column vec-
tor. Finally, m pairs of samples for the new 4DVar are
produced:

{
Px = (x′

1, x
′
2, · · · , x′

m) = X ′
cEy ,

Py = (ỹ′
1, ỹ

′
2, · · · , ỹ′

m) = Y ′
cEy .

(28)

If necessary, one can further eliminate the samples
from Py whose correlations with ỹ′

obs are not signifi-
cant. According to Eqs. (25) and (27), P T

y Py is easily
proven to be a diagonal matrix:

P T
y Py = D . (29)

Finally, the formula to calculate the increment of anal-
ysis is simplified into the following form:

x′
a = Px(B−1

α + D)−1P T
y ỹ′

obs , (30)

using the first expressions of Eqs. (16) and (17).

5. Localization

The new approach formulated in Eq. (30) directly
obtains an optimal solution by reducing the dimen-
sions of space to the sample space. The ensemble is
composed of far fewer members than both the num-
ber of observational data and the degrees of freedom
of model variables, which would lead to many spu-
rious correlations between observation locations and
model grids. A more practical and easier way to deal

with this problem is through the localization tech-
nique, which ameliorates the spurious long-range cor-
relations (Houtekamer and Mitchell, 2001). It is easy
to realize localization in the new approach, just as in
EnKF, although the assimilation is completed in the
sample space. This is because the matrix (B−1

α +D)−1

in Eq. (30) will not change the spatial locations of all
row vectors of Px or Py after the matrix multiples by
Px or Py. In general, the number of observational data
is less than the degrees of freedom of model variables,
and thus the computational cost of Py(B−1

α +D)−1 is
smaller than that of Px(B−1

α +D)−1. For this reason,
the authors mark:

P̂y = Py(B−1
α + D)−1 , (31)

and rewrite Eq. (30) as follows:

x′
a = PxP̂

T
y ỹ′

obs . (32)

Similar to Houtekamer and Mitchell (2001), the Schur
product is applied to the matrix PxP̂

T
y to filter out the

remote correlation between observation locations and
model grids more continuously, and the final increment
of analysis is calculated using the formula:

x′
a = ρ ◦

(
PxP̂

T
y

)
ỹ′

obs , (33)

where the Schur product of two matrices having the
same dimension is denoted A = B ◦ C and con-
sists of the element-wise product such that ai,j =
bi,j · ci,j . For providing the formula of the filtering
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matrix, ρ, suppose the m-dimensional row vectors of
Px and P̂y are, respectively, px,1, px,2, · · · , px,Lx and
py,1, py,2, · · · , py,Ly . Then, the matrix PxP̂

T
y can be

expressed as:

PxP̂
T
y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1 p1,2 · · · p1,Ly

p2,1 p2,2 · · · p2,Ly

...
... · · · ...

pLx,1 pLx,2 pLx,Ly

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (34)

where:

pi,j = px,i(py,j)T (i = 1, 2, · · · , Lx; j = 1, 2, · · · , Ly).
(35)

Marking the horizontal and vertical distances between
the spatial locations of px,i and py,j as dh,i,j and dv,i,j ,
respectively, then the elements of the matrix ρ can be
calculated according to:

ρi,j = C0(dh,i,j/dh,0) · C0(dv,i,j/dv,0)

(i = 1, 2, · · · , Lx; j = 1, 2, · · · , Ly)
, (36)

where the filtering function C0 is defined as:

C0(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1
4
r5 +

1
2
r4 +

5
8
r3 − 5

3
r2 + 1, 0 � r � 1

1
12

r5 − 1
2
r4 +

5
8
r3 +

5
3
r2 − 5r + 4 − 2

3
r−1, 1 < r � 2

0, 2 < r

(37)

and dh,0 and dv,0 are horizontal and vertical Schur
radii, respectively. The matrix ρ filters out the small
(and noisy) correlations associated with remote obser-
vations through the Schur product. This is the local-
ization strategy. In addition, since ρ is smooth and
monotonically decreasing, the Schur product tends to
reduce and to smooth the effect of those observations
at intermediate distances. The result is to smooth the
analysis increments.

6. Observing system simulation experiment

For any given observations, the exact correspond-
ing true state is not usually known, due to errors of the
observations in space and time. When the observations
are assimilated into the IC, there is no true basis for
comparison. To effectively assess a new methodology
for data assimilation, an Observation System Simula-
tion Experiment (OSSE) is considered one of the best
choices, for it can provide both the “true” state and
the corresponding “observation”.

In this study, two OSSEs (OSSE 1 and OSSE 2)
are designed to test the proposed method. Rainfall
observations are important because the precipitation
process depends upon many variables of the model
through model dynamics and thermodynamics, and
they may improve rainfall forecasts effectively through
4DVar (Zou and Kuo, 1996). Therefore, we use a
six-hour assimilation window and focus on the eval-
uation of assimilating six-hour accumulated rainfall
observations by the new 4DVar in OSSE 1. In con-
trast, conventional (temperature) observations will be
assimilated in OSSE 2. The assimilation window is six
hours, with observational data obtained at three and

six hours after the analysis time.
In order to establish a more realistic framework for

these OSSEs, the experiments are designed using the
fifth-generation Pennsylvania State University (PSU)–
National Center for Atmospheric Research (NCAR)
Mesoscale Model (MM5) as the forecast model for the
assimilation. This model contains a full set of sub-grid-
scale physical parameterizations, including the Dud-
hia’s simple ice scheme, the Anthes-Kuo cumulus pa-
rameterizations scheme, the MRF planetary boundary
layer (Hong and Pan, 1996), and the cloud-radiation
scheme [see Grell et al. (1994) for details]. For the
experiments in the present study, the horizontal reso-
lution of the model is 30 km, and the domain is 120
(grids in longitude) × 100 (grids in latitude), which
covers the whole of China. It had 24 vertical layers
from σ = 0 to σ = 1.

First, a complete record of the assumed “true” at-
mosphere state over 30 hours is provided. In order to
remove the influence of spin-up, the “truth” is initiated
from 12 hours prior to the analysis time at 0000 UTC
13 June 2002, with 1◦×1◦ National Centers for En-
vironmental Prediction (NCEP) Final (FNL) Global
Tropospheric Analyses. This simulation, marked as
the “NATURE” run or “reference atmosphere,” is as-
sumed to represent the “true” atmosphere and is used
to simulate six-hour accumulated rainfall observations.
Although the dataset used to initialize the “truth”
is large-scale relative to the model resolution, some
mesoscale structures can be generated in the “truth”
at or after the analysis time by the model with a 30-
km horizontal resolution through a 12-hour or longer
spin-up process. For the OSSE to be meaningful, the
assumed “observations” are located at 700 stations of
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observation locations in the region (21◦–31◦N, 105◦–
125◦E), which are interpolated from the “true” state.
The observation errors are assumed to be white in
space and time (during the assimilation window), and
are given constant error standard deviation (0.2 mm
for six-hour accumulated rainfall observation and 0.2
K for temperature observation) in the OSSEs.

The background fields used in OSSE 1 are pro-
duced from the 2.5◦ ×2.5◦ ECMWF global analysis,
and those in OSSE 2 are from a 24-hour forecast ini-
tialized by the 2.5◦×2.5◦ ECMWF global analysis at
24 hours prior to the analysis time. The reason a
24-hour forecast is used as the background is to ob-
tain a sizeable difference between the “true” state and
the background field. A 30-hour integration through
the assimilation window, which is initialized with the
background field, is regarded as a control run (marked
as “CTRL”), which is used to produce the basic states
for assimilation and to evaluate the results from the
assimilation experiment.

Second, qualified samples are chosen for assimila-
tion. Two 78-hour forecasts with one output per hour
are produced first, initialized with 2.5◦×2.5◦ ECMWF
global analysis, respectively at 24 and 48 hours prior
to the analysis time. Each forecast includes 73 six-
hour moving windows. The atmospheric state at the
beginning of each window is used to prepare initial per-
turbation samples, while seven times outputs of atmo-
spheric states contained in each window are applied to
generate a sample of weighted observation increment
simulation. In total, 146 pairs of samples can be pro-
duced from two forecasts and the sample matrices X ′

and Y ′ are prepared. According to the method de-
scribed in section 4, the projection matrices Px and
Py can then be obtained.

Third, OSSE 1 is used to compare DRP 4DVar
(marked as “ASSM”) with classical 4DVar (marked as
“4DVar adj”). To ensure consistency between ASSM
and 4DVar adj, the experiments use the same “obser-
vations” from the “truth”, i.e. the station “observa-
tions” of six-hour accumulated rainfall. However, the
background error covariance matrices used in these
experiments are different because the available MM5
adjoint-based 4DVar system (Zou et al., 1998) only
uses a simple and diagonal matrix in the grid-point
space. In ASSM, the observational cost function shows
a reasonable decrease from 8409 to 2735, noting that in
4DVar adj the observational penalty decreases nearly
one order of magnitude, which implies a much smaller
weighting of background due to the use of a diagonal
and overestimated B matrix in the MM5 4DVar sys-
tem. Note that one of the main purposes of an OSSE
is to examine whether an approach can obtain an op-
timal IC that provides a better description of the
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Fig. 1. Temperature difference on the σ = 0.525 level
between the “true” state and (a) CTRL, (b) 4DVar adj,
and (c) ASSM at the analysis time in OSSE 1.

atmospheric state or is closer to the “true” state at
the analysis time through incorporating the “observa-
tions” into the background. Figure 1 shows that the
difference of temperatures on the σ = 0.525 level at the
analysis time between ASSM and “truth” is smaller
than those between 4DVar adj and “truth” and be-
tween CTRL and “truth”. A significant decrease of
the difference in the region (25◦–32◦N, 102◦–112◦E)
can be found in ASSM compared with CTRL (see Figs.
1, c and a). However, there was no obvious decrease of
the difference in 4DVar adj (see Figs. 1, b and a). It
means that the DRP-4DVar improves the accuracy of
the IC more effectively than the MM5 adjoint-based
4DVar at the selected layer. Furthermore, to investi-
gate the effectiveness and the overall performance of
the DRP-4DVar, we compare the vertical profiles of
RMSEs of some basic model variables from CTRL,
4DVar adj and ASSM at the beginning and the end of
the assimilation window, calculated at all horizontal
model grid points of each layer. The same conclu-
sion can be drawn that ASSM produces more accu-
rate atmospheric states at the start and the end of the
window than 4DVar adj. As seen in Figs. 2 and 3,
the vertical profiles of RMSEs of 4DVar adj (dashed
line with triangles) is much closer to those of CTRL
(solid curve with circles), i.e. the accuracy of the simu-
lated atmospheric states is not significantly improved.
Meanwhile, it can be seen that ASSM (dashed line
with circles) yields a smaller error than CTRL on most
layers of the model. This implies that DRP-4DVar not
only had a more reasonable fit to the observations, but
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Fig. 2. Vertical profiles of RMSEs of (a) zonal wind (m s−1), (b) meridional
wind (m s−1), (c) temperature (◦C), and (d) water vapor mixing ratio (g
kg−1) of CTRL (solid curve with dosed circles), 4DVar adj (dashed line with
triangles) and ASSM (dashed line with open) at the start of the assimilation
window in OSSE 1.
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Fig. 3. Same as Fig. 2, except at the end of the assimilation window.
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also obtains better atmospheric states in the assimila-
tion window. In particular, meridional wind (V ) and
the water vapor mixing ratio (q) are improved on al-
most all layers. Moreover, the significant amelioration
is mainly on the middle layers at the beginning and the
end of the assimilation window. It seems that DRP-
4DVar fits the observations mainly through changing
the middle-layer atmospheric circulations, which may
be closely associated with the descriptions of the cu-
mulus convection process and the cloud microphysical
process in the model. The results also suggest that
DRP-4DVar is an effective assimilation approach, as it
reduces the errors through benefiting both the imme-
diate vicinity of the observations and the area outside
the immediate vicinity [refer to Wee and Kuo (2004)],
since the observational error is not negligible and the
distribution of observations is sporadic and only at the
land surface.

Also compared are the 30-hour forecasts (6 hours
in the assimilation window and 24 hours outside of the
window) of six-hour accumulated rainfall with the ICs
from CTRL, ASSM and 4DVar adj, respectively. Fig-
ure 4 shows that the RMSE of the 30-hour forecast
with the IC from ASSM remains smaller than that
from CTRL, which means DRP-4DVar can steadily
improve the rainfall forecast over 30 hours. The RMSE
of the 30-hour forecast with the IC from 4DVar adj is
smaller than that from CTRL most of the time, except
at 24 hours. ASSM and 4DVar adj show comparable
performance, as indicated by their RMSEs over the
forecast period. Better performance of 4DVar adj dur-
ing the assimilation window (i.e. the first 6 hours) can
attribute to a larger reduction of its observational cost
function using the diagonal and overestimated B ma-
trix. However, DRP-4DVar is much more timesaving
than the MM5 adjoint-based 4DVar. The minimiza-
tion process of 4DVar adj was very expensive compu-
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Fig. 4. RMSEs of 30-hour forecast of 6-hour accumu-
lated rainfall from CTRL (dotted line with triangles),
ASSM (dashed line with filled circles) and 4DVar adj
(solid line with squares).

tationally, which took 143 minutes for each iteration
step. In this experiment, the assimilation was forced
to stop after 20 iteration steps, which took a total of
2830 minutes. In contrast, all jobs of ASSM, including
the preparation of samples and the assimilation, only
took 90 minutes. Note that the above computational
costs are all based on a single processor of IBM Per-
sonal Computer (PC) with Intel P4 (2.4 GHz, Linux
environment).

Fourth, In OSSE 2, two times of temperature “ob-
servations” (at three and six hours after the analy-
sis time) on the σ = 0.525 level are assimilated, and
the observation penalty is approximately halved (from
4135 to 2319) in ASSM. It is encouraging that the as-
similation also improves the description of the atmo-
spheric state in the IC. Figures 5 and 6 show there are
significant improvements in ASSM on the σ = 0.525
level at the analysis time and at the end of the assimila-
tion window, especially in the region (21◦–31◦N, 105◦–
125◦E). The overall performance can also be evalu-
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Fig. 5. Temperature difference on the σ = 0.525 level be-
tween the “true” state and (a) CTRL, (b) DRP-4DVar
at the analysis time in OSSE 2.
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Fig. 6. Same as Fig. 5, except at the end of the assimi-
lation window.
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Fig. 7. Vertical profiles of RMSEs of (a) zonal wind (m s−1), (b) vertical ve-
locity (cm s−1), (c) temperature (◦C), and (d) water vapor mixing ratio (g
kg−1) of CTRL (solid curve with filled circles), 4DVar adj (dashed line with
triangles) and ASSM (dashed line with circles) at the start of the assimilation
window in OSSE 2.

ated by referring to Fig. 7. This figure shows the
vertical profiles of RMSEs of 4DVar adj (dashed line
with triangles) and ASSM (dashed line with circles)
yield smaller errors than CTRL on most layers of the
model. Better performance of 4DVar adj during the
assimilation window (i.e. the first six hours) can at-
tribute to a larger reduction of its observational cost
function using the diagonal and overestimated B ma-
trix. Figure 8 shows that the RMSE of the 24-hour
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Fig. 8. RMSEs of 24-hour forecast of 6-hour accumu-
lated rainfall from CTRL (dotted line with triangles),
ASSM (dashed line with filled circles) and 4DVar adj
(solid line with squares).

forecast with the IC from ASSM remains smaller
than that from CTRL, which means DRP-4DVar can
steadily improve the rainfall forecast over 24 hours.
The RMSE of the 24-h forecast with the IC from
4DVar adj is slightly smaller than that from ASMM at
most times, except at six hours. But, basically, ASSM
has a performance comparable to that of 4DVar adj
during the forecast period, except the final time. It is
understandable that the insufficient sample represen-
tativeness in DRP-4DVar caused this error. However,
DRP-4DVar is much more timesaving than the MM5
adjoint-based 4DVar, which is the elegant feature of
the new approach.

7. Summary and conclusions

In this paper, a timesaving approach of 4DVar has
been introduced based on the philosophy of dimension
reduction projection, DRP-4DVar. The new approach
minimizes the cost function of 4DVar in the low-
dimension sample space, which is easy to implement
and much more timesaving than the iterative-based
4DVar procedure using the adjoint technique. The
DRP-4DVar method is summarized by the schematic
diagram in Fig. 9.

This new approach shares some common features
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Fig. 9. Schematic diagram of DRP-4DVar.

with EnKF; for example, they both estimate error co-
variance by ensemble members, obtain solutions on a
reduced space, and are model-independent and thus
can easily be applied to any other models without the
programming cost involved in the adjoint data assim-
ilation system. However, there are also significant dif-
ferences between these two approaches. First, EnKF
is a sequential assimilation approach in which the data
and the forecast model are used sequentially in time to
produce the analysis fields, while DRP-4Dvar is a non-
sequential method, just like the classical 4DVar which
simultaneously combines the background and all the
observations during the assimilation window in an op-
timal way. Second, the reduced spaces are different.
EnKF is performed on the observational space, while
DRP-4DVar is implemented on the sample space and
thus is smaller and timesaving. Third, DRP-4DVar
uses a different technique to diminish the underesti-
mation of background error covariance.

Comparisons between DRP-4DVar and the MM5
adjoint-based 4DVar show that DRP-4DVar not only
has a more reasonable fit to the observations but also
obtains better atmospheric states in the assimilation
window. Both approaches have comparable perfor-
mance on 30-hour forecasts of six-hour accumulated
rainfall, but DRP-4DVar is much more timesaving
than the MM5 adjoint-based 4DVar.

Two OSSEs are carried out with the assimilation
of six-hour accumulated rainfall observations and tem-
perature respectively, which provides a proper frame-
work for assessing the performance of this new method
for data assimilation. The decrease of observational
cost function indicates an effective incorporation of
six-hour accumulated rainfall observations and con-

ventional observations to the IC through DRP-4DVar
and a good fit to these observations through the trajec-
tory of the model solution. The RMSEs of some basic
model variables with significant reduction on middle
layers and slight decrease on lower layers after the as-
similation demonstrate the effectiveness of the new ap-
proach, which can improve the model atmosphere at
both ends of the assimilation window despite the spo-
radic distribution of observations in space and time.
Not only can it improve simulations around the loca-
tions of observations, but it can also benefit data-void
regions.

An important advance of the new approach is that
the flow-dependent B matrix is estimated based on
a number of IC-reliant historical forecast samples, al-
though its projection on the sample space is a constant
and modeled matrix. Further improvement of B can
be achieved by including an analog prediction sample
of which the corresponding simulated observation in-
crement is highly correlated with the real observation
increment.
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