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Abstract
Essential soil functions such as plant productivity, C storage, nutrient cycling and the storage and purification of water all 
depend on soil biological processes. Given this insight, it is remarkable that in modeling of these soil functions, the vari-
ous biological actors usually do not play an explicit role. In this review and perspective paper we analyze the state of the 
art in modeling these soil functions and how biological processes could more adequately be accounted for. We do this for 
six different biologically driven processes clusters that are key for understanding soil functions, namely i) turnover of soil 
organic matter, ii) N cycling, iii) P dynamics, iv) biodegradation of contaminants v) plant disease control and vi) soil struc-
ture formation. A major conclusion is that the development of models to predict changes in soil functions at the scale of soil 
profiles (i.e. pedons) should be better rooted in the underlying biological processes that are known to a large extent. This is 
prerequisite to arrive at the predictive models that we urgently need under current conditions of Global Change.

Keywords Soil biology · Soil functions · Mechanistic modeling · Soil carbon · Soil nitrogen · Soil phosphorous · Soil 
structur

Introduction

A current challenge in soil science is to understand, model 
and predict the dynamics of soil functions in response to 
external forcing brought about by different types of land use 
in general and by agricultural soil management in particular. 
In addition, the climatic boundary conditions of our planet 
are currently changing and this will have a significant impact 
on the functioning of soils in the future.

Soils are to a large extent biologically driven systems 
(Gardi and Jeffery 2009; Haygarth and Ritz 2009; Bardgett 
and van der Putten 2014) and virtually all soil functions 
that are relevant to the functioning of terrestrial ecosystems 
depend on biological processes, which, however, are rarely 
considered explicitly in soil and crop models. A reason for 
this is certainly the enormous diversity of biological actors 
and the complexity of their interactions. The five central soil 
functions that are predominantly biologically controlled are 
i) plant productivity, ii) water storage and purification, iii) C 

storage, iv) nutrient cycling and, finally, v) being the habitat 
for the biological agents themselves (Fig. 1).

The underlying biological processes are accomplished by 
a myriad of organisms interacting within complex food webs 
in a habitat that is highly heterogeneous in terms of its physi-
cal and chemical properties. Relevant spatial and temporal 
scales of these processes span orders of magnitude. This het-
erogeneity provides a multitude of niches and, thus, allows 
the establishment of an overwhelming biodiversity in soils 
(Bardgett 2002; Nielsen et al. 2015). Such niche diversity 
can lead to the development of a considerable overlap in the 
contribution of different species to various soil functions, 
contributing to the functional resilience of soils under highly 
variable environmental conditions or agricultural soil man-
agement. Soil is surprisingly resistant with respect to bio-
logical functions such as C turnover (Griffiths et al. 2000). 
Nevertheless, perturbations due to soil management and/or 
current shifts in climatic boundary conditions may pass criti-
cal thresholds for soil functioning. Therefore, we need mod-
els that better reflect the key biological processes and help 
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to predict critical transitions and shifts in functions under 
different environmental drivers.

During the last decade, our technical capabilities to iden-
tify and characterize the soil biome have increased enor-
mously. Yet, it is not obvious or trivial how this informa-
tion can be used to gain a more profound understanding of 
how soil functions may change in response to perturbations 
caused by agricultural soil management and/or climate 
change. Our knowledge about the role of soil biodiversity 
in soil functions is often limited to general principles, while 
the availability of detailed data regarding site- and species-
specific roles is still highly insufficient and still treated as a 
black box. The present studies on microbial diversity give 
merely potential indications of soil functions because they 
are based on the detection and not on the expression of 
genes.

The dilemma of scale mismatch was recently described 
by Smercina et al. (2021). They note that biological pro-
cesses and their interactions can be understood at the scale 
of the microscopic habitats while measures that quantify 
soil functions (such as C storage,  CO2 fluxes, cycling of 
nutrients, degradation of contaminants, filtration of water) 
are only accessible and relevant at the scale of soil samples 
much larger than the microscopic habitats, soil horizons, 
or soil profiles. At this scale the microscopic structure of 
micro-habitats is typically ignored and hardly accessible. 

Also, the soil biome is typically investigated using bulk 
samples incubated under optimal conditions which masks 
the underlying structure. For this reason, soil structure and 
function appear to be disconnected (Smercina et al. 2021).

An open question and an ongoing matter of debate is 
how and to which level of detail biological processes and 
interactions can be and need to be represented in models 
of soil functions (Baveye et al. 2018). Recent examples 
of explicit modeling of the organisms involved in C sta-
bilization are Romul_Hum (Komarov et al. 2017) and the 
KEYLINK concept (Deckmyn et al. 2020) that consider soil 
structure formation and food webs in conjunction. Critical 
questions are: which taxon-specific details need to be incor-
porated? How can soil organisms be summarized into func-
tional guilds? Which spatio-temporal scales are relevant to 
capture biological soil functions? And how to parametrize 
such biological details? Is it at all possible to account for 
biological processes and communities without considering 
their spatial heterogeneity? In a recent review of Pot et al. 
(2022) the question of relevant scale is clearly challenged 
while acknowledging the unresolved issue of how to obtain 
the required data to bridge the scale between microscopic 
soil architecture and macroscopic functioning.

This problem might be tackled from top down by ask-
ing, which and to what extent can complex biological pro-
cesses be adequately captured or lumped into simplified 

Fig. 1  Soil functions and bio-
logically driven process-clusters 
(circles) that are interconnected 
and considered to be highly 
relevant for the soils’ capacity 
to fulfill these functions. The 
central function “habitat for soil 
organisms” is relevant for all the 
process-clusters
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process descriptions and how should such simplified 
models be parameterized? Addressing these questions is 
a formidable scientific challenge. It relates to upscaling 
biological processes from detailed interactions at the pore 
scale to soil functions at the scale of pedons. In this paper 
we intend to address these questions in a joint effort of 
empirical soil ecologists and modelers. The required detail 
and complexity of a model always depends on what is 
to be modeled. Our focus is on the relevance of biologi-
cal processes for the dynamics of the five soil functions: 
productivity, C storage, nutrient cycling, water storage 
and purification, and being the habitat for soil organisms. 
What we are aiming for is modeling these soil functions 
based on an appropriate representation of the underlying 
biological processes.

We have aggregated the multitude of biological processes 
that contribute to these functions into six process clusters: i) 
turnover of organic matter, ii) N cycling, iii) P cycling, iv) 
biodegradation of contaminants, v) plant disease control, 
and vi) structure formation and dynamics. The soil functions 
and the governing biological process clusters are illustrated 
in Fig. 1.

In the following, we analyze the various biologically 
driven process-clusters in separate sections. For each pro-
cess-cluster we discuss the relevant processes that should 
be either explicitly or implicitly considered in modeling 
approaches. This is followed by a short review on the 
state-of-the-art of how these process-clusters are actually 
represented in modeling approaches. Based on the identi-
fied limitations of today’s model concepts we then discuss 
possible ways forward including actual knowledge gaps and 
data requirements. In the final conclusions we synthesize the 
results obtained for the different process-clusters towards a 
systemic modeling of soil functions based on an adequate 
representation of biological processes.

Organic matter turnover

Soil organic matter (SOM) has an essential role in con-
trolling ecosystem functions. It is of biological origin and 
closely associated with soil chemical and physical properties 
(Cotrufo and Lavallee 2022). SOM increases the capacity 
of soils to sustain food security, and buffer environmental 
impacts. Soil organisms mediate most of the ecosystem ser-
vices delivered by soils, and the majority depends on organic 
matter as substrate. Accordingly, fauna and microorganisms 
closely interact during SOM formation and turnover. This 
includes the incorporation of SOM into the mineral soil, 
litter comminution and mineralization (Frouz 2018), the for-
mation of microbial necromass and the protection of SOM 
by occlusion within the soil matrix (Wolters 2000).

Biological processes relevant for SOM turnover

Biological processes that are highly relevant for the for-
mation and turnover of SOM are: i) the efficiency by 
which plant litter, roots and rhizodeposition are decom-
posed, mainly determined by microbial stoichiometry and 
C use efficiency and supported by faunal comminution, 
ii) the priming of stabilized SOM related to the stoichi-
ometry of added C sources, iii) mixing of SOM with and 
binding to mineral soil, occlusion of particulate organic 
matter (POM), and spatial colocation of SOM and organ-
isms by bioturbation and physical structure formation 
affecting SOM accessibility. Models combining all, or 
including some of these processes would allow to iden-
tify the most essential drivers for SOM formation and 
turnover under specific site conditions. The appropriate 
scale of such modeling approaches should include mac-
roscopically homogeneous areas in terms of the major 
structural components such as soil horizons and, if neces-
sary, higher spatial detail in the case of the rhizosphere 
or the drilosphere.

Microbial stoichiometry and C use efficiency

Microbial stoichiometry uses elemental ratios to charac-
terize physiological limits for the incorporation of C and 
growth-limiting nutrients from substrate inputs into micro-
bial biomass (Sinsabaugh et al. 2009; Marklein and Houlton 
2012; Mooshammer et al. 2014b). Depending on stoichio-
metric relations of mainly C, N and P, the ratios of living 
microbes, microbial necromass and available C sources may 
change dynamically (Drake et al. 2013; Buchkowski et al. 
2015, 2019). The stoichiometric relations further determine 
the ratio between C losses through dissimilation and the 
temporal C assimilation within the microbial biomass, act-
ing as a buffer for soil C and nutrients. Accordingly, the 
processing of soil C could be derived from stoichiometric 
considerations. It has been assumed that mineralization of 
SOC would be most effective when the nutrient demand of 
the microbes is met (Hessen et al. 2004). However, there is 
strong evidence that the stoichiometry of microbial biomass 
in soils behaves homeostatic to the available C and nutrients 
in soil and not to the total C: nutrient pool (Griffiths et al. 
2012; Clayton et al. 2021). Consequently, also elevated C 
mineralization in N-deficient soils has been observed (Hage-
dorn et al. 2003; Craine et al. 2007), which can be explained 
by the microbial N mining theory. It assumes that microbes 
may use labile (i.e. available) C as an energy source for the 
decomposition of stable SOM, which contains the required 
N (Craine et al. 2007), so that decomposition of SOM is 
enhanced at low N supply or, in turn, additional N availabil-
ity might inhibit the mineralization of previously stable SOC 
(Craine et al. 2007; Spohn 2015). The underlying processes 
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may change over time as microbes might compensate for 
initial limitations in soil N (Meyer et al. 2017).

The C incorporated into microbial biomass is partitioned 
between catabolic processes (respiration) and anabolic 
processes (biomass production) and extracellular expendi-
tures (e.g., production of exoenzymes, extracellular polysac-
charides, organic acids). Besides temperature, the substrate 
C:Nutrient ratio mainly determines the efficiency by which 
microorganisms convert utilized substrate C into microbial 
biomass C characterized by CUE, the ‘carbon use efficiency’ 
(Keiblinger et al. 2010; Manzoni et al. 2012). It is notewor-
thy that the CUE differs among fungi and bacteria, the main 
microbial decomposer groups in terrestrial systems, allow-
ing soil fungi to grow more efficiently than bacteria on e.g. 
plant litter with wide C:N ratio (Malik et al. 2016; Wei et al. 
2022). Assuming that with increasing microbial biomass 
more necromass is produced and subsequently stabilized as 
mineral-associated organic matter (MAOM), it was postu-
lated that substrate inputs of matching stoichiometric micro-
bial demands favor a high microbial CUE and, consequently, 
promote a faster replenishment of the stable MAOM pool 
in soils (Castellano et al. 2015; Buchkowski et al. 2019). In 
soils with high organic matter content, however, stoichio-
metric relationships are complicated by the priming effect.

Priming effect, stoichiometric constraints and microbial 
dormancy

Relatively small inputs of readily available C substrates 
can both increase or retard the subsequent decomposi-
tion of SOM by a phenomenon known as ‘priming effect’ 
(Kuzyakov et al. 2000; van der Wal and De Boer 2017). In 
agricultural soils the magnitude of priming mainly depends 
on the C:N ratio of soils and plant litter (Mo et al. 2022; 
Parajuli et al. 2022). There is a critical transition of micro-
bial C-limitation to nutrient-limitation which is determined 
by the threshold elemental ratio of substrate C:Nutrient 
(Cherif and Loreau 2007; Mooshammer et al. 2014a). As an 
approximation, Hodge et al. (2000) calculated stoichiometric 
requirements for bacteria and fungi in soil and concluded 
that soil microbes start releasing N below a critical sub-
strate C:N ratio of 12.5 and sequester N above a substrate 
C:N ratio of 30.3, while at intermediate C:N levels (C:N 
12.5–30.3) fungi already release and bacteria still sequester 
N. In analogy, the turnover of SOM components is expected 
to be slowed down during nutrient limitation (Kuzyakov 
and Cheng 2004; Parajuli et al. 2022) while it is accelerated 
when small amounts of readily available C trigger a dispro-
portional high consumption of less available C (i.e. ‘positive 
priming’)(Dijkstra and Cheng 2007; Kuzyakov 2010).

The soil microbiome is generally characterized by short 
periods of growth and longer periods of pure maintenance 

and dormancy, so that microbial long-term maintenance 
requirements prevail over short-term gains during growth 
phases. Microbial maintenance respiration is given by the 
specific metabolic quotient (qCO2), calculated as the ratio 
of basal respiration to unit biomass C  (Cmic) (Anderson and 
Domsch 1985b, a). Stoichiometric mismatch requires higher 
maintenance respiration (Griffiths et al. 2012; Clayton et al. 
2021) and can lead to a gradual decline of soil microbial bio-
mass if C is not constantly supplied (Anderson and Domsch 
1985a; Blagodatsky and Richter 1998).

Bioturbation, aggregation and occlusion

Unarguably, soil fauna plays major roles in the fragmentation 
and comminution of litter and their subsequent incorporation 
into the mineral soil through bioturbation (Anderson 1988; 
Wilkinson et al. 2009; Filser et al. 2016) mainly accom-
plished by earthworms. De Wandeler et al. (2016) recently 
identified specific threshold ratios of forest soil pH (pH > 4), 
litter traits (cellulose content < 17%, LMA > 16  cm2  g−1) and 
soil and litter stoichiometry (soil C:N < 12, litter C:P < 200) 
that must be attained for earthworms to occur. An indica-
tion for the bioturbation capacity of soil fauna is given by 
data from temperate deciduous forests where earthworms 
with a biomass of 10 g dry wt  m−2 annually translocate the 
total yearly litter fall of 5 t dry wt  ha−1 into the mineral soil 
(Scheu 1987a; Schaefer and Schauermann 1990). In com-
parison, 2–8 g dry wt  m−2 earthworm biomass were reported 
from arable fields with integrated management (Didden et al. 
1994) while earthworm biomass in temperate meadows may 
reach 16 g dry wt  m−2 (Ellenberg et al. 1986).

Litter consumption and bioturbation are coupled to the 
occlusion of particulate organic matter (POM) in faecal 
aggregates (Didden 1990; Marinissen and Didden 1997; 
Bossuyt et al. 2004, 2006; Bottinelli et al. 2015; Frouz 
2018), but it is surprisingly difficult to predict the result-
ing extent and direction of the impact of soil fauna on 
SOM turnover (see excellent reviews by Frouz (2018) and 
Wolters (2000)). This is because two contrary processes 
are simultaneously affected by the soil fauna. On the one 
hand, fresh cast materials of earthworms and enchytraeids 
are hot spots of microbial activity and lead to a transient 
increase of decomposition rates of SOM (Scheu 1987b; Van 
Vliet et al. 2004; Frouz et al. 2014), but after drying, aged 
cast aggregates provide long-term physical protection of 
occluded POM from further microbial degradation (Scheu 
and Wolters 1991; Marinissen et al. 1996; Marinissen and 
Didden 1997; Wolters 2000; Bossuyt et al. 2005). Mechanis-
tically, occlusion of POM in earthworm cast and cross-link-
ing of calcium ions with SOM on negatively charged clay 
surfaces explains the stabilization of OM in these biogenic 
soil structures (Shipitalo and Protz 1989). Accordingly, the 
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balance of mineralization and stabilization determines net-
effect of soil fauna on POM formation.

The main feature of mixing processes such as bioturba-
tion is the change of spatial colocation of SOM and micro-
organisms. Substrates can be adsorbed, occluded or can be 
brought into closer contact with the microbiome. The poten-
tial relevance of the microscopic colocation of substrate and 
microorganisms for macroscale SOC decomposition was 
recently demonstrated through numerical experiments by 
Chakrawal et al. (2020). The net-effect may change along 
the vertical length of a soil profile. In upper soil layers at 
high SOM contents and high biological activity both pro-
cesses might be balanced while in deeper soil layers biologi-
cal activity is typically concentrated on hot spots such as 
root and earthworm channels. Some evidence for the vertical 
stratification of biological processes was provided by Sokol 
and Bradford (2019) who explicitly differentiated between 
above-ground or below-ground applications of dissolved 
organic C (DOC) for the formation of MAOM. DOC inputs 
into the deeper mineral soil through artificial roots led to 
high conversion rates of DOC via microbial biomass into 
MAOM, while above-ground inputs were mostly respired 
by microbial communities in the litter layer.

State of the art in modeling SOM dynamics

Traditional models associate the build-up and persis-
tence of SOM in soils with the slow degradation of a 
‘humified’,recalcitrant’ fraction of SOM. Resulting mod-
els on SOM turnover assumed a bipartite SOC pool, with 
one humified, recalcitrant and thus stable, and a second, i.e. 
labile SOM pool (Jenkinson et al. 1995; Sollins et al. 1996; 
Mikutta et al. 2006). However, high decomposition rates of 
‘recalcitrant’ organic matter increasingly raised doubt about 
the traditional assumptions underlying the idea of ‘humifi-
cation’ through the condensation of large molecules from 
decomposition products (Hammel 1997; Marschner et al. 
2008; Sinsabaugh 2010; Schmidt et al. 2011; Sinsabaugh 
and Follstad Shah 2011; Guenet et al. 2012). Recent research 
emphasized microbial residues (i.e., microbial cell wall frag-
ments composed of fatty acids and amino sugars) as main 
contributors to stable SOM (Joergensen 2018; Liang et al. 
2019), while another fraction of fine POM is being stabilized 
by occlusion within the soil matrix and faunal casts (Angst 
et al. 2019; Baumert et al. 2021; Witzgall et al. 2021), for 
details see section on soil structure further below. Together, 
this led to a radical reconsideration of the build-up and 
maintenance of SOM stocks (Kindler et al. 2006; Miltner 
et al. 2012; Kallenbach et al. 2015; Kästner et al. 2021). 
The persistence of organic matter in soils is now considered 
to be an emergent property derived from biological pro-
cesses and the physico-chemical boundary conditions of the 

surrounding soil environment (e.g., parent rock material, soil 
depth, climate) rather than being dependent on the intrinsic 
chemical properties of SOM itself (Schmidt et al. 2011). 
Biological processes have thus become central to SOM 
research, raising the question of how SOM models should 
adequately represent them (Filser et al. 2016). In modelling, 
the quality of decomposing organic substrates, which affects 
the persistence of the SOM, should be taken into account 
from the point of view of molecular diversity, as this in turn 
determines the energy expenditure required by the micro-
organisms to break up the organic matter (Lehmann et al. 
2020; Chakrawal et al. 2022).

The recent conceptual framework, formalized as ‘micro-
bial carbon pump’ (Jiao et al. 2010; Liang et al. 2017), 
assumes that after microbial death, with each iterative 
turnover of the microbial biomass, a fraction of its necro-
mass (here used as a summary term for microbial residues) 
is being stabilized by the mineral soil matrix, leading to 
the gradual accrual of SOM until the mineral soil matrix is 
saturated (Chenu and Stotzky 2001; Kögel-Knabner et al. 
2008; Liang et al. 2017). Though the idea of microbial bio-
mass turnover as a primary driver of SOM formation is not 
completely new (see for example models by Bosatta and 
Ågren (1991, 1997)), it finally became generally accepted. 
Cotrufo et al. (2013) summarized the new evidence in what 
they termed the ‘microbial efficiency matrix stabilization’ 
(MEMS) framework. It is based on the two principles that 
i) soil organic matter (SOM) stabilization mainly occurs 
through its stable sorption to mineral surfaces and to a lesser 
extent through occlusion in dense parts of the soil matrix 
(Six et al. 2002; von Lützow et al. 2007; Kögel-Knabner 
et al. 2008), and ii) mineral-associated soil organic matter 
(MAOM) is of microbial origin (Kindler et al. 2006; Simp-
son et al. 2007; Miltner et al. 2009, 2012; Kallenbach et al. 
2015).

Based on findings that the soil clay fraction represents the 
main reactive mineral surface for the stabilization of micro-
bial residues as reviewed in Kögel-Knabner et al. (2008), 
Stewart et al. (2007) put forward their ‘soil carbon saturation 
concept’. They confirmed in a number of successive experi-
ments that a soil’s capacity to retain microbial residues in 
a stabilized MAOM pool has an upper limit mainly con-
strained by a soil’s physicochemical characteristics related 
to clay content and mineralogy, e.g. content of Al and Fe 
oxides (von Lützow et al. 2006; Gulde et al. 2008; Stewart 
et al. 2008b, a, 2009; Barré et al. 2014; Doetterl et al. 2015; 
Angst et al. 2018). Based on this, Castellano et al. (2015) 
finally proposed a two-pool model, with a protected SOM 
pool mainly composed of MAOM and to a lesser extent by 
occlusion of < 20 POM fragments, and a non-protected, 
potentially accessible SOM pool primarily composed of 
plant litter inputs.
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Accordingly, classical SOM models today, such as RothC 
(Jenkinson 1990) and CENTURY (Parton et al. 1987), con-
sider these pools (i.e. fresh organic matter, available SOM 
and stabilized SOM) and rate parameters describing the 
transition from one pool to the others. Thereby, microbial 
biomass is part of the available SOM and is not consid-
ered explicitly. Conceptually the idea of chemical stabili-
zation was replaced by mechanisms of matrix stabilization 
(MAOM) and physical occlusion of POM (Hassink et al. 
1993; Schmidt et al. 2011; Lehmann and Kleber 2015). Sub-
stantial differences between models arise by considering an 
upper threshold for the saturation of the protected SOM pool 
(Saidy et al. 2013), while the non-protected SOM pool does 
not saturate (Stewart et al. 2007; Kimetu et al. 2009; Castel-
lano et al. 2015). However, the limited capacity of soil for 
MOAM depending on soil texture was recently questioned 
by Schweizer (2022). Using various chemical imaging tech-
niques, he showed that the distribution of MOAM is patchy 
and piled up at a minor part of mineral surfaces rather than 
covering them homogeneously. Thus, the capacity of C 
sequestration appears decoupled from the extension of min-
eral surfaces. Recently, several alternative model approaches 
stemming from experimental data linking soil heterogeneity 
and pore structure with biologically-driven decomposition 
(Strong et al. 2004; Ruamps et al. 2011; Kravchenko and 
Guber 2017) were proposed, extending the basic concept of 
physical protection of SOM (Balesdent et al. 2000; Pot et al. 
2021; Pagel et al. 2020; Mbé et al. 2022).

Models that explicitly describe the dynamics of soil 
microbial biomass appeared nearly 50 years ago (Parnas 
1976), and in recent decades a newer generation of such 
models (Wieder et al. 2015; Huang et al. 2021; Sulman 
et al. 2014; Abramoff et al. 2018) became a mainstream 
in the SOM modeling research. In contrast to models 
with implicit representation of microbial activity they are 
capable of describing priming effects, microbial acclima-
tion to temperature change, and respiration pulses caused 
by drying-rewetting of soil (Lawrence et al. 2009; Allison 
et al. 2010; Wutzler and Reichstein 2013; Luo et al. 2016). 
Currently, there is an increased interest in the application 
of the life strategy theory with the following formalization 
of the microbial functional properties in the models (e.g. 
Fierer 2017; Pagel et al. 2020; Ho et al. 2017; Krause et al. 
2014). The classical concept of life strategies (Pianka 1970), 
which considers copiotrophs (fast-growing, low-yield aka 
r-strategists) and oligotrophs (slow-growing, high-yield aka 
K-strategists), was implemented e.g., in the soil biogeochem-
istry MIMICS model (Wieder et al. 2014). Alternatively, a 
three-dimensional microbial life strategy approach based on 
the trade-offs between growth efficiency, resources acquisi-
tion and stress tolerance (Malik et al. 2020) of soil micro-
organisms was applied in the DEMENT model and tested 

against experimental data (Allison and Goulden 2017; Wang 
and Allison 2021).

There are few model concepts linking SOM turnover to 
the soil food-web and soil structure dynamics. An example 
is KeyLink, which was recently developed by Deckmyn et al. 
(2020). It includes the effect of fauna acting as ecosystem 
engineers, as well as the corresponding effect of soil struc-
tural changes on soil hydrology and on the accessibility of 
SOM or prey to predators. Applied to different test cases, 
the model predicted i) shifts from a more bacterial domi-
nated to a more fungal dominated system based on input 
quality, ii) switching from an arbuscular mycorrhizal to an 
ecto-mycorrhizal dominated system based on N content, and 
iii) excluding predators or excluding earthworms influences 
soil hydrology and C content and partitioning (Flores et al. 
2021). Overall, KeyLink shows an approach to simulate the 
linked effects of biopore formation, hydrology, and aggrega-
tion on soil functioning. Other models simulate reversible 
occlusion of SOM by aggregate formation and decay (Segoli 
et al. 2013; Jha et al. 2023). While the interaction of SOM 
with mineral surfaces is known as a relevant mechanism pro-
cess of SOM stabilization, the consideration of aggregates as 
functional units is not obvious (Vogel et al. 2022). Meurer 
et al. (2020b) abandoned the idea of building a model based 
on the concept of single aggregates. Instead, within a dual-
porosity framework, changes in SOM alters the total poros-
ity and pore size distribution. In this model, soil structure 
affects SOM stabilization via slower mineralization rates for 
SOM stored in the microporous region.

Challenges and missing data

Models of Drake et al. (2013) indicate that root exudate stoi-
chiometry may significantly affect microbial C use efficiency 
(CUE) and must be given greater consideration. Accord-
ingly, in terrestrial stoichiometric models, where poorly 
accessible C has been partitioned into MAOM and occluded 
POM, also the accessible SOM pool must be subdivided 
into an accessible POM pool containing structural carbohy-
drates metabolized only after enzymatic degradation, and 
dissolved, readily available C (DOC) directly disposed for 
microbial uptake (e.g., root exudates). The incorporation of 
different pools of C for microbial uptake in SOM models, in 
particular the dynamic nature of readily available C, which 
may cause negative or positive priming of soil organic C, 
is a challenge. A general, critical question is if it is suffi-
cient and appropriate to lump microbial processes into some 
effective microbial pool while considering stoichiometry 
and spatial heterogeneity. Or, if this black box needs to be 
opened and if crucial features must be explicitly addressed 
such as i) microbial traits related to community composition 
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that affect CUE and the decomposition rates of SOM, such 
as copiotrophic/oligotrophic growth strategies, bacterial/
fungal ratio, ii) enzymatic activity and enzymes turnover in 
soil with the description of both abiotic and biotic interac-
tions, (iii) microbial necromass, which eventually can be 
stabilized as MAOM by organo-mineral associations (Vogel 
et al. 2014; Kopittke et al. 2020), (iv) spatial representation 
of microbial energy expenditure for enzyme production vs. 
energy return as modeled for marine bacteria by Vetter et al. 
(1998) and discussed in Lehmann et al. (2020), and v) dor-
mancy, a metabolic state far exceeding the short periods of 
microbial growth.

In particular microbial dormancy can be considered as an 
alternative modeling concept expanding the model flexibility 
with respect to simulation of soil microbiome response to 
substrate limitations or unfavorable environmental condi-
tions. Dividing the total microbial biomass pool into active 
and dormant microorganisms facilitates the description of 
SOM and microbial dynamics in terrestrial environments 
(Joergensen and Wichern 2018), as exemplified in several 
models that applied this approach (Blagodatsky and Rich-
ter 1998; Blagodatsky et al. 2011; Wang et al. 2015; Stol-
povsky et al. 2016; König et al. 2020). Recent advances in 
the experimental methods to distinguish active from dormant 
microbial biomass in soil based on genomic and transcrip-
tomic community analyses (Bowsher et al. 2019; Alteio et al. 
2021), combined with stable isotope probing (Papp et al. 
2018), could strengthen the validity of this type of model.

Complex systems describing biological processes, such as 
SOM formation by microbial activity, typically do not have 
a single model structure capable of adequately predicting 
all processes. On the contrary, multiple solutions may be 
equally successful in describing microbial and SOM dynam-
ics. One advantage should be that these approaches can be 
tested on data with better parameterisation capabilities. 
Thus, the recently developed process-based microbial-min-
eral models were compared with observational data gathered 
in field manipulation experiments, considering warming 
effects and long-term detritus input and removal (Sulman 
et al. 2018). The conclusion was not very encouraging: due 
to the high variability in the data sets, no clear answer could 
be given to the advantages of the proposed model structures, 
as no model was able to capture all observed effects. Sul-
man et al. (2018) like other authors of similar recent com-
parative studies (Wieder et al. 2018; Georgiou et al. 2021), 
concluded, that microbial-based models should be further 
elaborated. Nevertheless, some conclusions about prefer-
ences of specific model features can be drawn after rigorous 
statistical testing on a wide range of data, as for example in 
the publication of Abramoff et al. (2022) advancing the Mil-
lennial v2 model. There, for example, the authors found that 
the combination of reverse (for OM depolymerization) and 
forward (for microbial uptake of DOM) Michaelis–Menten 

kinetics was superior to the linear kinetics and equilibrium 
chemistry approximation (Tang and Riley 2019).

The magnitude of bioturbation may be estimated by 
earthworm biomass. However, the importance of bioturba-
tion is less apparent in disturbed agricultural systems, like 
tilled soils, while it is more prominent in perennial systems, 
such as grasslands, plantations or agroforestry systems 
(Wachendorf et al. 2020). Therefore, effects on bioturba-
tion may be considered by implementing threshold values 
above which earthworm activity will considerably change 
SOM turnover. The dual role of soil fauna, which accel-
erates decomposition on the one hand, but also enhances 
occlusion and stabilization of SOM in casts, is a challenge 
for modeling the net effect of soil fauna on SOM turnover. 
It also depends on the ecological types of earthworms (Bou-
ché 1977; Lavelle 1988), thus affecting the location of casts 
along the soil profile.

Conclusions for modeling SOM turnover

In summary, models considering ecological stoichiometry 
and threshold elemental ratios (e.g. Kyker-Snowman et al. 
(2020) appear most promising to reflect the biological pro-
cesses which regulate the turnover of SOM and the conver-
sion of substrate C into microbial biomass, microbial respi-
ration and stabilized C fractions. Considering stoichiometry 
implies that the dynamics of microbial biomass, including 
active and dormant pools, need to be an integral part of SOM 
modeling concepts besides C pools of different quality. Also, 
such models likely need to be expanded for exceptions, when 
nutrient mining causes deviations from mere stoichiometric 
considerations on SOM turnover.

The biological processes leading to the conversion of 
plant biomass into SOM and its sequestration in the soil 
profile are determined on the one hand by substrate stoi-
chiometry in concert with clay content and mineralogy. 
On the other hand, bioturbation determines the contact of 
SOM with mineral surfaces and the occlusion of particu-
late organic matter within the soil matrix. These processes 
should be represented in mechanistic and process-based 
models to gain predictive power. By considering the mis-
match of SOM and microbial stoichiometry the efficiency of 
substrate use can be predicted. The interaction of the quality 
of organic inputs (litter, roots, rhizodeposition), stoichiom-
etry, faunal and microbial activity should be considered by 
implementing threshold values explaining C dynamics in 
soils under different management. However, these threshold 
values for different climate and soil conditions remain to be 
defined. Also, the capacity of soils to stabilize C depending 
on texture and mineralogy can be readily implemented in 
models. The impact of mixing processes including diffu-
sion of DOC, however, is by far more challenging because 
the effects may vary widely between top and subsoils, with 
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the C-saturation deficit and soil structure dynamics as main 
differences between both habitats. Thus, spatial interactions 
along the soil profile deserve by far more attention.

Nitrogen cycling

Agriculture is an important driver of  N2O emissions and N 
leaching. Both have negative impacts on climate and water 
quality. Nitrous oxide emissions and nitrate leaching are 
attributable to farming activities such as reactive N inputs 
from organic and mineral fertilizers, plant residues and 
biological N fixation by legumes as well as soil conditions 
controlling soil N turnover and associated losses into the 
atmosphere and hydrosphere. N losses to the environment 
result from the still low N use efficiency of global crop-
lands with only half of the N additions taken up by plants 
(Dobermann 2005; Lassaletta et al. 2014).

Global human-induced  N2O emissions increased by 30% 
over the past four decades to 7.3 (4.2–11.4) tera-grams of 
N per year (Tian et al. 2020b). The recent growth in  N2O 
emissions exceeds some of the highest projected emission 
scenarios (Gidden et al. 2019), underscoring the urgency 
to mitigate  N2O emissions. Additionally, with excessive 
input of chemical N fertilizers, nitrate N leaching into water 
bodies is a serious threat for drinking water and biological 
environments (Wang and Li 2019). Nitrate leaching from 
different sources and contamination of surface and ground-
water with exceeding the threshold of 50 mg  L−1 set by the 
World Health Organization (WHO) is a global phenomenon 
that has prompted social and political pressure to reduce 
nitrate leaching and contamination of water bodies (Padilla 
et al. 2018).

Modeling of N cycling, associated  N2O emissions, nitrate 
leaching, and assessment of mitigation options from agri-
cultural soils requires a certain degree of complexity. This 
is particularly true since  N2O emission and nitrate leach-
ing budgets are mainly driven by hot moments (e.g., rewet-
ting, heavy precipitation, freeze–thaw events). These hot 
moments are still not sufficiently captured by comprehensive 
field measurements but likely will increase in frequency due 
to climate change. Also, climate change induced warmer and 
wetter conditions are expected to enhance soil N turnover 
and associated emissions into the environment (Griffis et al. 
2017).

Nitrogen cycling 
and atmosphere‑biosphere‑hydrosphere exchange

Modeling ecosystem N turnover and associated atmos-
phere-biosphere-hydrosphere exchange of N compounds 
is extremely complex. This is mainly due to the wide 

variety of N forms and spatial and temporal variability of 
numerous biotic and abiotic processes driving N turnover 
in soil–plant-microbe systems. Most biogeochemical mod-
els consider biotic processes like biological  N2 fixation, 
ammonification, nitrification, denitrification, microbial 
immobilization, plant N uptake and plant litter production 
(Butterbach-Bahl et al. 2013) as well as abiotic processes 
such as  NH3 volatilization and  NO3 leaching (Chalk and 
Smith 2020). However, there are large differences in how 
processes are described, parametrized and linked to envi-
ronmental controls governing different steps of N turnover 
in the soil–plant-microbe system. Next to mineralization/
ammonification (see section on SOM turnover), aerobic 
nitrification and anaerobic denitrification are of central 
importance in biogeochemical models, because these 
processes regulate soil N availability, competition with 
plants and N losses into the atmosphere (NO,  N2O,  N2) 
and hydrosphere (mainly  NO3).

Thereby, the current level of detail of process description 
does not reflect the wealth of microbial metabolic pathways 
and their interactions as there are (Butterbach-Bahl et al. 
2013):

• heterotrophic nitrification (by fungi or bacteria)
• autotrophic nitrification (two steps: ammonia and nitrite 

oxidation, one step: complete ammonia oxidation: 
comammox)

• coupled nitrification–denitrification (production of nitrate 
by nitrite oxidizers, which is immediately denitrified 
in situ by denitrifiers)

• nitrifier-denitrification within the same nitrifying micro-
organism

• denitrification conducted by bacteria capable of using N 
oxides as alternative electron acceptors under  O2-limiting 
environmental conditions

• fungal denitrification
• co-denitrification of organic N compounds with NO
• nitrate ammonification or dissimilatory nitrate reduction 

to ammonium

In addition to the complexity and interaction of differ-
ent N processes (list above) there can be further complexity 
originating from different microorganisms driving the same 
N process but preferring different ecological niches. For 
example, ammonia oxidation can be performed by ammo-
nia oxidizing archaea and bacteria (Rütting et al. 2021) as 
well as comammox, i.e. the conversion of ammonia directly 
to nitrate by a single microbial taxon belonging to Nitros-
pira (Van Kessel et al. 2015; Mehrani et al. 2020). Besides 
performing similar reactions, they differ in kinetics and pre-
ferred environmental conditions such as pH,  O2 and substrate 
availability. The discovery of comammox bacteria further 
broadens the environmental niche for nitrification processes, 
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but also bears the potential to reduce nitrification related 
 N2O emissions, as comammox bacteria release hydroxy-
lamine, which is only abiotically converted to  N2O, but this 
happens to a much lower extent than the conversion to  N2O, 
e.g., via nitrifier-denitrification(Han et al. 2021). Addition-
ally, the impact and drivers of heterotrophic nitrification are 
still poorly understood. There is increasing evidence of the 
importance of oxidation of organic N to nitrate especially 
in croplands (see review from Gao et al. 2023). However, 
disentangling whether nitrate originates from organic or 
inorganic sources is still methodologically difficult.

Also, for denitrification, a high diversity exists in terms 
of genetic capability to produce the respective enzymes con-
trolling actual process rates. Around two third of bacteria 
have a truncated denitrification pathway (Graf et al. 2014; 
Lycus et al. 2017), and very often different denitrification 
steps are performed by different phylogenetic groups and 
functional genes can be exchanged by horizontal gene trans-
fer. All of these have significant influence on transforma-
tion rates, environmental impacts and the predictability of 
process rates based on the abundance/activity of different 
functional groups. For example, two clades of nitrous oxide 
reductase containing bacteria exist, which seem to differ in 
 N2O affinity (Jones et al. 2014; Yoon et al. 2016) and gained 
growth yield (Yoon et al. 2016), both of which seem to be 
higher for clade II nosZ, and in response to fertilizer addition 
(Xu et al. 2020). However, both nosZ clades are hampered by 
pH below 6.5 (Bergaust et al. 2010; Liu et al. 2014), which 
explains higher  N2O emissions in acidic soils (Šimek and 
Cooper 2002).

In addition to nitrification and denitrification, the ambiva-
lent role of biological N fixation in terms of a  N2 sink and a 
 NH4 source is only rudimentary represented. Especially if 
considering the symbiosis of  N2 fixers with legumes com-
pared to other plant functional groups. Thus, the composi-
tion of the plant community can significantly determine soil 
N input and might directly affect  N2O emissions as sym-
biotic diazotrophs often exhibit a truncated denitrification 
pathway (Basaglia et al. 2007; de Diego-Diaz et al. 2018).

Microbiome analyses are more and more advancing our 
process understanding of soil N cycling and its dependency 
on the abundance and activity of soil microbes and envi-
ronmental controls. Nevertheless, current biogeochemical 
models still lag behind. They generally use more simplified 
routines especially for describing the dynamic separation 
and interaction of coexisting nitrification and denitrifica-
tion and their multiple variants listed above. Even though an 
increasing number of data are becoming available on actual 
gross turnover rates of, e.g., mineralization, nitrification and 
denitrification and its correlation to microbial gene and tran-
script abundance (Wang et al. 2016), those studies are still 
low in number and are outcompeted by studies performing 
net and potential activity measurements, which only reflect 

capacities under optimal conditions. Furthermore, these 
molecular studies often lack representation of the variabil-
ity at temporal and spatial scales, which is still the main 
limitation for improved parameterization, calibration and 
validation of biogeochemical models. A further drawback 
is that the kinetics (e.g., Michaelis–Menten) of underlying 
processes of soil N transformation are still mainly based 
on studies with pure cultures of microorganisms under con-
trolled laboratory conditions. Therefore, it still remains a 
major challenge to transfer this knowledge to the field scale, 
where microbial functional gene abundance and N process 
rates do not necessarily correlate (Duffner et al. 2021). This 
is mostly caused by the complexity of natural microbial 
communities and the fact that many studies and models 
do not distinguish between active, alive, dormant or intact 
bacterial cells (Ascher et al. 2009; Ceccherini et al. 2009), 
which might significantly alter the abundance and composi-
tion of microbial functional groups (Carini et al. 2016).

Modeling soil N turnover and associated 
atmosphere‑biosphere‑hydrosphere exchange 
by biogeochemical models

Within the past decades, a large number of process mod-
els (e.g. DayCent (Parton et al. 2001; Del Grosso et al. 
2020), ExpertN (Klier et al. 2011), LandscapeDNDC (Haas 
et al. 2013; Kraus et al. 2015), DNDC (Li et al. 1992; Li 
2000), Daisy (Abrahamsen and Hansen 2000), ECOSSE 
(Bell et al. 2012), APSIM (Thorburn et al. 2010; Li et al. 
2022), FASSET (Chatskikh et al. 2005), NOE (Hénault 
et al. 2005), WNMM (Li et al. 2007), Coupmodel (Norman 
et al. 2008)) have been developed for simulating soil N pro-
cesses and associated  N2O emissions and nitrate leaching. 
The strengths, limitations and applications of commonly 
used field-scale  N2O emissions models (e.g., DayCent, 
DNDC, NLOSS, ecosyss, Expert-N, FASSET, WNMM, and 
CERES-NOE) have been reviewed by Chen et al. (2008). 
More recently, Giltrap et al. (2020) reviewed APSIM, Day-
Cent and DNDC. Overall, models can be classified depend-
ing on their degree of complexity of descriptions of the main 
biogeochemical N turnover processes (i.e. mineralization, 
nitrification, denitrification) and trace gas production, con-
sumption and emission processes.

More simplified models follow the concept of calculating 
potential N turnover rates, e.g., for nitrification and denitri-
fication which are subsequently modified to actual denitri-
fication rates. This is done by applying a set of reduction 
factors that depend on actual environmental conditions and 
N substrate availability, e.g., conceptionally introduced with 
the “hole in the pipe model” (Firestone and Davidson 1989) 
with N substrate passing through the pipe and  N2O emission 
released through holes which size are controlled by environ-
mental conditions such as soil temperature, moisture, pH. 
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These reduction functions are often semi-empirical, derived 
from field and laboratory experiments, thereby lumping 
together different driving factors for microbial processes but 
do not explicitly consider growth and death of microbial 
biomass and subsequent enzymatic steps of denitrification.

Thus, in simpler models (e.g. DayCent, Apsim) microbial 
impacts are implicitly represented by assuming that, e.g., 
denitrifier activity is correlated with environmental condi-
tions such as soil  NO3 concentration, water content (Del 
Grosso et al. 2020) and the fraction of  N2O produced from 
denitrification described as a fraction of the total denitrifi-
cation flux (NO,  N2O,  N2). Therefore, these models may be 
used to reasonably predict the seasonal or annual pattern of 
N trace gas emissions and leaching from soils for a given 
site, while their capability for higher temporal resolution 
(e.g., sub-daily) and transferability to other sites is generally 
poor (Butterbach-Bahl et al. 2013).

Among environmental drivers, soil moisture plays a cru-
cial role since it controls together with soil physical proper-
ties (soil texture and porosity) the diffusion of oxygen into 
the soil. The availability of oxygen is of decisive importance 
as main control for the contribution of aerobic nitrification 
and the onset of mostly anaerobic denitrification processes, 
the latter stepwise reducing oxidized N compounds to  N2O 
and  N2. The central role of the soil oxygen status for control-
ling N turnover via nitrification and/or denitrification has 
been acknowledged and has led to more explicit descriptions 
of soil hydrology and soil gas transport mechanisms in com-
plex ecosystem N cycling models (Butterbach-Bahl et al. 
2013). A more detailed description of oxygen diffusion and 
consumption processes during decomposition of SOM (as 
discussed above) allows the estimation of the oxygen con-
centration in a given soil layer which is subsequently used as 
proxy to dynamically divide the soil into coexisting aerobic 
and anaerobic microsites, e.g., represented by the anaero-
bic volume concept (e.g., in DNDC, LandscapeDNDC and 
the Coupmodel). The explicit consideration of gas diffusion 
also for N trace gases allows to simulate emissions into the 
atmosphere based not only on production but also on trans-
port and consumption processes. For example, NO or  N2O 
produced by nitrification can in the next time step either be 
consumed by denitrification or diffuse to the next soil layer 
before gases are finally emitted to the atmosphere. In APSIM 
and DayCent  N2O production equals  N2O emission into the 
atmosphere, irrespective of the soil depth where  N2O is 
produced. Nitrous oxide consumption is considered in the 
version of APSIM modified by Xing et al. (2011), DNDC, 
FASSET and WNMM, while other models do not consider 
a consumption of  N2O via denitrification (Xing et al. 2023).

The well-documented, high short-term dynamics of N 
transformation and associated episodic  N2O emission and 
nitrate leaching are driven by temporally and spatially 
dynamic complex interactions of microbiological, plant and 

physico-chemical processes. To simulate such events, more 
complex, diffusion-based models may need to include and 
better describe microbial abundance and activity of particu-
lar groups involved in different nitrification and denitrifica-
tion steps and the respective activity dynamics by simulat-
ing the sequential biochemical reactions of nitrification and 
denitrification. Thus, more detailed models (e.g., DNDC, 
Coupmodel, LandscapeDNDC) simulate the full denitrifica-
tion enzyme chain  (NO3-NO2-NO-N2O-N2) with the rela-
tive intensity of each step originating from the respective 
abundance and activity of the soil microbiome, as controlled 
by oxygen concentration  (O2) or redox potential (/Eh), soil 
moisture, temperature, pH, concentration of N oxides and 
dissolved organic C (DOC). In this respect, soil microbial 
analysis linked to environmental controls and turnover rates 
can play a crucial role, but still are underrepresented with 
respect to spatial and temporal coverage of measurements.

Measurements of  N2O fluxes report net emissions without 
attributing the  N2O production to the most relevant micro-
bial processes of nitrification and denitrification. Recent 
advances in stable isotope techniques have highlighted the 
contributions of various microbial groups to  N2O emission 
from soil. These include both enrichment and natural abun-
dance (18O, 15N, site preference) approaches (Baggs 2008). 
While the total 15N content of  N2O is reported as bulk 15N 
content (δ15Nbulk), the predominance for 15N substitution 
in the central position is reported as site preference (Toyoda 
and Yoshida 1999). Enrichment approaches have been used 
in fertilized systems, allowing the quantification of  N2O 
and  N2 produced during nitrification and denitrification fol-
lowing, e.g., addition of 15N–NH4 and/or 15N–NO3 to soil 
(Bateman and Baggs 2005; Mathieu et al. 2006). While most 
of these analyses were carried out on mass spectrometers 
and are low in temporal resolution, more recently continu-
ous measurements on the δ15N and site preference (central 
or outer position of 15N) have been established, the latter 
even allowing for source partitioning between  N2O originat-
ing from nitrification and denitrification processes (Ibraim 
et al. 2019, 2020). Currently, in all models  N2O emissions 
from nitrification are calculated by an emission factor (EF) 
applied to gross N turnover rates. However, there is only 
scarce data and mostly from pure cultures available how 
this EF varies depending on environmental conditions. 
Overall, studies report a wide range of the EF from 0.006 to 
29.4% with a median value of 0.19% (Inatomi et al. 2019). 
As reported by Xing et al. (2023) the EF is a constant in 
APSIM, DayCent and DNDC (Li 2000; Parton et al. 2001; 
Thorburn et al. 2010) while it is varied by soil moisture 
in NOE (Khalil et al. 2004), and by temperature and soil 
moisture in FASSET and WNMM (Chatskikh et al. 2005; 
Li et al. 2007).

Using the potential of emerging stable isotope data, pro-
cess-based biogeochemical models were recently extended 
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such as LandscapeDNDC by SIMONE, an external 15N iso-
tope module, which can be applied for simulation of soil 
and plant natural abundance signatures and for following 
15N tracer applications in the soil–plant-microbe system 
(Denk et al. 2019). In addition to full ecosystem models, 
conceptual tools such as Ntrace have been developed for 
the analysis of emerging experimentally based 15N tracing 
datasets to quantify simultaneous gross N transformation 
rates in terrestrial ecosystems (Jansen-Willems et al. 2022). 
This numerical analysis must account for simultaneous dilu-
tion and enrichment of 15N pools and has the potential to 
quantify not only gross production and consumption rates, 
but also pathway-specific rates, such as the split between 
autotrophic and heterotrophic nitrification (Gao et al. 2022). 
In this way, this analysis can provide important information 
and guidance on how to refine N transformation processes 
in often less complex ecosystem models.

Requirements to further advance our 
understanding and description of N turnover in soils

Overall, the limited availability of detailed spatial and tem-
poral representative measurements as compared with the 
complexity of simulated ecosystem N processes is a general 
problem for the calibration and validation of mechanistic 
biogeochemical models (Del Grosso et al. 2020). Although 
oxygen  (O2) is accepted as a key controlling factor of nitri-
fication/ denitrification by the modeling community, soil 
moisture content is still mostly used as a proxy for control-
ling soil N turnover. Using oxygen instead of water content 
as critical model parameter has a high potential to improve 
simulation of co-occuring nitrification and denitrification 
processes and respective enzyme steps. Oxygen concentra-
tion could be also key for improved simulation of C and 
N decomposition, respectively. However, up to now there 
are hardly any measurements of soil oxygen concentra-
tion available and concentrations may vary significantly at 
smaller scale (Rohe et al. 2021). However, simulation of soil 
moisture and likely soil oxygen concentration can be biased 
since models are too simplistic and often fail in correctly 
representing root development and associated N and water 
uptake, respiration and root exudation in the soil profile over 
time. Thus, better description of the rhizosphere has a high 
potential to improve also simulation of soil N cycling and 
associated N trace gas emission (Uksa et al. 2014). Next 
to biological dependencies, improved representation of soil 
structure (see later) plays a further key role in simulating 
diffusion of atmospheric  O2 into the soil and associated 
occurrence of anaerobic microsites. As denitrification can 
be C limited at elevated nitrate concentration, which can be 
a particular feature of arable soils, explicit description of soil 
DOC dynamics (as already discussed) would allow for better 
stoichiometry dependent representation of denitrification.

Overall, soil microbial DNA and RNA indicators may 
have the potential for improved parameterization of respec-
tive enzyme steps of nitrification and denitrification as well 
as biological N fixation. Though studies reveal significant 
relations of N process rates and fluxes with the abundance 
and/or activity of microbes, still the translation into model 
process description is hampered due to the lack of measure-
ments with the desired spatial and temporal resolution. It is 
particularly difficult to quantify the activity of certain func-
tional groups (e.g. RNA level) under in-situ field conditions. 
On transcription level, there would be the need for incuba-
tion experiments under controlled conditions to understand 
which key microorganisms are key drivers of N cycling 
processes under which conditions, and if pure abundance is 
correlated to activity or not. Under the assumption that intact 
bacterial cells are able to quickly adapt to changing environ-
mental conditions, the use of techniques which discriminate 
relic DNA might be a good compromise (Carini et al. 2016; 
Schulze-Makuch et al. 2018). Using total microbial biomass 
as proxy for microbial processes is difficult or would result 
in low precision, because bacteria and archaea strongly dif-
fer in their physiology and functional diversity. In particular 
the diversity of nitrifying microbes is very low compared to 
denitrifiers, thus their correlation with microbial biomass is 
weak. While nitrification is an essential process for nitrifiers 
to gain energy, denitrification in soil is often facultative and 
only occurs under specific conditions when aerobic respira-
tion is not possible.

Multi-disciplinary field studies linking environmental 
controls (e.g.,  O2 concentration, DOC, organic and inor-
ganic N concentration), nitrification and denitrification gene 
abundances and expressions and fluxes including 15N stable 
isotope based  N2O source partitioning (Ibraim et al. 2020) 
have the potential for advanced calibration and validation of 
N cycling processes. Considering that N losses such as  N2O 
emissions and nitrate leaching are eventful, it would be also 
important to focus more on hot moments and extreme events, 
e.g., storms, high soil moisture, rewetting after drought, and 
freeze–thaw events.

Phosphorus cycling

Phosphorous (P) makes up about 0.2% of plant dry bio-
mass (Schachtman et al. 1998). It is an important macro-
nutrient element since it is a component of key molecules 
like for example ATP, which plays a key role in photosyn-
thetic activity. A major function of agricultural soils is 
thus the supply of P for crop growth. According to (Turner 
et al. 2013) up to 40%, and according to Schachtman et al. 
(1998) between 20 to 80% of soil P is bound organically 
and thus not immediately available for plants. The miner-
alization of organically bound P involves processes that 



274 Biology and Fertility of Soils (2024) 60:263–306

are mainly driven by soil organisms and therefore involves 
a multitude of biological processes and biochemical reac-
tions (e.g. Bünemann 2015). The biologically driven pro-
cesses of nutrient cycling, especially the connected trans-
formations of N- and P-compounds, has been increasingly 
better understood in recent years, which opens up new 
ways for abstraction and modeling. This section provides 
an overview of models of P cycling and summarizes recent 
developments in the process understanding of direct biotic 
effects on P mobilization,—transfer, -uptake, and -storage 
and indirect biotic effects via alterations of physical soil 
parameters and transport pathways. Finally, knowledge 
gaps and missing process understanding are highlighted, 
pointing to research needs for better modeling approaches.

Biological processes in P cycling

Biological processes in P cycling in soil have a much 
smaller dimension compared, e.g., to N cycling, caused by 
the predominating abiotic controls, such as mineral com-
position (e.g., Ganta et al. 2021a, b; Gypser et al. 2021; 
Siebers et al. 2021), soil pH (e.g.,Ahmed et al. 2020) and 
redox status (Shaheen et al. 2022). Nevertheless, biotic 
P cycling in soils is essential for the phosphate supply 
to soil microorganisms and terrestrial plants because of 
their limited direct access to phosphate from the soil solu-
tion. Processes summarized as “biotic P cycling in soil” 
comprise mobilization (solubilization and mineralization), 
transfer and uptake by microorganisms and plants, and 
indirect effects through changes in soil physical properties. 
Such biological soil P processes are involved in directly 
controlling P leaching by storing a labile P pool (temporal 
immobilization) and indirectly through the biotic impact 
on relevant soil physical properties (e.g., soil structure sta-
bilization, biopores) which greatly affect the soil solution 
movement. These processes are discussed in more detail 
in the following paragraphs.

Biotic phosphate mobilization

Since the concentration of plant-available P in the soil solu-
tion is generally low, biotic phosphate mobilization is essen-
tial for soil microorganisms and plants. In case of very large 
C:P ratios in SOM, the microbial P demand may lead to 
immobilization and temporary binding of P in organic com-
pounds (as discussed above for microbial stoichiometry). 
Under such conditions, microbes take up phosphate from 
the soil solution, which subsequently can be remineralized. 
Many isotopic studies have quantified microbial turnover 
rates of organic P and P bound in the microbial biomass 
as summarized in the review by Bünemann (2015). Several 
studies stress the relevance of the amount of soil microbiome 

(e.g., Stewart and Tiessen 1987; Liebisch et al. 2014) as the 
microbes represent a sort of bottleneck where all organic 
P must pass through in the mineralization process. On the 
other hand, Spohn and Kuzyakov (2013) found evidence that 
P mineralization is driven by the demand for C, i.e., the 
microorganisms most abundant in the rhizosphere feed on 
phosphorylated organic compounds, but do not incorporate 
the P. Root C exudates stimulate organic P mineralization 
by associated non-mycorrhizal microorganisms, which again 
increases mineral P availability to plants (Hinsinger 2001). 
Here, the structure and C:N:P-stoichiometry of exudates 
determine the strength and stimulation of P mineralization 
(Spohn et al. 2013). However, the site-specific bacterial 
potential for P mobilization was assumed to be relatively 
stable independent of C input by fertilization (Grafe et al. 
2018). Recently, it was indicated that oligotrophic bacteria 
play a pivotal role in the early phase of litter decomposition, 
but oligotrophic bacteria dominate sites with low bacterial 
diversity (Chiba et al. 2021). Mixed intercropping of plant 
species can promote the phosphate solubilizing bacteria 
in roots and rhizosphere (Koczorski et al. 2022). Ongoing 
research is directed to select soil microorganisms that are 
highly capable of mobilizing phosphate (Chiba et al. 2022), 
which potentially can be applied to new P recycling products 
such as bone char.

Biotic phosphate transfer

Fungal hyphae in general and especially symbiotic associa-
tions between plants and mycorrhizal fungi are leading con-
trols of the phosphate transfer from soil to plants (Behie and 
Bidochka 2014). Over 90% of all plant species form symbi-
oses with fungi (Bonfante and Genre 2010) and more than 
70% of the total P uptake of the host plant can be provided 
by the transfer of associated fungal partners (Smith et al. 
2011; Yang et al. 2012). The mutualistic exchange of C from 
the crop in return for P can increase P uptake by a factor of 3 
to 5 (Schachtman et al. 1998). The utilization of mycorrhizal 
symbioses was assumed to be one of the most promising 
options for developing resource-saving and sustainable agri-
cultural systems (Kobae 2019). Mycorrhizal fungi link the 
topsoil with the subsoil and contribute therefore to a reduced 
need and more efficient use of fertilizers (Sosa-Hernández 
et al. 2019).

Endophytic fungi, like, e.g., Piriformospora indica, can 
be also highly capable of phosphate transfer to plants (Yadav 
et al. 2010). Recently, it was demonstrated that the fungal 
contribution to the P cycling can be promoted by increased 
vegetation diversity using, e.g., tolerance of weeds (Zacher 
et al. 2021), catch crops in the rotation (Vitow et al. 2021), 
or mixed growth of different plant genotypes (Baum et al. 
2018; Shaheen et al. 2022).
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Biotic phosphate uptake and storage

The P uptake by plants is the dominating biotic process, 
driven by a diffusive mechanism since the concentration 
of plant-available P in the pore water is low but the inor-
ganic P concentration in the root cytoplasm is high and the 
plant membrane potential is characteristically negative. 
Thus, an energized transport across the plasma membrane 
is required, presumably a cotransport with one or more 
protons (Schachtman et al. 1998). Between pH 6.5 and 7.5 
dihydrogen phosphate is the dominating P form, which is 
preferably taken up by plant roots since, in relation to other P 
species, the lowest amount of energy is required for uptake. 
The diffusive root uptake is generally limited by a rather low 
diffusion coefficient of phosphate in water of about 0.036 
 cm2  h−1 (Kirk 1999).

The microbial biomass is an important storage pool that 
can account for 2 to 6% of the total P in the topsoil of arable 
sites (Peine et al. 2019). With respect to the plant-available 
P in soils, up to 20% can be stored in the biomass of mycor-
rhizal fungi (Hou et al. 2021). In the case of P limitation, a 
dynamic response of root architecture was observed, where 
growing root tips sense sites of low local mineral P availabil-
ity. The response was a reduction of meristematic activity 
and cell elongation at low P sites and an increased growth 
of root hairs and lateral roots, compensating for the limited 
P uptake by an enlarged absorptive surface (Hoehenwarter 
et al. 2016). Further, crops can also adaptively respond to P 
limitation by conservation and remobilization of internal P 
resources, e.g., by reusing P from phospholipids (Lin et al. 
2014). This may cause a marginal P starvation having no or 
very limited effect on crop growth. Furthermore, P limita-
tion promotes enzymatic P mobilization in the rhizosphere 
(Tarafdar and Jungk 1987), mycorrhiza formation in host 
plants (Peine et al. 2019), and plant recruitment of fungi 
and bacteria in the rhizosphere of non-mycorrhizal hosts 
(Zuccaro 2020).

Stoichiometry

Microorganisms have the potential to control the induction 
or repression of genes coding enzymes that catalyze different 
processes in P, N, and C mobilization, uptake, and storage 
(Santos-Beneit 2015). However, to do so, they need a sta-
ble intracellular nutrient stoichiometry explaining a stable 
microbial C:N:P ratio of about 60:7:1 on the global scale 
(Cleveland and Liptzin 2007; Griffiths et al. 2012). There is 
a cross talk of P, N, and/or C metabolisms (McGill and Cole 
1981; Peng et al. 2022). For example, excess P can cause the 
expression of genes involved in urea degradation, repression 
of glutamine synthesis, ammonium uptake, or the inhibition 

of gluconeogenesis and glycogen catabolism (Ljungdahl and 
Daignan-Fornier 2012). Under inorganic P and C limita-
tions the expression of the ugp operon in Escherichia coli 
is induced, being involved in utilizing glycerol-3-phosphate 
and glycerophosphodiesters (Kasahara et al. 1991; Robichon 
et al. 2000; Rodriguez et al. 2020). Thus, a change might 
occur from a limitation of energy (C) to a limitation of P and 
N depending on the C:N:P ratio of the surrounding, e.g., fer-
tilizers, organic matter, or soils (Allison 2012; Kaiser et al. 
2014; Zechmeister-Boltenstern et al. 2015).

The C:N:P stoichiometry of system compartments (i.e., 
fertilizers, SOM, microorganisms) is mainly not considered 
in the models reviewed in this chapter. An exception to this 
is SWAT that also considers the C:N and C:P ratios of the 
fresh residue organic P pool to estimate the mineralization 
and decomposition rates.

Indirect biotic effects by soil physical impact

SOM interacts with mineral surfaces. There are a number of 
different binding forces that increase the mechanical stability 
of soil structure (Totsche et al. 2018). The resulting organic-
mineral associations are composed of phyllosilicates, Fe-
(hydr)oxides, remnants of microbes and other organic mol-
ecules from soil solution, where especially the pedogenic 
oxides are important P binding partners. As a consequence 
of the heterogeneous binding forces, soil disintegrates into 
aggregates of different size and stability when exposed to 
mechanical loads (Dıaz-Zorita et al. 2002). Smaller aggre-
gates are more stable and include smaller pores which results 
in a lower accessibility for microorganisms and enzymes, 
also resulting in a slowed down P turnover (Siebers et al. 
2018). Changes or disturbance of soil structure by tillage or 
natural soil processes can lead to the release of mobile soil 
colloids known to be carriers for P (Gottselig et al. 2017) 
and thus affect P pool dynamics (e.g., Siebers and Kruse 
2019; Baumann et al. 2020). This is the same process as 
discussed earlier for the physical protection of SOM.

The contribution of colloidal P transport in nutrient 
cycling is still scarcely explored. Fine colloids (< 450 nm) 
are highly mobile in soils and the colloid-facilitated trans-
port of elements is highly dynamic as the transport is closely 
connected to water movement in soil (Koch et al. 2019). 
Thus, losses of nutrient elements due to particulate transport 
are a rising concern, especially for P (Siebers et al. 2023). 
Even though colloidal transport has been intensively stud-
ied over the last decades (e.g. DeNovio et al. 2004; Wang 
et al. 2020), there is still a lack of understanding processes 
and transport pathways of natural soil colloids with different 
chemical compositions and characteristics under changing 
soil water contents (Wang et al. 2020).
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State‑of‑the‑art in modeling P cycling

In modeling N cycling, single species like ammonia or 
nitrate concentrations are accounted for, whereas for the P 
cycle, only overall mineral P concentrations are simulated, 
usually grouped in mineral P pools. The reason behind this 
is the diverse species composition, mainly driven by soil 
pH, of about 170 mineral P species (Holford 1997). This 
also explains that in many models the sorption behavior 

is not simulated with a classical sorption isotherm involv-
ing a partition coefficient, but with one or more pools of 
sorbed mineral P, often characterized by a sorption kinetic 
with fast sorption and slower desorption. An in-depth dis-
cussion of P sorption modeling approaches is provided in 
the review by Lewis and McGechan (2002).

The present review considers the following P models: 
APSIM-SoilP, DSSAT, 2D_CycP, ANIMO, APEX, APLE, 
DAYCENT, EPIC, GLEAMS, RZWQM2-P, SWAT, 

Table 1  Overview of models for P transformation and transport processes in soil

# Model Full name Mineral P Organic P Plant P uptake

Sorption Total pools Pools Link to C/N Immob Demand Stress

1 APSIM-SoilP Agricultural Production 
Systems Simulator

1 pool; unavailable 2 4 yes yes organ-specific yes

2 DSSAT Decision Support System 
for Agrotechnology 
Transfer

2 pools, reverse rates 
differ

3 5 yes yes organ-specific yes

3 2D-CycP - Freundlich 2 2 no no organ-specific no
4 ANIMO Agricultural NItrogen 

MOdel
2 pools + precipitated 

pool
4 4 yes yes grassland or arable yes

5 APEX Agricultural Policy/Envi-
ronmental eXtender

2 pools, reverse rate 0.1 3 2 no no entire plant yes

6 APLE Annual P loss estimator 2 pools, reverse rate 0.1 3 1 no no user-specified no
7 DAYCENT - 2 pools + occl. + weath-

ering
5 5 yes yes shoot and root yes

8 EPIC Environmental Policy 
Integrated Climate

2 pools, reverse 
rate = sorp rate

3 2 no no entire plant no

9 GLEAMS Groundwater Loading 
Effects on Agricultural 
Management Systems

2 pools, reverse rate 0.1 3 2 no no entire plant yes

10 RZWQM2-P Root Zone Water Quality 
Model 2

2 pools, reverse rate 0.1 3 2 yes no organ-specific yes

11 SWAT Soil and Water Assess-
ment Tool

2 pools, reverse rate 0.1 3 3 yes yes entire plant yes

12 Hydrus-1d - Linear - - no no user-specified no
13 MACRO - Freundlich - - - - user-specified yes

# C:N:P Exports Unsaturated Time step Reference

Stoichiom Leaching Runoff Tile drains Particulate Transport

1 no no no no no no day Delve et al. (2009)
2 no no no no no no day Dzotsi et al. (2010)
3 no yes yes no no no year Li et al. (2019)
4 no yes yes yes no CDE day or week Groenendijk and Kroes (1999)
5 no yes yes yes yes for runoff Convective day Williams and Izaurralde (2005)
6 no yes yes no yes (sediment) yes, empirical year Vadas et al. (2012)
7 C:N yes yes no erosion no day Parton et al. (1998)
8 no yes yes yes no no day Wang et al. (2022)
9 no yes yes no Yes (sediment) Convective day Knisel et al. (1993)
10 C:N yes yes yes yes no day Sadhukhan et al. (2019)
11 yes yes, at 10 mm yes no yes for runoff no day Chaubey et al. (2007)
12 no yes no yes yes (colloidal) dual-permeability day Gupta et al. (2021)
13 no yes no yes yes CDE also particulate  < hour day McGechan et al. (2002)



277Biology and Fertility of Soils (2024) 60:263–306 

Hydrus-1D, and MACRO. References and full names are 
given in Table 1, where rather the most recent application 
than the paper describing the original model development 
are cited.

Most basic P cycling concepts have common features 
(Fig. 2). Almost all models account for mineral and organic 
P fertilization, plant root uptake, one or more organic P 
pools, and one or more mineral P pools. The organic P 
pools often comprise at least one pool for fresh organic P 
with a fast turnover and one with a slower turnover, usually 
referred to as humic material or humus. The mineraliza-
tion of organic material always feeds the mineral P pools. 
In all model concepts, one of the mineral P pools is char-
acterized as either soluble P, plant-available P, or labile P. 
This always represents the P pool available for plants and 
from which P can be leached. Many of the models do not 
account for the convective/dispersive unsaturated transport 
of P (e.g., APSIM-SoilP, 2D-CycP, APLE, DSSAT, DAY-
CENT or EPIC). However, they do account for the leaching 
of P (see Table 1), which can be achieved by implement-
ing an empirical approach. For example, the APLE model 
estimates the leachate/precipitation ratio from a log-linear 
regression with soil layer depth. Almost all models refer-
enced in this review account for a demand-driven P uptake 
by crop roots. This demand can either be specified by a 
dynamic crop growth module or be user-specified. Further, 
this demand can either be specific to the entire plant (e.g., 
by APEX, EPIC, GLEAMS, and SWAT) or it can even be 

organ-specific, which holds for the APSIM-SoilP, DSSAT, 
2D-CycP, and RZWQM2-P model. The advantage of a 
dynamic growth simulation, as implemented in the mod-
els with a crop production background like APSIM-SoilP, 
DSSAT, and ANIMO, is that feedbacks between P uptake 
limitation and crop growth are reproduced and crop harvest/
biomass P measurements are not required inevitably like, 
e.g., for APLE.

The simulation of the feedback from P stress to crop 
growth is very diverse. All the models discussed in this 
section differ with respect to the algorithm estimating how 
limited P availability affects crop growth. Model disparities 
could also be stated for the transport of particle-bound P, 
either through the soil profile (McGechan et al. 2002) or 
in runoff (Table 1). General P loss via runoff or tile drains 
is often accounted for (e.g., by RZWQM2-P and SWAT), 
which largely depends on how detailed hydrological fluxes 
are generally reproduced by the model (Radcliffe et al. 
2015). Currently, there is a lack of process implementation, 
especially for colloidal P transport which, if at all, is mainly 
considered under constant flow conditions in P models. 
However, especially the transient flow is of importance, by 
resembling more closely the wetting and drying of natural 
soils in response to rainfall, snowmelt, or irrigation events 
being mainly responsible for colloid mobilization (Cheng 
and Saiers 2010). A special model group comprises the two 
solute transport models MACRO and Hydrus-1d. Both mod-
els were originally not designed to be used for the simulation 

Fig. 2  Main processes and pools (circular shape) of the P cycle implemented in models (1. to 13.) reviewed in the present study. The numbers at 
the processes represent the models that consider these processes (see Table 1)



278 Biology and Fertility of Soils (2024) 60:263–306

of the P cycle, however with some unconventional use of 
methods already implemented in the solute transport models, 
they can be used. For example, the root uptake of P miss-
ing in MACRO can e.g. be mimicked with a contaminant 
decomposition rate (McGechan et al. 2002). Even though 
MACRO and Hydrus-1d have some gaps in the P cycle as 
the organic P part and mineralization/immobilization are 
completely missing (Lewis and McGechan 2002; Gupta 
et al. 2021) the strength of both models is to capture the 
dual-domain transport of particle-bound P and dissolved 
P, and the less conceptional description of physicochemi-
cal sorption with a Freundlich isotherm. Depending on the 
model target, this represents a valid approach.

An interesting timeline for the mineral P sorption/desorp-
tion pools was observed. Out of the ten models that apply a 
pool concept instead of a physicochemical sorption isotherm, 
seven models are based on a 3-pool concept (Table 1), com-
prising one labile pool and two sorption pools, namely active 
and stable. This approach was suggested by Jones et al. (1984) 
and was originally implemented in the EPIC model, a pre-
cursor of the CREAMS model, which again is a precursor of 
GLEAMS. Only ANIMO, APSIM-SoilP, and DAYCENT are 
based on their own original mineral sorption pool concept.

How well are biological processes of P turnover 
already represented in model approaches and what 
should be improved?

The models accounting for organic P turnover consider one 
(APLE) to five (DAYCENT) organic pools. Each pool is char-
acterized by an optimum decomposition rate constant, which 
is scaled with rate modifiers for soil temperature and soil water 
content, except for the APLE approach. Some of the organic 
pool cycling concepts take microbial biomass P into account, 
but only in the sense that organic P is stored in the microbes 
without having a functional effect on the partitioning or the 
decomposition rate of the other organic P pools. An exam-
ple for this is the DAYCENT active organic P pool, which 
comprises the organic biomass P (Parton et al. 1998). This 
demonstrates the close link between the turnover of organic P 
and the turnover and organic C and N. Some models recently 
include microbial C pools regulating turnover through the 
production of extracellular enzymes, which increases the 
decomposition rates of SOM (Buchkowski et al. 2015). Using 
priming experiments Blagodatsky et al. (2010) developed and 
successfully tested a model explicitly including the effect of 
microbial biomass C. While such an approach may improve C 
turnover model performance under field conditions, it remains 
unclear, however, if this is also true for organic P turnover. 
Generally, considering the stoichiometric link between organic 
P and organic C and N is highly relevant, since P may limit 
microbial growth and mineralization and immobilization of P 

which are controlled by associated C and N turnover (Lewis 
and McGechan 2002). A coupled simulation of organic C, N, 
and P turnover, as given for ANIMO, APSIM, DAYCENT, 
DSSAT, RZWQM2-P and SWAT, instead of an isolated simu-
lation of organic P turnover is probably as relevant as includ-
ing microbial biomass P, even though under field conditions it 
does not correlate with the concentrations of plant-available P 
(Liebisch et al. 2014).

In most P cycling models, the P-uptake by roots is 
described with a diffusive mechanism, however, none of 
the models simulates an active P uptake. Detailed 3-dimen-
sional root architecture models that describe P uptake with 
the Michaelis–Menten kinetics do exist (Schnepf et al. 2012). 
An effective 1-dimensional process description derived from 
the more sophisticated 3-d approach, which could be applied 
to the plot-scale models as reviewed in the present study, is 
however lacking. The processes of root exudation, enhancing 
P uptake rates of roots, is also not considered in any of the 
models. This also holds true for the effects of mycorrhiza on 
plant P availability. The issue probably is that the mycorrhiza 
colonization frequency is crop-specific and driven by current 
overall soil nutrient status. Attempts to predict the degree of 
mycorrhiza formation for a specific site and time period do 
exist (Hempel et al. 2013) but are not specific to crops.

The relevance of bioturbation for the vertical translocation 
of P along the soil profile largely depends on the time scale 
considered. A rather conceptional diffusion-based approach 
is implemented in the 2D-CycP model, which was applied 
for 23 years (Li et al. 2019). Based on model tests without 
bioturbation implementation Li et al. (2019) concluded an 
improved performance for the model including bioturbation. 
While soil aggregate structure dynamics are not considered 
in P cycling models, Hydrus-1d attempts to simulate col-
loid transport and associated elements under transient flow 
conditions. The C-Ride module incorporates mechanisms 
associated with colloid and colloid-facilitated solute trans-
port in variable saturated porous-media based on convection, 
diffusion, and dispersion. It also accounts for attachment/
detachment processes to or from the solid phase, straining, 
and/or size exclusion describing colloidal and associated P 
movement between different phases (Šimůnek et al. 2016). 
Colloidal transport of P in macropores can also be simulated 
with the ICECREAM model, but due to the need of calibra-
tion for macropore flow and transport parameters options for 
a predictive application are limited (Larsson et al. 2007).

What data or mechanistic knowledge is missing 
and would be required to better represent 
the biological processes important for P cycling?

The effect of mycorrhiza on crop P uptake, gener-
ally accepted as an important P mobilization/transport 
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mechanism, is not considered in any of the reviewed model 
concepts. This is probably related to the fact that the myc-
orrhiza abundance is a result of the specific crop and soil 
combinations and as such hard to predict. A comprehensive 
and systematic inventory of mycorrhiza abundance cover-
ing a broad range of crops, soil, management, and climatic 
conditions could be a starting point for its future considera-
tion in models.

Studies on the C:N:P stoichiometry of organic fertiliz-
ers, SOM, and soil microbial biomass (Tipping et al. 2016) 
exist for a subset of these components but do not cover all 
the typical crop management options. It is desirable to have 
such a complete set of stoichiometry data for modeling as 
this would make it possible to simulate the coupled nutrient 
turnover if any kind of organic matter is involved.

Even though colloidal transport has been intensively stud-
ied for decades, most laboratory and even modeling studies 
analyzed the colloidal transport only under constant-flow 
(saturated or unsaturated) conditions (e.g., DeNovio et al. 
2004; Wang et al. 2020). However, especially the transient 
flow is of importance, as abrupt changes in soil water con-
tent, flow velocity, and pore water chemistry control the 
attachment and detachment of colloids at various interfaces, 
and thus the amount of colloids that are retained or mobi-
lized in the soil (Wang et al. 2020). Furthermore, so far only 
engineered nanoparticles and colloids or pollutants of col-
loidal size (or being associated with colloids) were subjects 
of transport modeling in soil. Modeling of P associated with 
natural (in situ) colloid transport has not been done so far. 
The main problem with modeling natural colloids is their 
unknown source strength, a measure of the amount of col-
loids released by the soil matrix, as they can be continuously 
and simultaneously released into the pore water and immobi-
lized through sorption onto the solid phase and precipitation 
processes. Understanding the controls of colloid transport 
is elementary to integrate particle transport into numerical 
modeling, which in turn is indispensable for more precisely 
describing and predicting P fluxes in ecosystems.

Biodegradation of contaminants

Biodegradation of contaminants like pesticides refers to the 
natural breakdown of organic substances. As already men-
tioned, this degradation process is commonly included in 
models of C turnover. However, soil microorganisms are 
also able to degrade xenobiotics. In this regard, biodegrada-
tion of pesticides is particularly relevant in agroecosystems 
because microorganisms in the vadose zone including soils 
can effectively attenuate the applied agrochemicals (Fenner 
et al. 2013) and, thus, minimize groundwater contamination 
(Holden and Fierer 2005). Therefore, this section focuses 
mostly on pesticide biodegradation, acknowledging that 

the discussed processes and control factors apply similarly 
to the biodegradation and transformation of other organic 
chemicals and contaminants threatening soil functions such 
as plastics (Brodhagen et al. 2015; Amobonye et al. 2021), 
per- and polyfluoroalkyl substances (Sharifan et al. 2021), 
or pharmaceuticals (Jechalke et al. 2014; Thelusmond et al. 
2018); although transport processes may differ significantly, 
for example for plastics (Lwanga et al. 2022).

Biological processes relevant for biodegradation

Biodegradation of pesticides in soil involves the complete 
breakdown (i.e., mineralization) and the partial transforma-
tion of parent compounds to metabolites by soil microor-
ganisms (Leisinger 1983). Abiotic degradation pathways are 
not considered here. Soil microorganisms can principally 
transform pesticides in two metabolic modes, either via 
growth-linked metabolism or via so-called co-metabolism 
(Janke and Fritsche 1985). Growth-linked biodegradation 
requires pesticide-degrading microorganisms, which are 
often prokaryotic organisms (Fenner et al. 2013). They are 
capable of using pesticides as C, nutrient or energy sources 
and typically have evolved functional genes that encode 
for specific enzymes catalyzing the complete or the par-
tial breakdown of individual compounds (e.g. Leveau et al. 
1999; Zaprasis et al. 2010; Douglass et al. 2017; Zhan et al. 
2018). In contrast, co-metabolic degradation implies the 
transformation of a non-growth substrate while the involved 
microorganisms rely on other C, energy or nutrient sources 
for growth (Horvath 1972). It is mediated mainly by fungi 
and proceeds due to the action of broad-spectrum enzymes 
that can catalyze the breakdown of multiple pesticide mol-
ecules (Harms et al. 2011). Growth-linked biodegradation by 
specific pesticide degraders often leads to complete miner-
alization and proceeds faster than co-metabolic transforma-
tions, which are often incomplete, hence, metabolites can 
accumulate (Leisinger 1983).

While co-metabolic pesticide transformation is an unspe-
cific process that is carried out by many different organisms, 
growth-linked pesticide degradation can be considered as 
specific process that relies on metabolic pathways carried 
out by a specific phylogenetically constrained group of 
microorganisms (Schimel et al. 2005; Schimel and Schaeffer 
2012). Due to the high functional redundancy of microbial 
communities carrying out unspecific processes, co-meta-
bolic pesticide degradation is probably more robust against 
disturbances of soil systems triggered by multiple stressors 
(Schaeffer et al. 2016) than the specific process of growth-
linked pesticide degradation because of its dependency 
on specific microorganisms. There is some experimental 
evidence that supports a potentially high susceptibility of 
growth-linked pesticide degradation to disturbance (Pesaro 
Manuel et al. 2004; Baker et al. 2010), but experimental 
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insights on stress compensation mechanisms, particularly in 
response to spatial and temporal disturbance characteristics, 
are still minimal (König et al. 2019).

Degradation pathways and the involved functional genes 
and enzymes have been identified and well-studied for some 
well-known compounds such as phenoxy acetic acid or 
triazine herbicides (Serbent et al. 2019; Chavez Rodriguez 
et al. 2022). Biochemical degradation pathways are typi-
cally unknown for recently introduced pesticides, such as the 
fungicide bixafen, which is highly persistent in soils and can 
form several metabolites during biodegradation (European 
Food Safety Authority 2012). New pesticide degradation 
pathways emerge and spread through evolution (Shapir et al. 
2007; Udiković-Kolić et al. 2012). Evolutionary processes 
such as horizontal gene transfer (Nielsen and van Elsas 
2019) controlling pesticide biodegradation are still widely 
undiscovered and not yet considered in pesticide fate mod-
els. In general, adaptation mechanisms of pesticide degrad-
ing microbial communities are challenging to describe in 
a mechanistic way, but the adaptation probability could be 
described as a function of pesticide application history given 
that the latter is well known.

The actual accessibility of pesticides for microorgan-
isms determining biodegradation rates is strongly affected 
by soil minerals, porosity, and thus soil structure (Nunan 
2017; Rillig et al. 2017; Tecon and Or 2017). Biodegrada-
tion occurs at interfaces of various organic and inorganic 
compounds closely attached to minerals. However, many of 
these interfaces are clustered frequently within a hierarchical 
network of pores of different scales and residence time. Sam-
pling such pores may help validating hot spots of microbial 
habitats and pesticide accrual to understand the biodegrada-
tion potentials in pores of different sizes and characteristic 
interfaces (Totsche et al. 2018). Additionally, specific acces-
sibility of certain biogeochemical interfaces contributes to 
controlling the bioavailability. Diffusion of xenobiotics into 
small pores and soil organic matter reduces the availability 
of the xenobiotic for desorption and bio-uptake; a process 
called “sequestration” (Lueking et al. 2000). It is the same 
mechanism as previously discussed for the physical protec-
tion of soil organic matter. When sequestration is detected 
via a decreased extractability of a compound with increas-
ing contact time in soil, the phenomenon is termed “aging” 
(Alexander 2000). The situation is further complicated by 
the fact that the 3-dimensional arrangement of soil biogeo-
chemical interfaces itself is not static but dynamic. Apart 
from anthropogenic disturbance such as tillage, both abiotic 
(e.g., shrinking and swelling) and biotic processes (e.g., bio-
turbation) contribute to the re-arrangement of soil particles 
(Six et al. 2004; Bronick and Lal 2005) and of its interfaces. 
Hence, understanding the role of biogeochemical interfaces 
for the biodegradation potential of soils should include mod-
eling of their spatial arrangements and dynamics.

Due to the spatial heterogeneous soil structure, also soil 
microorganisms are heterogeneously distributed as well 
(Nunan et al. 2002, 2003). For instance, highest micro-
bial activities have been found in pores with diameters of 
30–150 µm (Kravchenko et al. 2019). This preference is 
attributed to better water availability, higher organic mat-
ter accessibility than in larger pores and fewer predators in 
this pore-size class. A correct assignment of biodegradation 
pathways to xenobiotics will have to consider these hetero-
geneities, e.g., by considering effecting pore size classes for 
biodegradation modelling.

The different processes of sorption of xenobiotics in soil 
have been distinguished into readily reversible (i.e., equi-
librium sorption), slowly reversible (i.e., “aged” or “seques-
tered” residues, with kinetically hindered desorption), and 
irreversible (i.e., bound residues) sorption. Presumably, each 
fast equilibrium sorption is accompanied by a “slow” des-
orption process (rate-limited sorption; e.g., Altfelder et al. 
2000), which reduces the relative proportion of readily des-
orbable substances in soil. Consequently, these aged residues 
are less available for leaching and biological uptake in soils 
and prevail in a less reactive and thus less (bio)degradable 
state (e.g., Chung and Alexander 1998; Barriuso et al. 2004). 
Bound and to some extent also sequestered and aged residues 
are not necessarily toxic because they become non-accessi-
ble and also not available for microbes, as e.g. reported for 
the antibiotics fluoroquinolones (Rosendahl et al. 2012). 
Substance sequestration in soils has been mainly attributed 
to i) sorption at a condensed, glassy form or high-surface-
area carbonaceous fraction of SOM (Huang and Weber 
1997; Chiou et al. 2000) exhibiting stronger/more specific 
sorption sites for xenobiotics (OMD model; Brusseau et al. 
1991) or ii) retarded diffusion of xenobiotics in small pores, 
in part due to bottle-neck effects or organic matter coatings 
in fine pores (SRPD model; Wu and Gschwend 1986; Pig-
natello and Xing 1996). Experimental evidence supported 
both theories, making a combination of either effect on 
aging processes in soils probable (reviewed by Pignatello 
and Xing 1996). Aging/sequestration phenomena are espe-
cially relevant for soils rich in organic matter (Chung and 
Alexander 1998) but have also been shown for purely min-
eral sorbents due to diffusion into micropores (Farrell et al. 
1999). Also, aggregation in soils has been shown to induce 
non-equilibrium sorption and aging of pollutants (Amellal 
et al. 2001; Nam et al. 2003; Villaverde et al. 2009). This 
effect apparently applies to a broad substance spectrum, as 
enhanced mineralization of the relatively polar cabaryl as 
well as the more hydrophobic phenanthrene was observed in 
pulverized soil relative to naturally aggregated ones (Hatz-
inger and Alexander 1995; Ahmad et al. 2004), which, thus, 
likely also applies for pesticides.

Substance aging in soils increases also with fluctuating 
soil moisture conditions. Shelton et al. (1995) observed for 
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atrazine a lower availability for desorption after drying and 
re-wetting of incubated soils. Similarly, enhanced phenan-
threne sorption was found for short-term soil incubations 
(< 60 d), which included drying-wetting cycles (White et al. 
1998). However, when the soils already contained aged resi-
dues, wetting and drying cycles increased the mineraliza-
tion and extractability of sorbed phenanthrene. Possibly, the 
higher biodegradation of phenanthrene was caused by the 
priming of microbial activity (see section an SOM), which is 
typical for the initial wetting phase after a dry period in soils 
(Kuzyakov et al. 2000). Shaw et al. (2002) demonstrated that 
the effect of soil drying on the aging of 2,4 dichlorophenol 
might be related to a water-tension controlled accumula-
tion of substances in less bio-accessible soil micropores. 
Immediate immobilization is particularly observed when 
pollutants are added to soil in a moist matrix (Kuzyakov 
et al. 2000). Müller et al. (2013) described this effect as 
flash NER (NER = non-extractable residue) and concluded 
that its accurate description could be decisive for accurate 
fate modeling (Zarfl et al. 2009; Kasteel et al. 2010; Unold 
et al. 2010).

State‑of‑the‑art in modeling biodegradation

Pesticide degradation models can be roughly classified 
regarding the applied scale: i) small scale models focusing 
on explicit microbial degradation of pesticide or other com-
pounds at the pore scale and ii) larger scale pesticide fate 
models integrating simple degradation rates with physical 
transport processes while often neglecting detailed biologi-
cal processes (Soulas and Lagacherie 2001; Dubus et al. 
2003).

Small scale biodegradation models usually include an 
explicit representation of microbes and their processes (Ban-
itz et al. 2011; Pagel et al. 2014; Vogel et al. 2015; König 
et al. 2017; Schmidt et al. 2018). Microbial growth is based 
on the specific pollutant as a C source described with simple 
Monod kinetics (Shelton and Doherty 1997). The parametri-
zation of the model processes and rates is mainly based on 
laboratory experiments under controlled conditions, limiting 
the transferability to real soil systems. However, these mod-
els are very valuable to study the effect of bioavailability and 
contact probability under small scale spatial heterogeneity. 
This includes the effects of pore topology (Vogel et al. 2015) 
heterogeneous distribution of bacteria or target compound 
(Babey et al. 2017; Schmidt et al. 2018), or fungal hyphae 
acting as dispersal network (Banitz et al. 2011; Ellegaard-
Jensen et al. 2014). Other studies analyzed indirect effects 
of spatial heterogeneity by varying microscale conditions, 
which are determined by the pore system, by water con-
tent or distribution of soil organic matter (Centler et al. 
2011; Ghafoor et al. 2011). However, environmental con-
ditions such as pH, water content or temperature are often 

assumed to be constant, likely because the underlying rates 
were measured at constant conditions in the lab (Soulas and 
Lagacherie 2001). Some models also account for different 
degradation strategies (co-metabolic, growth-linked) where 
a second C source usually in the form of soil organic mat-
ter needs to be included in the modeling approach (Soulas 
and Lagacherie 1990; Pagel et al. 2014, 2016). While the 
microbial processes are often well described in the small-
scale modeling approaches, other processes affecting pesti-
cide fate such as the sorption behavior, leaching or physi-
cal degradation processes are often neglected. This can be 
explained by the different scales these processes are acting 
on. Microbial degradation models operating on larger scales 
tend to account for more physical factors such as sorption 
(Pagel et al. 2014) or leaching (Rosenbom et al. 2014). Gen-
erally, those models do not account for feedbacks with other 
soil organisms or compartments, which is again likely due to 
scaling issues and also observed in other microscale models 
not related to pesticide degradation (König et al. 2020).

Model approaches to simulate microbial evolution in soil 
have been outlined by Crawford et al. (2005). The authors 
envisioned a model approach that accounts for interaction 
between individual microbial cells with specific (evolving) 
traits. They pointed out that the model parameterization is 
challenging because of limited capabilities to measure traits 
of specific microorganisms and suggest using stochastic 
simulations that are validated against observable constraints 
of emergent community behavior. Trait-based models have 
been set up for C cycling (e.g., Wang and Allison 2022), 
but they do not yet consider evolutionary processes, par-
ticularly not specifically for pesticide degrading consortia. 
Certain microbial traits, such as maximum growth rates, 
might be constrained using genomic data (Valdivia-Anistro 
et al. 2016; Weissman et al. 2021; Malik and Bouskill 2022; 
Sokol et al. 2022). A Bayesian constraint-based model con-
ditioning technique has been recently used to support the 
optimal design of experiments to distinguish between alter-
native models reflecting alternative pesticide degradation 
pathways (Chavez Rodriguez et al. 2022). Such a method 
could similarly facilitate constraining the simulated behavior 
of co-evolving pesticide degrading communities to observed 
patterns in genomic proxies of pesticide-degrading microbial 
consortia.

Models formulated using ordinary differential equations 
can include distribution processes like sorption or volatili-
zation, dissipation processes like transformation and deg-
radation, microbial population dynamics, or the spread of 
resistance genes. Alternative techniques that account for 
heterogeneities in soil rely on stochastic approaches (Volk-
ova et al. 2013) or individual-based or agent-based models 
(Bora et al. 2017). These approaches usually include micro-
bial population dynamics that differ between susceptible (or 
sensitive) and resistant bacteria. They do not yet account 
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for various contact options of microbes to mobile pollutants 
within a dynamic 3D soil matrix. However, there are novel 
approaches in place to consider, for instance, fluid dynamics 
and cellular automata modeling for describing soil structure 
dynamics (Ray et al. 2017; Zech et al. 2022a, b).

In contrast to the described microscale models, pesti-
cide fate modeling approaches operating on profile to field 
scale have been developed since decades, motivated by the 
need to predict pesticide persistence and groundwater pol-
lution (Boesten and van der Linden 1991; Diamantopoulos 
et al. 2017). They do not explicitly account for biology but 
describe biodegradation with simplified constant / first-order 
rates (Köhne et al. 2009) or using pedo-transfer functions 
(von Götz and Richter 1999). Often, 1D water flow mod-
els without any structural aspects are extended by sorption 
processes and first-order degradation rates, resulting in an 
estimate of pesticide leachate (Armstrong et al. 2000; Ma 
et al. 2012; Filipović et al. 2014; Diamantopoulos et al. 
2017). Those models can be applied to specific compounds 
but need thorough fitting, which increases the uncertainty 
for predictions (Dubus et al. 2003). Here, dynamic environ-
mental conditions and feedbacks to other compartments can 
be better represented since they act at a similar scale. Still, 
these large-scale models are not feasible for generic pesti-
cide degradation modeling as the underlying mechanisms 
are not described, and the pesticide dynamics are highly 
dependent on the specific compound parameters.

In summary, a combination of the two types of existing 
pesticide degradation models is needed to integrate micro-
bial controls at the profile or field scale, while account-
ing for feedbacks with physical and chemical factors and 
dynamic environmental conditions. More mechanistic 
knowledge is needed to develop such a combined model 
and to improve the assumptions building the basis for such 
a model approach.

What data or mechanistic knowledge 
is missing and would be required to better 
represent the biological processes important 
for biodegradation?

Overall, there have been recent huge advances in the mod-
eling of microbial activity in heterogeneous soils and thus 
on the biodegradation potential for pesticides. Yet, data for 
model validation have been largely achieved by laboratory 
incubations, which frequently only account inaccurately 
for the prevailing climatic conditions (particularly under 
freezing conditions), related soil structure dynamics, and 
dynamic changes of C and nutrient stoichiometry to feed 
the biodegrading communities. Besides, high uncertainties 
exist on dose–effect relationships, because i) both microbes 
and pesticides are allocated in certain hotspots that do not 
always overlap, ii) effect concentrations and biodegradation 

potentials are usually co-affected by site factors such as 
temperature, C supply, water content or pH, and iii) system 
behavior is not necessarily linear but may show synergistic 
or antagonistic effects that do not only depend on substance 
concentration. The latter can become particularly complex 
when dealing with compound mixtures, that are rarely cov-
ered in the models but are common in reality. More com-
plexity is added when microorganisms have started to adapt 
to environmental stressors so that their role in biodegrada-
tion potentials has changed with multiple pesticide appli-
cations. This might even be coupled with other stresses as 
recently discussed in concepts of xenoresilience (Schaeffer 
et al. 2016).

Thus, generic model approaches for predicting biodeg-
radation of different pesticides in various soils at the pedon 
scale need to represent the response of microbial degrad-
ing communities and their activity to dynamic changes in 
environmental conditions, soil structure and to regimes of 
pesticide application. The consideration of bioenergetics of 
pesticides in soil biodegradation models constraints growth 
yields as well as energetic limits of pesticide degradation 
and thus also the formation of remobilizable and irreversibly 
bound non-extractable residues (Trapp et al. 2018; Thullner 
and Regnier 2019). Hybrid multiscale methods effectively 
bridge multiple scales by combining representations of pro-
cesses at pore-scale in parts of the domain while the rest of 
the domain is represented at the continuum scale (Molins 
and Knabner 2019). This could represent biological and 
physical processes affecting biodegradation of pesticides at 
appropriate scales. Such pore-scale biodegradation models 
can use measured pore characteristics obtained by X-ray 
computed tomography and explicitly describe the localiza-
tion of microorganisms in the pore network and their acces-
sibility to substrates (Pot et al. 2022). Alternatively, implicit 
approaches utilize calibrated stochastic spatial statistical 
models to reflect pesticide degrader distributions in con-
tinuum scale models (Schwarz et al. 2022). Predicted bio-
degradation rates by both approaches can be calibrated and 
validated against measurements at macroscopic scales (soil 
cores or pedons). Measurements of biodegradation rates 
under field conditions could be achieved with long-term 
lysimeter studies using compound-specific isotope labeling 
(Melsbach et al. 2020). While the outlined approaches are 
limited to individual case studies, they could facilitate the 
improvement of pedotransfer functions (e.g., von Götz and 
Richter 1999) for predicting biodegradation rates based on 
physical and biological soil characteristics and pesticide 
properties under specific environmental conditions.

Modeling approaches for predicting biodegradation at 
pedon scale need to distinguish between growth-linked 
and co-metabolic degradation because the degradation 
mode determines how fast pesticides are degraded. The 
relative importance of growth-linked versus co-metabolic 
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metabolisms depends on the chemical characteristics of 
the degraded compound and whether specific degradation 
pathways have been evolved. In general, growth-linked and 
co-metabolic biodegradation scales with microbial activ-
ity and can be considered to become more relevant at high 
rates of C and energy supply via fresh organic matter input. 
Model approaches should reflect evolutionary adaptation 
mechanisms and ecotoxicological effects in response to 
pesticide mixtures due to their impact on biodegradation 
potential and rates. To account for the different degradation 
pathways, a model could distinguish the two processes by 
different maximum biodegradation rates and environmental 
dependencies. Growth-linked degradation is defined with a 
higher maximum degradation rate, while the actual degra-
dation rate highly dependents on environmental conditions. 
This will result in a stronger reduction of the degradation 
rate in case of unfavorable conditions. It could be also cou-
pled to an application memory, where an increased number 
of applications is equal to an enhancement in environmental 
conditions. Co-metabolic degradation is defined with a lower 
maximum degradation rate, but with a broader definition of 
“favorable conditions” and a direct dependency to the overall 
microbial activity, as the whole microbial community can be 
assumed to be active in this.

Overall, the soil function of biodegradation should likely 
not be assessed for individual hot-spots but at the scale of 
pedons. This will also allow to account for former adap-
tation potentials of microbial communities to pesticides 
loads, irrespectively whether metabolic or co-metabolic 
degradation pathways dominate. It does not allow, though, 
to explain variations in ecotoxicity, as the latter depends on 
contact times, and thus bio-accessibility and availability of 
additional growth supporting substrates. Yet, the modeling 
of these processes will likely continue to be different from 
those of modeling the fate of soil organic C, which can i) be 
continuously replaced by plants and microbes, and which ii) 
includes other size ranges such as stabilization of particulate 
organic matter that reacts with soils by other mechanisms 
than relevant for individual xenobiotics. However, describ-
ing the immobilization of xenobiotics in analogy to the 
formation of mineral-associated organic matter (MAOM) 
driven by diffusion of dissolved or low molecular weight 
organic matter into smaller pores might be sufficient as a 
simple approach. To improve this, more process knowledge 
is needed on mechanisms of how xenobiotics become inac-
cessible to microbes and solvents, previously described as 
the NER effect.

Yet, the modeling approach depends – as always – also 
on the specific research question. If the focus is on under-
standing the dynamics and transport of a specific pesticide, 
the simulated pathway and the parametrization should be 
adapted to this pesticide, provided that the data is available. 
Here, also possible metabolites and their dynamics should be 

included for a full picture. If pesticide fate is not the focus, 
but, for instance, the effect of other management practices 
on microbial activity and the related soil functions; a simple 
‘generic’ model approach distinguishing the two degradation 
pathways with some general parameters correlated with the 
microbial activity as described above might be sufficient. 
An example might be comparing tillage with no-till farming 
systems, where the differences in pesticide applications are 
a consequence of the soil management, and thus can have 
an additional effect on the microbial activity and processes; 
however, the specific compound applied is not important in 
this case.

Plant disease control

Soil fertility and health depend strongly on the composi-
tion and activity of soil microbial communities including 
bacteria, oomycetes and fungi. Agricultural management 
practices affect the ratio between and within these groups as 
well as the relative abundance of individual microbial taxa, 
among them known soil-borne pathogens (Thiet et al. 2006). 
As an example, we will focus in the following on soil-borne 
pathogens as for some of them there is information on propa-
gation and survival in soils as well as movement/spread of 
propagules within the soil. For other beneficial organisms 
like plant growth promoting bacteria our mechanistic under-
standing is much more limited. This is true in respect to the 
mechanisms of interaction with the plants, be it direct (e.g., 
providing nutrients like P or Fe), or indirect (e.g., protection 
against pathogens). However, this applies even more so in 
respect to the interaction within the microbial community, 
i.e. whether there is competition for resources or even facili-
tation. The specific and well-known examples for symbioses 
between plants and microorganisms, i.e. symbioses between 
legume family and rhizobium on the one hand and symbi-
oses of arbuscular mycorrhiza and crop plants (except lupine 
and Brassicaceae) on the other hand, are not covered here. 
The latter is addressed in the section on P cycling.

Soil‑borne fungal pathogens

Soil inhabiting fungi can be divided into three functional 
groups: i) species participating in organic matter decom-
position and transformation, ii) ecosystem regulators, and 
iii) biological controllers (Swift 2005; Gardi and Jeffery 
2009). Because soil fungi are capable of producing vari-
ous extracellular enzymes, they are able to break down a 
variety of organic compounds, contributing to the balance 
of C and nutrients (Žifčáková et al. 2016). Saprophytic 
fungi are pivotal for decomposition of plant residues and 
contribute to soil organic matter formation (Treseder and 
Lennon 2015). In addition, ectomycorrhizal fungi also have 
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the ability to oxidize organic material (Lindahl and Tun-
lid 2015). Ecosystem regulators are involved in formation 
of soil structure by contributing to the stabilization of soil 
aggregates (enmeshing of particles by hyphae) and likewise 
by facilitating transport of other soil organisms like bacteria 
in the soil environment (Frąc et al. 2018; Jiang et al. 2021). 
The group of biological controllers regulate growth of other 
organisms including plant growth such as mycorrhizal fungi 
that can improve availability of nutrients (Bagyaraj and Ash-
win 2017; Almeida et al. 2019). Soil-borne fungal pathogens 
that cause diseases are examples for negative impacts on the 
plant within the group of biological controllers. We will here 
use the example of soil-borne fungal pathogens as a place-
holder for any microbial taxa associated with a specific soil 
function as detailed above, to illustrate how the biology of 
individual organisms can be explicitly addressed in models. 
Fungal pathogens are the most prevalent plant pathogenic 
organisms and responsible for more than 80% of crop dis-
eases (Tian et al. 2020a). Important soil-borne fungi and 
oomycetes (e.g., Fusarium spp., Rhizoctonia solani, Sclero-
tinia sclerotiorum, Pythium spp.) belong to the most aggres-
sive pathogens that threaten food security (Van Bruggen and 
Semenov 2000; Ghini and Morandi 2006; Fiore-Donno and 
Bonkowski 2021). In general, plant pathogens (e.g., fungi, 
protists, oomycetes, bacteria, viruses) are responsible for 
about 16% of global yield losses annually and it has to be 
expected that this will increase due to climate change (New-
bery et al. 2016). It would be critical to gain more insight 
into the ability of the soil ecosystem, and in particular its 
biome, to suppress plant pathogens and to identify the key 
factors (e.g., density and type of inoculum, distribution of 
inoculum, soil microbiome, external factors) that control 
this ability. For example, plant viruses often use soil borne 
microbial and nematode vectors as transmitters (e.g. Barr 
1979; Bertioli et al. 1999). Waterfilms are essential for the 
spread of bacteria, and of the flagellated zoospores of pro-
tistan plant pathogens, while fungal pathogens infect plants 
via hyphal mycelia which can spread also at dryer soil con-
ditions (Boswell et al. 2003). Such basic knowledge might 
allow us to model disease dynamics and related management 
options in soil systems.

General aspects in plant disease epidemics 
of soil‑borne pathogens

Plant disease epidemic is a progress of disease in time and 
space. The interaction between a pathosystem and environ-
mental conditions determines the structure of each epidemic 
and the respective temporal dynamic and spatial patterns 
(van Maanen and Xu 2003). An improved knowledge about 
temporal and spatial changes during epidemics caused by a 
plant pathogen population is required including the impact 
of the environment on disease progress. Based on this 

knowledge it will be possible to develop suitable control 
strategies.

The ecology of soil-borne pathogens has distinctive fea-
tures that differ from epidemics caused by foliar pathogens. 
Whereas foliar pathogens have to contend with various 
external factors such as wind, radiation and varying tem-
peratures, the effects of these factors are limited in soil. In 
the soil, pathogens have to contend with a completely dif-
ferent quality of factors. The most notable differences are 
the propagule/inoculum reservoir in soil affected directly 
and indirectly by biotic (e.g., soil microbial community 
composition, soil fauna) and abiotic soil environment (e.g., 
physico-chemical factors, soil type). The soil environment 
influence processes such as propagule survival, dispersal, 
and germination (MacDonald 1994). A further important 
point is the role of the host plant (e.g., susceptibility, growth 
and development, root architecture, plant-soil feedback) in 
contacting and spreading of pathogen inoculum (Gilligan 
1983; Anguelov et al. 2019), and co-infections affecting 
virulence of the pathogen (Williamson and Gleason 2003) 
The soil structure formed by physical and biological pro-
cesses affect to a large extent both the pathogen and the 
plant and their interaction and thus disease incidence and 
severity. The complex structure and processes in the soil 
environment need an improved understanding. The compo-
nents affect each other and can have positive and negative 
(suppressive) effects on soil-borne pathogens. The modeling 
of all the processes such as inoculum density, spatial pat-
tern of pathogen inoculum in the soil, latent and infectious 
periods and spread impacted by soil biotic and abiotic soil 
variables is a challenge. Modeling aims at predicting future 
incidence and severity of plant diseases in agricultural sys-
tems. For this purpose, knowledge about the pathogen life 
cycle, the current pathogen distribution and environmental 
factors (e.g., soil structure, nutrient cycle and turnover, as 
described in other sections of this review) influencing them 
is required.

State‑of‑the‑art in modeling of plant diseases

Mathematical and statistical models are important in epi-
demiology of plant diseases to describe spatio-temporal 
dynamics to improve the understanding of disease develop-
ment (Cunniffe et al. 2014). There are two main groups of 
plant disease models (Donatelli et al. 2017). The first group 
is inspired by epidemiological models used for human and 
livestock diseases (Cunniffe et al. 2014). The second group 
focuses on the consequences of the host–pathogen interac-
tions and hence on the physiology and resulting yield loss. In 
the past, plant disease models were dominated by short-term 
tactical questions such as the support to schedule scouting or 
pesticide use (Magarey et al. 2002; Isard et al. 2015). These 
models usually focus on specific host–pathogen systems in a 
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distinct environment. Multi seasonal observations to receive 
robust empirical relationships between local weather vari-
ables and disease progress caused by a specific pathogen on a 
host are traditionally the basis of these models (Madden et al. 
2007). Alternative approaches are models like phenology 
models (Welch et al. 1978) and infection models (Gilligan 
1995) based on parameterization from independent experi-
ments under controlled conditions focused on identification 
of pathogen and plant responses to a range of environmental 
factors (Zadoks 1971; Magarey et al. 2005). Note that this 
type of models is more difficult to establish for soil-borne 
diseases because the models do not consider the impact of 
soil state variables (e.g., soil structure, organic matter, nutri-
ent status, water content) due to the difficulty of obtaining 
the respective input data (Roget 2001). For above ground 
diseases (leaf diseases), the key factors are (i) availability 
of a susceptible host, (ii) presence and amount of inoculum 
(propagules), and (iii) environmental conditions such as 
rainfall, humidity, temperature, the situation is more com-
plex for soil-borne pathogens. Here additional knowledge is 
required on soil microbial activity (including disease sup-
pressiveness), soil water or more general any soil or root 
parameter affecting pathogen motility, survival and dispersal 
(Gilligan 1983; Bekker 2018). Relevant controls and relevant 
processes related to soil-borne pathogens are plant residues 
and soil management (affecting density of propagules and 
their dispersal), the microbial activity and microbiome com-
position regulating the breakdown of residues (containing 
propagules) in general and specifically suppressing individ-
ual organisms and finally crop rotation defining phases of 
host and non-host presence. One of the few examples for a 
decision support system for soil-borne diseases is the study 
of Roget (2001) providing a case study for take-all disease 
(Gaeumannomyces graminis Ggt) in which inoculum density 
in the soil was derived from DNA probes. Inoculum density 
of Ggt decreases during phases with high microbial activity 
(e.g., at rainfall events), addressing the fact that Ggt is a poor 
competitor during the saprophytic phase. In addition, crop 
rotation has been included, i.e. dividing the system in host 
and non-host phases. More recently plant disease modeling 
is moving towards the use of more process-based mechanis-
tic models and seeking the integration into crop models. A 
roadmap for this has been provided by Donatelli et al. (2017).

Perspective for the integration of plant diseases 
into process‑based models – the bottleneck of data 
availability

In principle the approaches of existing models, in particular 
the relatively simple decision support system for Ggt could 
be easily implemented into a process-based model. The 
shortcoming is the availability of data, i.e. inoculum density 
and not just relative abundance of a pathogen within the soil 

microbiome. For some soil-borne fungi and even more so 
for plant growth promoting microorganisms there is a lack 
of mechanistic understanding about factors that affect their 
activity, how they might disperse in soil, and how they inter-
act with the plant and other members of the soil/rhizosphere 
microbiome under consideration of environmental factors. 
In general, parameters which were indirectly included in the 
modeling like crop rotation (periods with host and non-host 
plants), soil organic matter and soil management (fate of 
propagule containing material) may be valid for any patho-
gen. Deriving further progress in disease process-based mod-
els, a link to models of biological soil processes is required.

Structure formation and dynamics

Soil structure refers to be the spatial arrangement of mineral 
particles of different size (i.e. soil texture), organic material 
and pore spaces in soil (Dexter 1988). It is formed on the one 
hand by physical processes such as swelling/shrinking, freez-
ing/thawing and the translocation of material with moving 
water. But, on the other hand, it is formed to a large extent 
by biological processes, which is the focus of this section. 
Besides these natural processes some tillage practices in agri-
culture are designed to optimize soil structure for plant ger-
mination and growth. During the last decades, our tools for 
the quantitative description of soil structure have developed 
considerably, both in terms of available techniques (Rabot 
et al. 2018) and the analysis of 3D images of undisturbed 
soil structure (Schlüter and Vogel 2016) which is a prerequi-
site for linking soil structure and functions. The key role of 
soil structure for soil functioning is increasingly recognized 
(Fatichi et al. 2020; Sullivan et al. 2022). Soil structure is 
the major control of how much water can be stored, how it 
can flow through soil, how gases can diffuse and how many 
pore-solid interfaces are available to exchange elements and 
compounds. Moreover, soil structure provides the habitat 
for the myriad of organisms living in soil including plant 
roots. Consequently, all biological processes discussed in this 
paper depend in one way or another on soil structure. There 
are a number of different biological processes that have an 
immediate impact on soil structure in terms of the formation 
of the pore space, the mixing of organic and mineral com-
pounds and its mechanical stabilization. These processes are 
discussed in the following before we examine how biological 
formation of soil structure can be modelled.

Biological processes forming soil structure

Formation of biopores by roots

Roots create cylindrical bio-pores when growing and decay-
ing in soil (Kautz 2015). Some plants form deep and thick 
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taproots such as alfalfa and are used specifically to access 
the subsoil for subsequent crops (Sun et al. 2008). In con-
trast, it is mainly the fine roots with a diameter of 0.1 to 
0.2 mm that often form a dense network of biopores. Lucas 
et al. (2019a) showed for a reclaimed soil that roots can 
create an extensive biopore system in less than a decade. 
The biopores are potentially stabilized by the formation of 
 CaCO3 or  CaSO4 in the rhizosphere (Hinsinger et al. 2009). 
For the reclaimed soils investigated by Lucas et al. (2019a) 
chemical conditions for  CaCO3 formation were favorable. 
Root channels provide thus the pathways for water and gas 
but also for other plants to explore the soil volume espe-
cially in deeper horizons. There is evidence that plants reach 
the subsoil almost exclusively through preexisting biopores 
if they encounter a compacted layer further up (White and 
Kirkegaard 2010; Gao et al. 2016). In loose topsoil of low 
bulk density generated by earthworm activity or tillage, roots 
typically use the existing pore space so that cylindrical root 
channels are less frequent and roots do not compact the sur-
rounding soil matrix during growth (Lucas et al. 2019b). 
However, root growth also affects the connectivity of the 
pore space in loose topsoils. Analysis of pore connectivity as 
a function of pore size revealed that the pore space is getting 
continuous as soon as pores with a diameter of 0.1 mm and 
smaller are taken into account. This threshold corresponds to 
the typical diameter of fine roots (Lucas et al. 2021). Larger 
pores between soil clods created by tillage in arable fields 
are often isolated while pore connectivity is provided by the 
growth of roots.

Formation of biopores by earthworms

Among the soil macrofauna, earthworms have the most 
impact on soil structure formation, at least in temperate 
humid regions. Earthworm burrows are typically cylindri-
cal in shape with a diameter in the range of millimeters. 
Hence, their burrows are mostly air-filled and promote the 
gas exchange with the atmosphere. However, during heavy 
rainfall they provide efficient drainage pathways and an 
improved infiltration capacity. It was found that anecic spe-
cies such as Lumbricus terrestris produce fewer but more 
continuous and more vertical burrows as compared to 
endogeic species (Bastardie et al. 2005). This is explained 
by the different life forms (Bouché 1977). Anecic species 
feed at the soil surface and their burrows mainly serve as 
shelter from predators and drought, while endogeic species 
eat their way through the soil, living on the organic mat-
ter they absorb. Hence, the endogeic species tend to refill 
their burrows with their casts. This is expected to be similar 
for enchytraeids but it has been shown that they can also 
produce pores in the size range of their bodies (Porre et al. 
2016). Anecic species often drop their casts at the soil sur-
face leaving their burrows open. As a consequence, anecic 

species have a higher potential to lift the soil surface and 
thus reduce soil bulk density while endogeic species and 
enchytreids have a higher potential for bioturbation within 
the upper soil horizon where they are active.

Formation of bio‑aggregates

Besides biopore formation, soil fauna contributes to soil 
structure formation by casting and the formation of faecal 
aggregates. In mineral soils this is most evident for earth-
worms and enchytreids. The porosity inside casts has been 
shown to be substantially lower compared to the surrounding 
soil while their mechanical stability is higher (Jouquet et al. 
2008). It was found that the overall soil bulk density is either 
higher or lower or not affected at all. This was demonstrated 
by Barré et al. (2009) who showed that a compacted soil 
is loosened and a loose soil is compacted by earthworms. 
Hence, the pore size distribution is changed and the soil is 
homogenized in terms of structure that is formed by rela-
tively dense bio-aggregates (i.e., casts) and relatively large 
inter-aggregate pores. The resulting crumbly structure is typ-
ical for grassland soils with high earthworm activity where 
the entire topsoil material is going through an earthworm 
gut about once a year at high bioturbation rates (Ellenberg 
et al. 1986). The formation of casts can accelerate C turnover 
shortly after casting but, as already discussed, organic mat-
ter inside the casts can be physically protected from further 
decay at longer time scales (Frouz 2018). This occlusion 
of particulate organic matter is a protective means against 
microbial decay (Lubbers et al. 2017). The intensity of bio-
turbation was quantified by Capowiez et al. (2021) using 
luminophores as a tracer to calculate a mean displacement 
distance per time. They confirmed that endogeic species are 
much more effective for bioturbation as compared to anecic 
species as was already demonstrated by Scheu (1987a).

Stabilization of soil structure by biological activity

In addition to direct structure formation, biological activity 
has a considerable impact on the stabilization of soil struc-
ture and thus on the maintenance of pore connectivity, habi-
tats and biogeochemical interfaces as well as on the vulner-
ability of soils to erosion. This function is mainly provided 
by microorganisms and less by soil fauna (Lehmann et al. 
2017). During microbial decomposition of organic mat-
ter extracellular polymeric substances and low molecular 
weight organic matter are produced that are quite mobile 
within the soil solution in the form of dissolved organic 
matter (Kaiser and Kalbitz 2012). In this way organic mol-
ecules come in close contact to mineral surfaces where 
they increase the binding forces in different ways (Totsche 
et al. 2018). Furthermore, fungi stabilize the soil structure 
through their network of hyphae, which spreads in smaller, 



287Biology and Fertility of Soils (2024) 60:263–306 

but also in larger air-filled pores enmeshing the solid phase 
(Chenu and Cosentino 2011). The stability of soil struc-
ture is expressed in the measurement of aggregate stability. 
With increasing mechanical stress, the soil breaks down into 
smaller and smaller fragments with smaller internal pore 
size and increasing stability which is related to the organic 
glue from microbial origin (Chenu and Cosentino 2011; 
Miltner et al. 2012). Hence, microbial activity and the inter-
action between organic matter and mineral particles leads to 
heterogeneous binding forces at the microscopic scale while 
the disintegration into fragments of different stability is the 
macroscopic manifestation of this heterogeneity (Vogel et al. 
2022). When referring to aggregates, the different forma-
tion processes should be distinguished, which can be either 
natural biological aggregation (e.g. casts), natural physical 
aggregation (sharp-edged aggregates by swell-shrink pro-
cesses) or artificial fragmentation along zones of weakness 
(e.g. by dry or wet sieving).

Even if a stable structure has formed under constant 
boundary conditions, the various structure-forming pro-
cesses lead to the fact that soil structure may change stead-
ily at any point within the soil volume. At the same time, 
however, macroscopic structural properties such as bulk 
density, pore size distribution and pore connectivity may 
stay rather constant in time, or may seasonally fluctuate 
around some relatively stable state due to oscillating bio-
logical activity or physical processes such as swell-shrink-
ing with changing water content or freezing and thawing 
cycles. As a consequence of the internal dynamics, the 
microscopic configuration and the accessibility of organic 
matter for soil organisms is continuously changing, having 
an impact on process rates.

State of the art in modeling soil structure dynamics

Modeling of soil structure has long focused on the abiotic 
processes of soil compaction by heavy machinery in agri-
culture and forestry (Kuhwald et al. 2018; Duttmann et al. 
2022). This was and still is motivated by the fact that soil 
compaction has an extremely critical impact on soil water 
dynamics and soil as habitat for organisms and herewith 
on many soil functions (Nawaz et al. 2013). More recently, 
however, biological processes that can promote the recovery 
of disturbed soil structure have come more and more into 
focus. There is experimental evidence that some soil proper-
ties such as the infiltration capacity may recover relatively 
fast due to the formation of biopores while, for example, 
the recovery of bulk density after compaction seems to be a 
much slower process (Keller et al. 2021). Despite the known 
importance of biological processes for the formation of soil 
structure, relatively few modeling approaches have been 
developed so far to represent these processes. Some of them 
are briefly discussed below.

Root channels

It is well known that root systems have the capacity to alter 
soil structure either directly by shaping soil pores or indi-
rectly through the supply of organic matter to fuel biological 
activity in the rhizosphere or by extracting water (Gregory 
2022). Catch crops, especially the deep-rooted ones, are spe-
cifically used to improve the structure in deeper soil layers 
(Lucas et al. 2022). Despite this importance, there are no 
models yet that are capable of describing these processes 
and their impact on soil properties for different plant species 
under different site conditions. The reason for this is prob-
ably the many interacting factors that influence root growth 
such as soil moisture and mechanical stability. A complicat-
ing aspect is probably the fact that roots may use the exist-
ing pore system (White and Kirkegaard 2010) especially in 
compacted soil layers. Recently, it was shown by Phalempin 
et al. (2022) that the reuse of existing pores is less effec-
tive in non-compacted soils. However, in the subsoil, pre-
existing soil structure can be very stable and may originate 
from times when a different vegetation shaped the structure 
formation (Schlüter et al. 2011). Modeling root growth can 
be a valuable approach to describe structure formation by 
roots and more detailed knowledge on soil mechanics and 
the physical interactions at the root tip will help in building 
such models (Kolb et al. 2017). Meurer et al. (2020a) sug-
gested a model approach describing the effect of root growth 
and earthworm activity on the pore size distributions where 
the required ‘pore-change’ factors are based on plausible 
assumptions. There is an increasing number of 3D single 
plant root architectural models (Pagès et al. 2014; Schnepf 
et al. 2018). They can be parameterized to represent root 
growth in the field also for a consortium of plants. Such 
models could potentially be used for modeling biopore for-
mation in crop rotations, however, data on biopore reuse in 
the field for the calibration of such models are scarce (Landl 
et al. 2019).

Earthworm burrows

Especially the large continuous earthworm burrows have 
long been a subject of research in the field of water and sol-
ute transport and the phenomenon of preferential flow. The 
number of such biopores is highly relevant for the infiltration 
capacity but also as pathways for roots to reach the subsoil. 
This is why modeling the number density of mainly vertical, 
continuous earthworm burrows is an essential task. It has 
been shown that there is a clear relation between earthworm 
abundance and the number of such burrows (Van Schaik 
et  al. 2014; Bouché and Al-Addan 1997) however, the 
number of burrows per individuum may vary considerably 
(Pérès et al. 2010). There are no reliable models yet to link 
site characteristics to earthworm abundance and macropore 
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density but the increasing number of field data might provide 
a clearer picture in the future.

Bioturbation

Modeling bioturbation was developed mainly in benthic sys-
tems. As an example, Gerino et al. (2007) used a classical 
advection–dispersion model where local mixing is covered by 
the dispersive part while the transport by organisms over larger 
distances is covered by the advective part. For soil systems an 
equivalent model concept was presented by Jarvis et al. (2010) 
which was successfully applied to the spreading of 137Cs from 
the fallout of the Chernobyl accident. It distinguished between 
local mixing (dispersive part), thought to be brought about by 
endogeic earthworm species, and non-local mixing (advective 
part) induced by anecic species feeding at the soil surface and 
egesting their feces partly deeper down as tapestry in their bur-
rows. Although obviously successful, these models have not 
been further developed since then. One reason for this is proba-
bly the need for suitable tracers to determine the model param-
eters. Bioturbation in terms of mixing efficiency, induced by 
different behavioral types of earthworms was modelled by 
Blanchart et al. (2009) using an agent-based, spatially explicit, 
3-dimensional model (SWORM). This allowed to demonstrate 
the impact and efficiency of individual earthworms on bulk 
density and mixing. However, it is not obvious how to param-
eterize this type of model for a given soil.

Aggregate formation

The modeling of aggregate formation, beyond the biologi-
cal formation of casts as discussed above, has developed in 
recent years (e.g. Segoli et al. 2013). Thereby, the focus is 
less on structure formation per se but rather the inclusion 
of organic matter in these aggregates and thus the physi-
cal protection against biological degradation. There is a 
current discussion on the extent to which such aggregate 
formation through the agglomeration or some kind of self-
organization of organic and mineral components actually 
takes place (Vogel et al. 2022). Direct observations in natu-
ral soils are still lacking and it is not obvious which biotic 
or abiotic processes should lead to the local reorganization 
of organic and mineral particles. What is undisputed is that 
the binding of organic matter to mineral surfaces makes an 
important contribution to stabilizing soil structure (Totsche 
et al. 2018). The fact that the soil typically disintegrates into 
aggregates of different size and stability when mechanically 
stressed is a direct consequence of the heterogeneous bind-
ing forces within the soil matrix. Hence the critical process 
to be considered in future model concepts is the mixing of 
organic compounds with mineral particles as e.g. bioturba-
tion or the diffusion of dissolved organic matter.

Challenges and possible ways forward

With regard to soil functions and the importance of biologi-
cal processes of soil structure formation, two aspects appear 
to be of outstanding importance: i) the continuous internal 
dynamics of soil structure through biological activity with-
out changing macroscopic properties and ii) the recovery of 
soil structure after some disturbance whereby macroscopic 
properties are reestablished. Along both lines we do not have 
suitable modeling tools yet that allow us to describe or even 
predict the relevant processes as a function of site conditions 
and the major drivers that are land use and climate.

Internal structure dynamics

The continuous reformation of soil structure induced by 
biological agents has considerable impact on SOM, N and 
P dynamics as discussed earlier. One critical prerequisite 
to address the internal structure dynamics is that tools are 
required to measure it. This is challenging since soil is 
opaque and macroscopic properties that can be measured 
in the field or at soil samples are a snapshot in time and 
do not change. Even the newly available techniques of 3D 
imaging of soil structure such as X-ray tomography do not 
help a lot since we typically look at just one point in time. 
To measure the structural dynamics, we need parameters 
such as the mean time it takes to move a soil particle from an 
accessible pore-solid surface to the inaccessible interior of 
the soil matrix or vice versa. Another characteristic param-
eter would be how long it takes for a point source to spread 
towards a randomized distribution in space. This could be 
used to quantify the intensity of the mixing that we expect to 
be important for stabilizing C or the retention of nutrients. In 
order to be able to measure such properties we need suitable 
tracers that can be visualized using existing tomographic 
techniques. Examples are dense particles visible by X-ray 
CT (Schlüter and Vogel 2016) or by analyzing subsamples as 
done by Capowiez et al. (2021) to analyze the spreading of 
luminophores as conservative fluorescent particulate tracer.

Another approach would be to analyze the natural dis-
tribution of specific soil components. For example, if the 
particulate organic matter is uniformly distributed within 
the soil matrix, this indicates a high mixing rate, because 
the input of these particles is typically spatially concen-
trated within the rhizosphere or, more generally, along 
larger pores. Similar concepts could be developed based on 
the distribution of mineral-bound organic matter presumed 
to have previously moved as DOC within pore systems. 
A first glimpse along these lines was recently shown by 
Schlüter et al. (2022) and there is room for further promis-
ing developments.
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Once powerful tools to quantify bioturbation and mix-
ing rates are available there is an obvious way forward. It 
can be assumed that bioturbation by earthworms is directly 
related to their biomass or abundance and their ingestion 
rates which depend on soil and site characteristics and the 
soil management. So far, this has been limited to qualitative 
observation, which could be put on a more solid quantitative 
basis in the future, paving the way towards better, mecha-
nistic modeling. For example, the occurrence and ratio of 
different life forms of earthworms as a function of soil bulk 
density, pH, temperature, soil water content, organic matter 
or tillage can then be translated into something like a local 
and a non-local mixing rate.

Changes in macroscopic structural properties 
after disturbance

The potential of biological processes to improve a disturbed 
soil structure is well known. The disturbance and subse-
quent recovery of the structure can go in two directions. 
Either a settlement after loosening (by tillage) or a loosen-
ing after compaction (by too heavy vehicles). The two main 
candidates here are plant roots and, again, burrowing soil 
animals, mainly earthworms. While the process understand-
ing is available to a large extent, there is a lack of empirical 
data necessary to parameterize these processes in appropri-
ate models. However, there is a steadily increasing body of 
scientific work that is examining the effects of plants and 
soil biota on soil structure for various boundary conditions 
which is promising. Examples are the capacity of plants to 
improve structural properties of the subsoil (e.g., Lucas et al. 
2019a), the capacity of earthworms to burrow through com-
pacted soil layers (e.g., Capowiez et al. 2021), the contrast in 
soil structure between tilled and non-tilled soil (e.g. Schlüter 
et al. 2018) and the settlement of tilled soil layers (e.g. Geris 
et al. 2021). With that, the required experimental evidence 
will grow successively.

Integration of structure dynamic into soil models

Quantitative knowledge on how biological processes alter 
soil structure should ideally be integrated into more general 
soil process models since structure impacts important func-
tional properties. This is not only true for flow and transport 
processes but also, as discussed in the previous sections, 
for the turnover of SOM and the cycling of N and P. It is a 
critical challenge to explicitly include changing pore size 
distribution and pore connectivity of a dynamic pore sys-
tem. Considering the impact of soil structure dynamics on 
soil functions requires physical models that can cope with 
a non-rigid pore space dynamically changing at each time 
step. This remains to be a challenge for future developments.

Conclusions

The ultimate goal is to improve available model tools so that 
they are capable of predicting the impact of external drivers 
such as climate and soil management on soil functions and, 
herewith, to improve the scientific basis for sustainable soil 
management. Due to their complex interactions, an adequate 
representation of biological processes is the most critical 
challenge.

Interaction of biological processes

In this review six process clusters were distinguished that 
are mainly biologically driven and the key biological pro-
cesses for each were identified. Regarding this analysis in 
overview of the different process clusters (Figs. 1 and 3), 
it becomes immediately apparent that many processes are 
directly involved in a number of different process clusters. 
This well reflects the close process interactions in soil. Fig-
ure 3 illustrates how external drivers impact relevant soil 
state variables and soil functions, mediated through biologi-
cal processes.

Challenges for modeling

Besides identifying the relevant biological processes, this 
review shows the extent to which biological processes have 
already been considered explicitly or implicitly in mod-
ern approaches to modeling soil functions. This extent is 
different for the different process clusters. For example, 
in modeling soil N dynamics, the attempt has been made 
to represent individual processes such as nitrification and 
denitrification depending on local conditions in terms of 
water content, redox potential as well as quantity and qual-
ity of organic matter. In contrast, for other processes such as 
organic-matter turnover, individual processes are typically 
not distinguished but are lumped in a “black-box” approach 
by using some conceptual pools and effective parameters, 
such as ecological stoichiometry, threshold element ratios 
and life strategy theory. Examples are rate parameters for 
the transfer of C between different C pools, the importance 
of denitrification as a function of water content, the degra-
dation of pollutants as functions of the overall biological 
activity, or the vulnerability of crops to fungal pathogens 
as a function of crop diversity. In view of the sheer num-
ber of processes involved, a black-box approach is indeed 
an appealing concept and a well justified method to reduce 
complexity. This is needed to render the model applicable 
in the sense that the number of required parameters remains 
limited and the model can be more easily calibrated to avail-
able observations.
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However, there are different shades of grey in these 
black-box approaches. The lumped effective parameters 
are tied to the underlying processes with varying degrees 
of rigor. In the simplest case, effective parameters are 
derived from state variables that are known to be well 
correlated with these parameters based on a statistical 
evaluation but without reference to the underlying pro-
cesses. An example is the stabilization of organic mat-
ter which is assumed to be a fixed rate of some “active” 
organic pool as it is done in many models describing C 
turnover (Schimel 2023).

Ideally, our models should have predictive power and 
should react to changing boundary conditions in a real-
istic manner. To achieve this the model parameters need 
to be tied as closely as possible to the relevant processes. 
In this way, the models can be responsive to changing 
boundary conditions that have not yet occurred, such as 
climate change or can provide research into new manage-
ment strategies for which solid observations are not yet 
available.

Strategies for upscaling and the right level 
of complexity

The key challenges are how to create model concepts that 
are closer to the actual processes and how detailed these 
processes need to be considered. The answers certainly 
depend on the purpose of the models and for which spa-
tial and temporal scale they are designed for. For agricul-
tural management, the target spatial scale is the soil pedon 
which can be considered as a functional unit representing an 
arable field. This is because soil processes are sensitive to 
the atmospheric boundary conditions and they interact verti-
cally along the soil profile through water, matter and energy 
fluxes. These fluxes connect different horizons along the soil 
profile and are mainly vertical at the scale of pedons as long 
as the soil is not close to water saturation (Vogel 2019). 
Therefore, an upscaling of biological processes to the level 
of soil profiles is well justified and should be strived for. The 
central challenge is thus to describe the biological processes 
in as much detail as necessary so that the phenomena on the 

Fig. 3  The process clusters and related soil functions share a number 
of biological processes as indicated by the colored lines (the boxes of 
the processes are crossed by the lines of the process clusters to which 
they contribute). They depend on the structure and activity of the soil 

biome which is sensitive to a number of soil state variables. These 
variables are sensitive to external drivers of land use and climate 
mediated by basic soil attributes
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pedon-scale can still be realistically represented. Concerning 
the temporal scale, the dynamics within a growing season 
should be addressed which leads to a required temporal reso-
lution in the range of days or weeks.

It is well known that soils are heterogeneously structured 
at the various scales leading to micro- and mesoscopic hot 
spots and hot moments (Kuzyakov and Blagodatskaya 2015; 
Thakur et al. 2020). Although there is considerable knowl-
edge on biological processes at the scale of very local micro-
bial and faunal communities and to some extent also on their 
interactions (Baveye et al. 2018), it seems, however, that it is 
prohibitive to obtain the required data for describing these 
processes at the individual or molecular level (Smercina 
et al. 2021). The problem is less the required computing 
power, but rather the fact that no means exist to measure 
the required initial conditions in terms of the spatial loca-
tion and colocation of individual organisms and the nutrient 
resources (i.e. organic matter) on which they live. Another 
obstacle is the still incomplete understanding of the meta-
bolic processes within heterogeneous microbial communi-
ties and the scale-dependent interactions with faunal popu-
lations. The obvious discrepancy in spatial and temporal 
scale between the ongoing processes and their macroscopic 
manifestation in terms of soil functions calls for appropriate 
strategies for upscaling.

Given the complex process interactions, upscaling strat-
egies cannot be based on simple volume averaging. The 
various scales of spatial heterogeneity and the non-linear 
dynamics of individual processes (i.e. the switch from aero-
bic to anaerobic metabolism or the dormancy of microbes 
depending on soil moisture and resource availability) leads 
to a new quality of processes at the larger scales. Yet, to be 
able to well describe and model such emergent processes 
on the larger scale, it is certainly valuable to have a good 
understanding of the small-scale processes and their interac-
tions. When it comes to organismic complexity, it is impor-
tant to understand the processes at the scale of micro- and 
meso- habitats (Nunan 2017; Baveye et al. 2018) to come 
up with substantiated simplified descriptions at larger scales. 
A possible step towards upscaled model concepts appears 
to be the clustering of soil organisms into groups of similar 
guilds. This is also a widely used concept for a simplified 
description of food webs (Moore and Hunt 1988). However, 
it has been shown that in soil systems trophic chains are not 
directly linked to body size of the organisms as is the case 
for marine systems (Potapov et al. 2019). Yet, it is possible 
to assign certain functionalities to certain groups of organ-
isms. Examples that were discussed in previous section of 
this paper are:

i) Burrowing animals such as earthworms (i.e. soil engi-
neers) that generate macro-pores and mix soil compo-
nents through bioturbation, while different activity rates 

of life-form types, i.e. endogeic and anecic (Bottinelli 
et al. 2020), can be distinguished.

ii) Mycorrhizal fungi which are able to massively expand 
the sphere of influence of root systems, both in terms of 
nutrient uptake and the release of organic compounds 
into the soil and soil organism food webs (Ryan and 
Graham 2018).

iii) Saprophytic fungi that explore the entire soil volume and 
distribute inorganic nutrients via mycelial translocation 
(Tordoff et al. 2011) as well as organic matter within this 
volume in form of their necromass.

iv) Groups of bacteria having different metabolisms in 
terms of, e.g., C use efficiency (Fierer et al. 2007).

To link these functionalities to the different guilds of 
organisms in modeling, much more knowledge is required 
about how these organism groups respond to external driv-
ers such as climate change or land use. Increasing this 
knowledge could be an important step towards upscaling 
biological processes. With respect to C turnover and nutrient 
cycling there is some evidence that it might not be promis-
ing to distinguish functional guilds or organisms (Andrén 
et al. 1999; Griffiths et al. 2001). The enormous diversity 
of soil organisms contributes at various trophic levels and 
there is considerable redundancy with respect to the involved 
metabolic chains.

As discussed in the sections on C, N and P dynamics, eco-
logic stoichiometry is considered to be a promising concept 
which has been well-established and successfully applied 
since quite a while in aquatic ecology (Anderson 1992; Elser 
and Urabe 1999). C use efficiency and nutrient cycling are 
sensitive to the stoichiometry of all the involved organisms 
and of the provided organic input. Hence, the dynamic inter-
action of litter quality, faunal and microbial activity can be 
modelled based on stoichiometric relations that are largely 
known. Together with the metabolic theory this would allow 
modeling of soil biological processes based on general laws 
of energy as well as C and nutrient constraints.

An appealing follow-up question would be whether the 
highly diverse (micro)biological communities might be 
reduced to some “effective” biome that reacts to boundary 
conditions such as temperature and moisture and, addition-
ally, to the stoichiometric relations. There is some evidence 
that microbial metabolism has the potential to adapt itself to 
local conditions in terms of available substrates. For exam-
ple, the ratio between microbial catabolism and anabolism 
is adapted but also the storage of energy and nutrients within 
living biomass to mitigate against stoichiometric imbalances 
(Mason-Jones et al. 2022). These features imply that also 
legacy effects and adaptation might be relevant for modeling. 
However, there are processes which can only be accom-
plished by a limited number of specialists and, thus, cannot 
be represented by some effective biome. Examples are the 
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denitrification to the final stage of  N2, or the degradation of 
special classes of pollutants.

Besides the organismic complexity, also the soil struc-
tural complexity could be reduced by identifying char-
acteristic spatial patterns of habitats or pore structural 
attributes. For instance, it has been demonstrated that a 
pore size range between 20 µm and 200 µm can be con-
sidered to be the “comfort zone” of microbial activity 
(Kravchenko et al. 2019). This is due to the simultaneous 
availability of water,  O2 and C sources in this pore size 
class. Based on X-ray CT, it is possible to characterize 
these pores in terms of volume and connectivity as poten-
tial indicators for microbial activity. Another structural 
indicator might be the density of large biopores originat-
ing from earthworms or plant roots that provide access for 
plants and soil organisms to deeper soil layers, improve 
aeration, and increase the infiltration capacity of the soils. 
In terms of soil aeration the mean distance of any point 
within the soil matrix to the next air-filled pore may serve 
as a valuable structural indicator which can be calculated 
using 3D x-ray CT images or the pore network (Rohe et al. 
2021; Ortega-Ramírez et al. 2023).

The various concepts for upscaling leads to models in 
which the organisms driving the processes hardly appear as 
individual actors anymore. The main drivers are the chang-
ing state variables of the soils, which control the activity of 
the organisms. The concept “everything is potentially eve-
rywhere” shifts the focus towards external drivers and soil 
state variables, which then ultimately determine how the 
biological process clusters become established and stabi-
lize. This is also illustrated in Fig. 3 where a relative limited 
number of soil state variables are the critical link between 
external drivers and the process clusters. Eventually, the 
processes need to be described as a function of the chang-
ing state variables that can either be directly observed or 
their dynamics can be modelled in response to the external 
drivers.
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