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Abstract
Understanding N uptake by plants, the N cycle, and their relationship to soil heterogeneity has generated a great deal of 
interest in the distribution of amino-N compounds in soil. Visualization of the spatial distribution of amino-N in soil can 
provide insights into the role of labile N in plant-microbial mechanisms of N acquisition and plant N uptake, but until now, 
it has remained technically challenging. Here, we describe a novel technique to visualize the amino-N distribution at the 
root-soil interface. The technique is based on time-lapse amino mapping (TLAM) using membranes saturated with the 
fluorogenic OPAME reagent (O-phthalaldehyde and β-mercaptoethanol). OPAME in the membrane reacts with organic 
compounds containing a NH2 functional group at the membrane-soil interface, generating a fluorescent product visible under 
UV light and detectable by a digital camera. The TLAM amino-mapping technique was applied to visualize and quantify the 
concentration of amino-N compounds in the rhizosphere of maize (Zea Mays L.). A ten times greater amino-N concentra-
tion was detected in the rhizosphere compared to non-rhizosphere soil. The high content of amino-N was mainly associated 
with the root tips and was 3 times larger than the average amino-N content at seminal roots. The amino-N rhizosphere was 
2 times broader around the root tips than around other parts of the roots. We concluded that TLAM is a promising approach 
for monitoring the fate of labile N in soils. However, the technique needs to be standardized for different soil types, plant 
species, and climate conditions to allow wider application.
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Introduction

Although organic compounds containing NH2 functional 
groups (e.g., amino acids, amino sugars) account for only 
a minor proportion of dissolved organic N in soils (Roberts 
et al. 2007; Warren 2017), they have attracted considerable 

interest as contributors of labile N in natural ecosystems 
due to their rapid turnover and intact uptake by plants and 
microorganisms (Jones et al. 2005a; Nannipieri and Paul 
2009). Living and dead roots, microbial exudation, litter 
inputs (Jones et al. 2005a; Moe 2013; Holz et al. 2017), 
and microbial debris (Roberts et al. 2007) are key sources 
of amino acids and amino sugars in soil. Rhizodeposition 
accelerates microbial activity in the rhizosphere, resulting 
in stiff competition for amino acids as the most available 
N source in the root zone (Moe 2013; Holz et al. 2017; 
Blagodatskaya et  al. 2021). Plants, in turn, are able to 
recapture large amount of exogenous amino acids from soil 
(Jones et al. 2005b). Therefore, plant roots might be both a 
major source and sink of amino acids.

Numerous methods have been developed to assay total 
and specific amino acid/sugar concentrations in soil. For 
example, a chromogenic dye assay using ninhydrin (Moore 
and Stein 1954) and a fluorometric assay using OPAME 
(O-phthalaldehyde and β-mercaptoethanol) have been 
adapted for the measurement of free amino acids (Jones 
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et al. 2002; Darrouzet-Nardi et al. 2013) and amino sugars 
(Roberts et al. 2007) in soil. The balance between amino 
acid production and consumption determines the total amino 
acid concentration measured in a homogenized soil sample 
(Hill et al. 2019). Due to high soil heterogeneity, greater 
microbial activity and faster nutrient turnover rates occur 
in soil hotspots enriched with easily degradable organic 
matter (Kuzyakov and Blagodatskaya 2015; Ghaderi et al. 
2022; Hao et al. 2022), where dynamic inputs of amino acids 
(either plant or microbial origin) are expected (Inselsbacher 
et al. 2011; Hill et al. 2019; Blagodatskaya et al. 2021). 
Indeed, compared to non-rhizosphere soil, larger concen-
trations of amino acids have been detected in the rhizos-
phere (Inselsbacher et al. 2011), biopores, and detritusphere 
hotspots by a microdialysis approach (Hill et al. 2019). 
Despite the successful determination of amino acids in soil 
microhabitats, the latter method only determines amino 
acid fluxes and cannot quantify the spatial distribution of 
NH2-containing compounds in the soil microenvironments.

The aim of the present study was to visualize and quan-
tify the spatial distribution of amino–N compounds at the 
root-soil interface of Zea Mays L. We employed a new 
technique, termed time-lapse amino mapping (TLAM), 
that combined the principle of membrane soil zymography 
(Spohn and Kuzyakov 2013; Sanaullah et al. 2016) with 
a time-lapse approach (Guber et al. 2021). The technique 
involved applying an OPAME reagent (O-phthalaldehyde 
and β-mercaptoethanol) saturated membrane on the soil and 
at the soil-root interface. The OPAME reagent reacted with 
NH2 functional groups in compounds at the membrane-soil 
interface to generate a fluorescent product visible under UV 
light. Development of the fluorescence signal in the mem-
brane over time was recorded using a DSLR camera (time-
lapse approach). We hypothesized that amino-N compounds 
are mainly produced by roots and root-associated microor-
ganisms, i.e., the rhizo-microbiome. Therefore, their concen-
trations were expected to be greater in the rhizosphere than 
in non-rhizospheric soil.

Materials and methods

The soil was collected from a depth of 0–50 cm of a loamy 
Haplic Phaeozem in an agricultural area planted with oil-
seed rape (Vetterlein et al. 2021) near Schladebach, Sax-
ony-Anhalt, Germany (51.3087° N, 12.1045°E). The soil 
had a loam texture (sand 33%, silt 48%, and clay 19%) with 
8.6 g kg−1 total organic carbon, 0.84 g kg−1 total nitrogen, 
and pH of 6.4 (CaCl2).

Soil and seeds were prepared as described by Vetterlein 
et al. (2021) as part of the DFG Priority Program 2089 “Rhizo-
sphere spatiotemporal organization—a key to rhizosphere 
function.” The soil was air-dried, passed through a 2 mm 

sieve, and kept at room temperature. The soil was treated with 
50 mg N (NH4NO3), 50 mg K (K2SO4), 25 mg Mg (MgCl2 
6H2O), and 40 mg P (CaHPO4) per kg dry mass, and a 1 mm 
sieve was used to uniformly distribute the fertilizer. To visual-
ize the spatial distribution of amino-N at the root–soil inter-
face, a rhizobox setup was established to grow maize plants. 
Sieved and fertilized soil was packed in transparent rhizoboxes 
(3 × 8.8 × 17.8 cm, H × W × L; Clickbox® Germany) to a final 
bulk density of 1.26 g cm−3. Sterilized maize (Zea mays L.) 
seeds were sown 1 cm below the soil surface in three repli-
cate rhizoboxes. Soil water content was maintained at ~ 22% 
(v/v) in the rhizoboxes during the growth period (21 days), 
and distilled water was added regularly to the soil to compen-
sate for evapotranspiration losses. During the experiment, the 
rhizoboxes were inclined at 50° to the horizontal to direct root 
growth along the front rhizobox walls, as suggested by Spohn 
and Kuzyakov (2013) and Sanaullah et al. (2016).

For amino mapping, the OPAME reagent was pre-
pared according to Jones et al. (2002). Briefly, 50 mg 
of O-phthalaldehyde was dissolved in 5 ml of methanol, 
then 100 µl of mercaptoethanol was added, and the mix-
ture was vortexed in a fume hood (OPAME concentrate). 
To prepare the working solution, 200 ml of borate buffer 
(0.02 M, pH 9.5) was added to the OPAME concentrate. 
Various membrane types (cellulose, regenerated cel-
lulose, polyamide, polycarbonate, and cellulose nitrate) 
were tested to determine the best membrane for amino 
mapping (see the supplement for details). Consequently, 
140 µm thick cellulose nitrate membranes with 0.2 µm 
pores size were chosen as the most appropriate for amino 
mapping due to their hydrophilicity, non-auto fluorescent 
properties, and high signal-to-noise ratio.

Three cellulose nitrate membranes (circle, plain, 0.2 µm, 
50 mm ∅, Whatman®, Cytiva 10401314) were soaked in 
OPAME reagent. The rhizoboxes were opened from the 
root side and placed in a dark chamber with 15 W blue-
black ultraviolet lamps (Erolite® Germany) as sources of 
UV light. The OPAME-saturated membranes were placed 
directly on soil-root surfaces for amino mapping. A trans-
parent glass sheet was placed over the membranes to keep 
them in contact with the soil and prevent evaporation of 
the substrate from the membranes. A Nikon D3500 DSLR 
camera equipped with an AF-P DX NIKKOR 18–55 mm 
f/3.5–5.6G VR lens (Nikon Inc., Melville, NY) was used 
to capture images. The object distance, lens aperture, and 
shutter speed were 210 mm, f/6.3, and 1/125 s, respectively. 
Membrane images were captured during a 10-min time 
series (every 10 s for the first minute and then every 30 s 
during the next 9 min).

Similarly to fluorometric microplate assay, L-leucine 
was used as a standard for amino mapping. L-leucine 
has been recommended as an affordable, representative 
standard, and the units of L-leucine equivalents have 
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been shown to provide an approximation of the true 
total free primary amine concentration (Darrouzet-Nardi 
et al. 2013). For quantitative analysis of amino-mapping 

images (aminograms), 5 µl of an L-leucine standard solu-
tion of concentration 0, 0.1, 0.5, or 1 mM (corresponding 
to 0, 7, 35, and 70 ng of L-leucine-N, respectively) and 
10 µl of OPAME were applied to the membranes, then 
they were covered with a transparent glass sheet to mimic 
the amino-mapping settings. Membranes saturated with 
the standard solutions were photographed under UV light 
with the same camera settings as used for TLAM.

The standard solution images were used for calibration 
and processed using ImageJ software (Schindelin et al. 
2012) to determine the relationship between image 
brightness and equivalent N content in image pixels. The 
calibration images were split into red, blue, and green 
channels and converted to 8-bit format. The brightness 
in the image pixels across the calibration membranes was 
determined by subtracting average grayscale values (GSVs) 
of images with zero L-leucine content from the GSVs of 
the calibration membranes separately for each channel. 
Linear regression analysis between the applied N content 
and GSV sums in the pixels of the calibration images 
acquired 5 min after application of the L-leucine standards 
was used to calculate the calibration coefficient (a) from

Mi = a
∑n

1
G

j

i
F
j

i
1 < j < 255

Fig. 1   Aminograms (a–c) of maize roots (Zea Mays L.). Daylight photographs of maize roots (d–f) taken before TLAM application. The red 
arrows show the root tips

Fig. 2   Distribution of amino-N compounds measured from the center 
of a maize (Zea Mays L.) root tip or seminal root to non-rhizospheric 
soil: zero distance denotes the center of the maize root. RE indicates 
the extent of the rhizosphere
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where Mi is the N amount applied to the membrane (ng), Gj

i
 

is the GSV in pixels, Fj

i
 is the number of pixels in each gray-

scale group j, and a is the calibration coefficient (ng of N 
G-value−1 pixel−1). The best calibration was obtained for the 
green channel with a = 1.015 × 10−5 ng G−1 pixel−1 (Fig. S5). 
As this type of calibration depends on the individual imag-
ing process and camera settings, it should be re-evaluated for 
each experimental setup. To acquire aminograms, the time 
series amino mapping was processed using a modified time-
lapse procedure proposed by Guber et al. (2021). Specifi-
cally, the N-amino content in the membranes was calculated 
based on the maximum G values detected in individual pix-
els of the green channel during 10 min of amino mapping. 
The rhizosphere extent of the N-amino compounds was ana-
lyzed using the ImageJ Plot Profile tool from cross-sections 
drawn across selected roots perpendicular to their axes by 
determining the distance between a region with high amino-
N concentration in the soil (mean soil concentration + SD) 
and the root border. The average GSV of areas correspond-
ing to non-rhizosphere soil was defined as the mean soil 
concentration of amino-N.

Results and discussion

Application of OPAME-saturated membranes enabled visu-
alization of the spatial distribution of amino-N, which was 
mainly associated with the maize roots and rhizosphere 
(Fig. 1). A higher concentration of amino-N compounds 
was detected in the rhizosphere than in non-rhizospheric 
soil (Fig. 1 a–c), most likely due to root exudation and high 
microbial activity in the rhizosphere. Amino acids are known 
to predominate in root exudates, which are released in vast 
quantities from roots to soil (Jones et al. 2005a; Moe 2013).

The concentration of amino-N compounds decreased 
with increasing distance from the root surface (Fig. 2) and 
extended up to a 2 mm zone around the center of roots 
(Fig. 2). The amino-N concentration was 10 times higher in 
the vicinity of roots than in the non-rhizosphere soil, sup-
porting our initial hypothesis. Despite the approximately two 
times smaller radius of the root tips than the average size of 
seminal roots, the area of elevated amino-N concentration 
was almost doubled around the former. Thus, the relative 
rhizosphere extent (as a ratio of the root radius) was about 5 
times smaller at seminal roots (1.5) than at their tips (7.6). 
The higher concentration of amino-N at the root tips (Fig. 2) 
provided visual evidence supporting the common assump-
tion that amino acids are mainly released from the root tips 
of Zea Mays L. (Jones and Darrah 1994). Previous observa-
tions of high amino acid concentrations at a fine scale in 
biopores and the detritusphere (Hill et al. 2019) suggest that 
high amino-N content may indicate soil hotspots.

Conclusions

An amino-mapping approach was successfully developed 
and tested to visualize the two-dimensional distribution of 
amino-N compounds at an undisturbed root-soil interface. 
However, further work is required to standardize the method 
and test it for different soil types, plant species, vegetation 
stages, and physiological situations, such as drought stress 
or nutrient deficiency.
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