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Abstract
Weeds are responsible for major crop losses worldwide but can provide beneficial agroecosystem services. This study 
aimed to elucidate how arbuscular mycorrhizal fungi (AMF) in weeds respond to host identity and conservation agricultural 
practices. The study was carried out at two locations in Southern Africa during off-season and in-season maize cultivation. 
Off-season AMF root colonisation, diversity indices and community composition significantly differed among weed species 
at both locations. Glomus sp. VTX00280 explains most of the AMF community differences. In-season, implementation of 
conventional tillage with mulching alone (CT + M) or together with crop rotation (CT + M + R) resulted in a 20% increase in 
AMF colonisation of the constantly occurring weed species, Bidens pilosa (BIDPI) and Richardia scabra (RCHSC), com-
pared with conventional tillage plus rotations (CT + R). The diversity of AMF was highest under no-tillage plus mulching 
(NT + M). Off-season and in-season AMF structures of both BIDPI and RCHSC were not related, but 39% of the taxa were 
shared. Structural equation modelling showed a significant effect of the cropping system on weed AMF diversity parameters 
and weed and maize root colonisation, but no significant influence of weed root AMF traits and maize colonisation was 
detected on maize yield. This may be explained by the improvement in weed competitive ability, which may have offset the 
AMF-mediated benefits on yield. Our findings highlight that implementing M and CR to CT and NT positively affected weed 
AMF colonisation and diversity. The similarity between the off-season and in-season AMF composition of weeds supports 
the fact that weeds functionally host AMF during the non-crop period.
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Introduction

The increasing demand for food for the continuously grow-
ing world population calls for more sustainable management 
practices that promote yield whilst reducing the impact on 
the environment and biodiversity (MacLaren et al. 2020). 

Among these practices, the management of weeds is one of 
the major challenges worldwide in large- and small-scale 
agriculture systems. This is especially true in southern 
Africa under smallholder cropping systems, where weeds 
account for 10 to 100% of yield losses in cereals, depend-
ing on the involved weed species and the level of manage-
ment (Heyl 2022). In this area, the high losses are mainly 
due to inadequate weed management practices, such as late 
weeding caused by a lack of manpower and inadequate 
associated practices, such as rotation, intercropping and 
mulching (Silva et al. 2019). On the other hand, successful 
weed management requires a deep knowledge of the weed 
communities occurring under different cropping systems, 
especially under multi-component systems, such as conser-
vation agriculture (CA), where management practices can 
be implemented in different combinations (Derrouch et al. 
2021). Conservation agriculture is based on three main prin-
ciples: minimum soil disturbance, permanent soil cover and 
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crop diversification (FAO 2019). Modification of cropping 
systems, especially through changing of cropping sequences 
and including mulching, altered weed species composition 
(Koocheki et al. 2009; Zhang et al. 2021).

Despite their negative effects on crop productivity due 
to competition for water, radiation and nutrients, weeds can 
provide beneficial agroecosystem services (MacLaren et al. 
2020; El Omari and El Ghachtouli 2021). Thus, several 
options, different from full weed eradication, have been 
suggested with the goal of achieving a trade-off between 
negative impacts and positive effects resulting from the 
conservation of weed diversity and functionality. Indeed, a 
more diverse weed community has recently been shown to 
be less competitive with many crops, as well as to promote 
crop health and beneficial bees (e.g. Storkey and Neve 
2018; Ferrero et al. 2017; Bretagnolle and Gaba 2015). 
Regarding winter cereals, Adeux et al. (2019) have recently 
demonstrated that the reduction in yield loss was better 
explained by the increase in weed diversity rather than the 
decrease in weed density. In addition, ecosystem services 
can be rendered by some weed species, such as black-jack 
(Bidens pilosa L.), barnyard grass (Echinochloa crus-galli 
(L) P. Beauv) and black nightshade (Solanum nigrum L.), 
forming associations (called mycorrhizas) with arbuscular 
mycorrhizal fungi (AMF) (Veiga et al. 2011; Massenssini 
et al. 2014) that are taxonomically classified either as a 
phylum, Glomeromycota (Schüβler et al. 2001; Hibbett 
et al. 2007; Tedersoo et al. 2018), or as the sub-phylum 
Glomeromycotina, which together with Mortierellomycotina 
and Mucoromycotina, make up the phylum Mucoromycota 
(Spatafora et al. 2016; James et al. 2020; Li et al. 2021). 
As obligate mutualistic symbionts, AMF acquire nutrients 
(e.g. phosphorus (P), nitrogen (N), sulphur (S)), through 
the extraradical mycelium, which acts as an extension of 
the host root system and transfer them to the host plant in 
exchange for photosynthetically assimilated carbon (4% to 
20% of total fixed C) (Smith and Read 2008; Gavito et al. 
2019). Thus, it is expected that the relationship that AMF 
form through mycelial fungal networks with host plants, 
such as the mycorrhizal weeds, will increase their growth 
and thus help them to proliferate through the acquisition 
of nutrients and water (Wilson and Hartnett 1998; van der 
Heyde et al. 2017). However, the AMF-weed interaction 
might not be of the mutualistic type, and this is the case 
of some ruderal plants, including several agricultural 
suppressive weeds that respond negatively to AM fungal 
colonisation (Vatovec et al. 2005; Veiga et al. 2011). Some 
non-mycorrhizal and mycorrhizal weeds exhibited growth 
suppression induced by AMF (i.e. reduced biomass, growth 
rate and survival) through direct antagonistic effects, such 
as fungal parasitism and defence response of plants, and 
indirect effects in the triple interaction of AMF-weed-crop 
species by benefiting the associated mycorrhizal crop (Qiao 

et al. 2016; El Omari and El Ghachtouli 2021). Moreover, 
weeds can also become alternative AMF hosts during the 
off-season (non-crop growing dry periods) (Massenssini 
et al. 2014). This is particularly important in southern Africa, 
which is characterised by short crop growing seasons and long 
winter dry periods within the year. Furthermore, arbuscular 
mycorrhizas (AM) formed with native weed species can 
increase their competitive ability against invasive species and 
hence prevent their dominance (Zhang et al. 2018; El Omari 
and El Ghachtouli 2021). Despite abundant reports on the AM 
fungal host preference/specificity in field trials, supporting 
specialisation between plant and associated AMF community 
(e.g. Gollotte et al. 2004; Helgason et al. 2007; Martínez-
García and Pugnaire 2011; Li et al. 2019), no information 
is available on the effect of host identity on AM fungal 
assemblages in off-season and in-season weeds. This effect can 
also be modulated by agronomical management practices that 
might affect the weed outcome, ranging from suppression to 
promotion (Bever 2002; Zhang et al. 2010). This is particularly 
important in the CA systems of southern Africa where farmers 
implement the components in different combinations, resulting 
in different weed communities potentially hosting diversified 
AM fungal assemblages having differential functions.

Thus, in the present study, we aimed to verify if mycorrhizal 
weeds occurring under distinct cropping systems could act as 
hosts of AMF during the off-season and in-season, and if AM 
fungal assemblages would be affected by host identity and by the 
CA components (cropping system). We hypothesised that (i) the 
implementation of all three CA components leads to a promotion 
of AMF through the increase of AMF colonisation and diversity 
within weed roots and that these traits are shaped by the identity 
of the hosting weed species; (ii) the identity of the hosting weed 
species would also affect the AM fungal colonisation and 
community composition and diversity of the weeds off-season; 
(iii) off-season and in-season AM fungal composition of weeds 
are related. Moreover, we aimed to dissect the potential effects 
of AM fungal diversity and root colonisation of maize and 
weeds on maize grain yield. The elucidation of these topics is 
necessary to set up optimal weed control strategies with the goal 
of looking for an equilibrium between the control of damage 
caused by weeds and the conservation of biodiversity, ecosystem 
functioning and soil quality.

Material and methods

Experimental field locations

The experiment was done at two sites namely the Dom-
boshawa Training Centre (DTC) and the University of Zim-
babwe (UZ). The geographical location and climate of the 
two locations are given in Table 1. Soil sampling was carried 
out in November 2018 before maize sowing. Soil properties 
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and the corresponding analytical methods are given in 
Table 1. The experiments at the two locations started in the 
summer crop growing season of 2013, and in this study, we 
report data collected in the 2019 growing seasons only. The 
climate of the two sites is classified as warm temperate with 
dry winters and hot summers (Kottek et al. 2006). Between 
the two sites, DTC had the highest average daily temperature 
of 29.0 °C and rainfall of 630 mm, whilst UZ had an average 
daily temperature of 27.5 °C and rainfall of 383 mm during 
the study period (Fig. S1).

Experimental set‑up and crop management

The experiments consisted of eight treatments (referred to as the 
cropping system hereafter), which were arranged in a randomised 
complete block design (RCBD), and these were as follows:

 i. Conventional tillage (CT)—land preparation was done 
through digging with a hand hoe to simulate plough-
ing. Maize was sown as a monocrop in either riplines 
created using a Magoye (DTC) or basins (UZ) created 
afterwards. Crop residues were removed from the field 
after harvesting.

 ii. Conventional tillage plus mulch (CT + M)—land 
preparation and crop sowing as in treatment (i). Crop 
residues were retained on the soil surface at a rate of 
2.5 t  ha−1 at the beginning of the season.

 iii. Conventional tillage plus rotation (CT + R)—land 
preparation was done as in treatment (i), but maize 
was rotated with cowpea (Vigna unguiculata (L.) 
Walp.) in 1-year rotations.

 iv. Conventional tillage plus mulch and rotation 
(CT + M + R)—land preparation was done through 
digging with a hand hoe to simulate ploughing, maize 
was rotated with cowpea in 1-year rotations and crop 
residues were retained on the soil surface at a rate of 
2.5 t  ha−1 at the beginning of the season.

 v. No-tillage (NT)—no soil inversion was done, and 
maize was sown as a monocrop in either riplines cre-
ated using a Magoye (DTC) or basins (UZ) created 
afterwards. Crop residues were removed from the field 
after harvesting.

 vi. No-tillage plus mulch (NT + M)—no soil inver-
sion was done, and maize was sown as a monocrop 
in either riplines created using a Magoye (DTC) or 
basins (UZ) created afterwards. Crop residues were 
retained on the soil surface at a rate of 2.5 t  ha−1 at the 
beginning of the season.

 vii. No-tillage plus rotation (NT + R)—land preparation 
and crop residue management were done as in treat-
ment (v), maize was sown in rotation with cowpea and 
crop residues were removed at harvest.

 viii. No-tillage plus mulch and rotation (NT + M + R); 
referred to as CA herein—land preparation was done 
as in treatment (v), maize was rotated with cowpea in 
1-year rotations and crop residues were retained on the 
soil surface at a rate of 2.5 t  ha−1 at the beginning of 
the season.

All treatments were replicated four times. For treatments 
involving rotation, plots were split into half and maize 
was sown in a 1-year rotation with cowpea, with phases 
of the rotation present in each year. The in-plots measured 
12 m × 6 m (72  m2). The maize rows were spaced at 90 cm 

Table 1  Geographical location, 
soil characteristics, and climate 
at the Domboshawa Training 
Centre (sandy location) and the 
University of Zimbabwe (clay 
location)

a Organic C was determined using the Walkley–Black wet combustion method (Nelson and Sommers 1982)
b Soil pH was determined using the calcium chloride method (McLean 1982)
c Total N was determined using the macro Kjeldahl digestion procedure (Bremner and Mulvaney 1982)
d IUSS Working Group WRB (2015)

Geographic location, soil characteristics and 
climate

Location

Domboshawa Training Centre University of Zimbabwe

Latitude 17.62° S 17.73° S
Longitude 31.17° E 31.02° E
Altitude (m asl) 1560 1503
Clay (g  kg−1) 220 400
Sand (g  kg−1) 730 390
Organic carbon (C) (g  kg−1)a 7.3 16.8
Soil pH (0.01 M  CaCl2)b 4.5 4.9
Soil total nitrogen (N) (g  kg−1)c 0.6 2.3
Soil type Sandy clay loam Clay
Soil  classificationd Arenosols Rhodic Lixisols
Average annual temperature (°C) 18.8 18.6
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and the maize plants at 25 cm. The cowpea rows were spaced 
at 45 cm whilst the cowpea plants were spaced at 25 cm. The 
maize population was 44,444 plants  ha−1 whilst the cowpea 
population was 88,888 plants  ha−1. Both maize and cow-
pea received a basal fertiliser in the form of compound D 
(7:14:7 NPK) at the rate of 11.6 kg N  ha−1, 10.1 kg P  ha−1 
and 9.6 kg potassium (K)  ha−1 at sowing, and maize further 
received a top-dressing fertiliser in the form of ammonium 
nitrate  (NH4NO3) at the rate of 46 kg N  ha−1, split applied 4 
and 7 weeks after sowing. Weeds were controlled by spray-
ing glyphosate (N-(phosphono-methyl) glycine) at the rate 
of 1.025 L active ingredient  ha−1 at the beginning of the 
season. Weeds were then manually controlled using hand 
hoes whenever weeds were 10 cm tall or 10 cm in diameter 
for stoloniferous weeds.

Maize yield assessment

For each plot, maize plants were harvested from four rows 
that were 5 m long (i.e. an area of 18  m2). Maize cobs 
and stover were separated and a fresh weight of 10 cobs 
was recorded. These cobs were air-dried for 4 weeks and 
reweighed for dry weight. The moisture content of the grain 
was determined, and the yield was expressed at 12.5% mois-
ture content. Maize stover was dried, and the stover was 
determined on a dry weight basis.

AM fungal root colonisation of weeds and maize 
and intraradical AMF diversity and community 
composition

Assessment of AM fungal root colonisation of maize 
and weeds

To assess if weeds can act as alternative hosts of AMF dur-
ing the off-season (pre-season; which was at 30 days before 
crop sowing) and during the season (at 60 days after crop 
sowing, which corresponds to the silking stage (R1); hereaf-
ter indicated as anthesis) and to also assess the effect of host 
identity (weed species) and cropping system, we determined 
AM fungal root colonisation and molecularly characterised 
the diversity and community compositions within the roots 
of weeds. For the pre-season, we identified five previously 
reported mycorrhizal weed species that were growing at the 
edges of the experimental field in the winter dry period. 
These weed species were as follows: Bidens pilosa L. (Aster-
aceae) (BIDPI), Cynodon nlemfuensis Vanderyst (Poaceae) 
(CYNNL), Erigeron sumatrensis Retz. (ERISU), Melinis 
repens (Willd.) Zizka (Poaceae) (RHYRE) and Richardia 
scabra L. (Rubiaceae) (RCHSC). For the anthesis assess-
ment, we identified the species from the list of weeds col-
lected in the pre-season present in all experimental plots. 
Two species (i.e. BIDPI and RCHSC) were common to 

all cropping systems at UZ, whereas at DTC, no common 
species were found across cropping systems. For both the 
pre-season and anthesis samplings, we randomly collected 
the roots of four plants (replicates) for each species at both 
locations (Fig. S2). At anthesis, the four plants were col-
lected from each plot (four replicates per cropping system), 
and then mixed to form one composite sample per plot. For 
maize, we assessed if cropping systems influenced the per-
centage of AM fungal root colonisation by sampling four 
plants from each plot at the anthesis stage, i.e. the pollina-
tion stage (R1). The percentage of AM fungal root coloni-
sation and root length containing arbuscules and vesicles 
were assessed using the magnified intersections method of 
McGonigle et al. (1990) after clearing and staining (Phillips 
and Hayman 1970). Details are given in Section 1 of the 
Supplementary Materials and Methods.

Molecular analysis

Plant DNA was extracted from 0.02 g of fine roots of the 
weeds, collected at pre-season and anthesis (pre-season: a 
total of 20 samples, four replicates per five plant species; 
anthesis: 48 samples, three replicates per two plant species 
per eight cropping systems only at the UZ location), using 
the DNeasy® Plant Mini Kit (QIAGEN, Hilden, Germany), 
following the manufacturer’s instructions. Taking into con-
sideration the patchy distribution of AMF within roots, 
weed root fragments, i.e. 20 mg used for DNA extraction, 
were chosen by randomly sampling from fine roots and then 
selecting those having good AM fungal colonisation. Root 
pieces (2–3 cm long) were mounted on slides in water and 
observed under a Zeiss Jenamed2 microscope with tungsten 
and UV lamps. Filter combinations used for fluorescence 
microscopy were BPF510 Excitation BPF475 (× 3)/Barrier 
G247, G245 (Ames et al. 1982; Merryweather and Fitter 
1991). Root samples showing a detectable level of autofluo-
rescence were selected for DNA extraction. The extracted 
genomic DNA was quantified by a Nanodrop spectropho-
tometer (Thermo Fisher Scientific, Vantaa, Finland) and 
then stored at − 20 °C for further analyses. The DNA was 
amplified using an amplicon-specific polymerase chain 
reaction (PCR). A two-step nested PCR approach was used 
with two primer pairs to amplify the small subunit riboso-
mal RNA (SSU) fragments. In the first step, the forward 
primer AML1 (5′-ATC AAC TTT CGA TGG TAG GAT 
AGA-3′) and reverse primer AML2 (5′-GAA CCC AAA 
CAC TTT GGT TTCC-3′) (Lee et al. 2008) were used, and 
in the second step, the forward primer WANDA-ill (5′-TCG 
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG 
ANN NHN NNW NNN HGC AGC CGC GGT AAT TCC 
AGCT-3′) (Dumbrell et al. 2011) and reverse primer AML2-
ill (5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA 
GAG ACA GGA ACC CAA ACA CTT TGG TTT CC-3′) 
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(Lee et al. 2008) were used (the adaptors for the Illumina 
reaction are in bold type). Both PCR reactions were per-
formed in a 25-µl volume using 1 µl of the genomic DNA 
template (undiluted DNA at 13.5 ± 1.2 ng µl−1), 1.25 U µl−1 
of GoTaq® Hot Start Polymerase (Promega Corporation, 
WA, USA), 0.2 µM of each primer, 0.2 mM of dNTPs, 2 mM 
of  MgCl2 and 1 × reaction buffer. The PCR cycle for both 
steps involved an initial denaturation at 95 °C for 2 min fol-
lowed by 25 cycles of 94 °C for 30 s, 59 °C for 45 s, 72 °C 
for 1 min 30 s and 72 °C for 10 min. All PCR reactions 
were carried out using an S1000 Thermal Cycler™ (Bio-
Rad, Hercules, CA, USA). The quality of the PCR products 
was checked by gel electrophoresis using 2% agarose gel 
in 1 × TBE buffer and then purified with magnetic beads 
(Agencourt AMPure® XP, Beckham Coulter, USA) and 
freshly prepared 80% ethanol. The concentration of DNA 
was then quantified using fluorimetry (Invitrogen™ Qubit™ 
4 fluorometer) by the Qubit4™ 1 × dsDNA High-Sensitivity 
Assay Kit (Invitrogen, Thermo Fisher Scientific, CA, USA), 
following the manufacturer’s instructions. The cleaned and 
quantified amplicons of each library were then adjusted to 
an equimolar ratio of 10 ng µl−1 for the addition of dual-
index barcodes using the Nextera® XT DNA library prepa-
ration kit (Illumina Inc., CA, USA). For more information 
on the dual-indexing procedure, please refer to Section 2 
of the Supplementary Materials and Methods. The gener-
ated metabarcoding libraries were run on an Illumina MiSeq 
sequencer at the University of York (UK), loading a 12-pM 
final library concentration with 20% PhiX library spike-in 
(Illumina) and an Illumina MiSeq V3 600 cycle sequencing 
kit.

Bioinformatics analyses

Raw sequence data were processed and analysed using the 
QIIME2 (2018.11) pipeline and plugins (Bolyen et al. 2019). 
Demultiplexed forward and reverse paired-end reads were 
joined using the ‘-fastq_mergepairs’ of the USEARCH 
plugin (Edgar 2010). Out of the 1,867,193 reads exposed to 
merging, 89% (1,662,165 reads) were successfully merged 
and 47% (874,286 reads) were aligned with zero differences. 
Primer sequences were trimmed off from the sequences 
using the cutadapt plugin 1.18 with Python 3.5.5, and 
1,659,726 valid sequences were obtained after optimisation. 
The average read length was approximately 250 base pairs 
(bp) based on the maximum expected error (MaxEE). The 
command USEARCH ‘fastq_eestats2’ was used to check 
sequence quality and, based on the percentage MaxEE, reads 
were truncated at the drop-off point of 250 bp using the 
USEARCH ‘fastq_filter’ command. Quality-filtered reads 
were dereplicated using the USEARCH ‘fastx_uniques’ 
command, and operational taxonomic units (OTUs) were 
generated by clustering reads at a 97% similarity threshold 

using the USEARCH ‘cluster_otus’ command. During 
the process, chimeric sequences and singletons were also 
removed. The resulting OTUs were assigned to virtual taxa 
(VT) using the MaarjAM database (https:// maarj am. botany. 
ut. ee). All representative sequences (143 in total) were sub-
mitted to the NCBI sequence read database (submission 
number SUB10794739), and these correspond to the acces-
sion numbers OM049043–OM049185. The representative 
sequences were aligned using the MAFFT online service 
(Katoh et al. 2019), and a Neighbour-Joining tree was built 
using MEGA11 (Tamura et al. 2021), following the boot-
strap test of phylogeny with 1000 bootstraps. The substitu-
tion model used was the Kimura 2-parameter with uniform 
rates among sites, pairwise deletion and 7 threads.

Calculations and statistical analyses

Weed community diversity and AMF diversity in weed roots

Data analyses were done separately for the clay and sand 
locations. Community diversity of AMF within weed roots 
was also computed using Shannon’s diversity (H′), Pielou’s 
evenness (J') and richness (S) based on VT counts. Shannon-
Weiner index (Shannon and Weaver 1949) was calculated as:

where H′ is the Shannon-Weiner diversity index, Pi is the 
proportion of individuals belonging to the ith VT and S is 
the total number of VT.

Pielou’s evenness index (Pielou 1969) was calculated 
as the ratio of observed diversity to maximum diversity as 
follows:

where H′ is the Shannon’s diversity, and Hmax or lnS is the 
maximum Shannon diversity in which all present VT appear 
in equal abundances for a community, and S is the number 
of observed VT. Evenness values range between 0 and 1, 
representing absolute dominance and equal VT abundance, 
respectively.

AM fungal data were assessed for normality and where 
necessary, data were fourth-root transformed before further 
analyses. The effect of host weed species identity, cropping 
systems and their interaction (treated as fixed factors) on H′, 
J′ and S were assessed using linear mixed models using the 
‘lme4’ package (Bates et al. 2015) in the R environment (R 
Core Team 2021). Replicates were included in the analyses 
as a random factor. The means and standard errors of back-
transformed data were reported herein. F-tests were used to 
test the significance of fixed effects, and where means were 

H
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significantly different, the mean comparison procedure was 
used to contrast them based on the Tukey’s tests (P < 0.05) 
using the ‘emmeans’ package (Lenth 2019) in R.

Weed and maize root colonisation by AMF

For AM fungal root colonisation percentage of weeds and 
maize, data were checked for normality and fourth-root 
transformed before analysis. For weed data, mixed models 
were used to assess the effects of host species identity, crop-
ping systems and their interaction (fixed effects) on the per-
centage of AM fungal colonisation, and root length contain-
ing arbuscules and vesicles. For maize data, mixed models 
were used to assess the effects of cropping systems on the 
colonisation rate. In both cases, replicates were included 
as random factors. The significance of the fixed effects was 
tested using F-tests and where means were significantly 
different, they were contrasted using a mean comparison 
procedure following Tukey’s tests (P < 0.05). However, the 
back-transformed means and standard errors were reported.

Intraradical AM fungal community composition

To analyse the effect of weed species identity and cropping 
system on AMF community structure in weed roots, we 
used type III permutational multivariate analysis of vari-
ance (PERMANOVA). As a semiparametric multivariate 
test, PERMANOVA generates pseudo-F ratios and P values 
using the Monte Carlo permutation P(MC) test by permu-
tating the resemblance measures (Anderson 2001). In our 
analyses, 999 permutations were employed.

AM fungal species relative abundances were fourth-root 
transformed, and a resemblance matrix was constructed 
based on the Bray–Curtis dissimilarity index (Bray and Cur-
tis 1957) before carrying out PERMANOVA. Where group 
differences in community composition were detected, simi-
larity percentage analysis (SIMPER) was done to detect the 
species responsible for 70% of the differences by calculating 
the percentage contribution of the species to the total effects. 
Further, we carried out a permutation test for homogeneity 
of multivariate dispersions (PERMDISP) on each significant 
factor level. This test is used as a measure of multivariate 
beta diversity to check whether the significant group differ-
ences observed in PERMANOVA were also not influenced 
by differences in the dispersion of group objects from the 
group centroid (alpha diversity).

Principal coordinates analysis (PCoA) was then per-
formed to visualise relevant patterns in the data. Finally, we 
used the RELATE procedure based on Spearman rank corre-
lation to test if there was a relationship between the AM fun-
gal communities observed in the roots of BIDPI and RCHSC 
collected during the pre-season and the anthesis periods at 
UZ using the Primer 7 (with PERMANOVA +) software 

(called the RELATE test). All the multivariate analyses were 
performed using Primer 7 with PERMANOVA + software 
(Anderson 2001; Clarke et al. 2014). Finally, Venn diagrams 
were constructed to show the shared and unique AM fungal 
taxa within the roots of BIDPI and RCHSC weed species 
collected at UZ at pre-season and anthesis (BIDPI pre-
season vs. BIDPI anthesis; RCHSC pre-season vs. RCHSC 
anthesis) and between BIDPI and RCHSC at anthesis. The 
diagrams were built using Venny 2.1 (Oliveros 2015).

Relationship between cropping systems, weed AMF 
diversity, maize AM fungal colonisation, weed AM 
fungal colonisation and maize grain yield

To assess the effect pathway of weed AMF diversity param-
eters (H′, J′, and S′, maize AM fungal colonisation, and weed 
AM fungal colonisation on maize grain yield, we used piece-
wise structural equation modelling (pSEM). The pSEM anal-
ysis was based on multiple regression and was done using 
the ‘piecewiseSEM’ package in R (Lefcheck 2016). Models 
were fit using linear models, and variables were standard-
ised for the effects to be directly comparable, and for each 
pathway, a standardised coefficient (λ) was estimated. In the 
models, we also calculated the covariance of weed AM fun-
gal H′ and J′; weed AM fungal H′ and S; and RCHSC and 
BIDPI colonisation rate. Model fits were estimated by the 
Fisher’s C test.

Results

Effect of cropping systems and host identity on AM 
fungal root colonisation of weeds and on AM fungal 
diversity and community structure in weed roots

After blast matching of OTUs against the MaarjAM data-
base, 143 AM fungal virtual taxa (VT) were retrieved, and 
these belonged to seven families, namely Acaulosporaceae, 
Archaesporaceae, Claroideoglomeraceae, Diversispo-
raceae, Gigasporaceae, Glomeraceae and Paraglomer-
aceae (Fig. S3). Of all the VT, 57% belonged to the Glomer-
aceae, 10% to Acaulosporaceae and 10% to Gigasporaceae 
(Fig. S3).

At pre-season, the percentage of AM fungal root coloni-
sation and of root length containing arbuscules and vesicles 
significantly differed among weed species at DTC (sandy 
location) (Fig. 1a). CYNNL showed an AM fungal root 
colonisation significantly lower than ERISU and RCHSC 
(12% vs 25%). Arbuscules and vesicles were higher within 
RHYRE as compared to other weed species, whilst RCHSC 
had the lowest percentage of arbuscules and CYNNL and 
ERISU the lowest percentage of vesicles (Fig. 1a). At UZ 
(clay location), CYNNL and RHYRE showed a significantly 
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lower AM fungal root colonisation (18%) compared with 
BIDPI and ERISU (30%) (Fig. 1b). Arbuscules differed 
among weed species, with the RCHSC having the highest 
percentage and RHYRE the lowest (Fig. 1b). At anthesis, 
we found only two plant species (BIDPI and RCHSC) over 
the five pre-season mycorrhizal weeds that were common 
to all cropping systems at UZ, whereas no common plant 
species were found at DTC. Indeed, at the UZ location, the 
cropping system and weed identity had significant effects on 
AM fungal root colonisation (Figs. 1c, d). The implementa-
tion of CT with mulching alone (CT + M) or together with 
crop rotation (CT + M + R) resulted in a higher AM fungal 
root colonisation (50%) with respect to the implementation 

of crop rotation alone (CT + R) (30%) (Fig. 1c). Moreover, 
RCHSC had a higher AM fungal root colonisation than 
BIDPI (45% vs. 36%) (Fig. 1d). Percentage of vesicles dif-
fered among the two weed species with the RCHSC having 
higher colonisation (11%) as compared to that of BIDPI’s 
(8%) (Fig. 1e). The interaction of cropping system and weed 
identity had a significant effect on the percentage of arbus-
cules, with RCHSC under CT + R and NT + R having the 
highest rate (Fig. 1f).

At pre-season, the AM fungal communities showed sig-
nificantly different H′ and J′ among weed species at both 
locations (Table 2). The weed species BIDPI consistently 
exhibited the highest H′ and J′ (Figs. 2a–d). At anthesis, 

Fig. 1  Effect of weed species identity on the percentage of arbus-
cular mycorrhizal (AM) fungal root colonisation and of root length 
containing arbuscules and vesicles of five weed species collected 
from the experimental boundaries at the Domboshawa Training Cen-
tre (DTC; sandy location) (a) and the University of Zimbabwe (UZ; 
clay location) (b) during the off-season (pre-season). AM fungal root 
colonisation as affected by different cropping systems (c), weed spe-
cies (d), vesicles as affected by weed species (e) and arbuscules as 
affected by the interaction of cropping system and weed species (f) 
at UZ during the in-season (anthesis) in 2019. Abbreviations of the 
weed species based on European and Mediterranean Plant Protection 

Organization coding are BIDPI, Bidens Pilosa; CYNNL, Cynodon 
nlemfuensis; ERISU, Erigeron sumatrensis; RHYRE, Melinis repens; 
RCHSC, Richardia scabra. Abbreviations of the cropping systems are 
CT, conventional tillage; CT + M, CT plus mulch; CT + R, CT plus 
crop rotation; CT + M + R, CT plus mulch and rotation; NT, no-till-
age; NT + M, NT plus mulch; NT + R, NT plus rotation; NT + M + R, 
NT plus mulch and rotation. Values are means ± SE of four replicates 
for each cropping system per season. Bars with different letters are 
significantly different from each other based on P values: **P < 0.01; 
*P < 0.05 (see Table 2)
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whilst no differences were observed in terms of AM fungal 
diversity indices between BIDPI and RCHSC, the cropping 
system had a significant effect on H′ and S, with the NT + M 
system showing higher values at both locations as compared 
with CT, CT + R and NT + M + R (Figs. 2e, f). Interestingly, 
under the NT + M system, AMF had also a higher S than 
under NT + M + R (Figs. 2e, f).

Based on the PERMANOVA results, weed species col-
lected at pre-season hosted different AM fungal communi-
ties at both locations, whereas at anthesis, only the cropping 
system significantly shaped the AM fungal communities 
(Table 3). This is also supported by the PCoA plots explaining 
63% and 50% of the total variance in pre-season at DTC and 
UZ, respectively, where the group centroids of the AM fungal 
communities retrieved at pre-season within the roots of the 
weed species were clearly separated on the ordination space 
(Figs. 3a, c). Similarly, the PERMANOVA results at anthe-
sis were supported by the PCoA plot, explaining 41% of the 
total variance, in which the group centroids of the AM fungal 
communities retrieved in the cropping systems were clearly 
separated in the ordination space (Fig. 3e). This occurred 
despite the high percentage of AMF common to all cropping 
systems (core community: 24% among CT-based systems and 
26% among NT-based systems; 60% between CT-based and 
NT-based systems) (Fig. S4). For both pre-season and anthe-
sis data, the distances of the group object to their centroid 
did not significantly differ, supporting similar alpha diversity 

(Figs. 3b, d, f). The SIMPER analyses revealed that AM fungal 
taxa, such as Glomus sp. VTX00280, explained most of the AM 
fungal community differences in most of the weed species col-
lected at pre-season in both locations (Figs. 4a, b). However, at 
DTC, Glomus sp. VTX00092 and Glomus sp. VTX00264 also 
showed high contributions to the AM fungal community dif-
ferences (up to 30% in the CYNLE) (Fig. 4a). As for the weeds 
collected during the anthesis period at the UZ, although the AM 
fungal taxa, such as Acaulospora sp. VTX00028, Claroideoglo-
mus sp. VTX00193, Dentiscutata sp. VTX00255, Gigaspora sp. 
VTX00039 and Glomus sp. VTX00112, strongly contributed to 
the community differences among cropping systems (Fig. 4c).

An analysis comparing the AM fungal communities 
retrieved from the roots of the same weed species (i.e. BIDPI 
and RCHSC) collected at pre-season with those collected at 
anthesis revealed different AM fungal community compositions 
(Rho = 0.268; P > 0.05) (Fig. S4a). However, some AM fungal 
taxa were common to the weed species. For example, in terms 
of AM fungal composition, BIDPI sampled at pre-season had 
36% of the same AM fungal taxa as BIDPI sampled at anthesis 
(Fig. S4b). Similarly, RCHSC sampled at pre-season and anthe-
sis showed 42% of common AM fungal taxa (Fig. S4c). Finally, 
the comparison between the AM fungal community composi-
tion of the two weed species at anthesis showed that 53% of 
the retrieved AM fungal taxa were shared, 47% were unique to 
BIDPI, and no taxa were unique to RCHSC (Fig. S4d).

Effect of cropping system on maize productivity 
and relationship with weed AMF diversity, maize 
AM fungal colonisation and weed AM fungal 
colonisation

Data on maize productivity and AM fungal root colonisa-
tion has already been reported by Mhlanga et al. (2022) and 
hence will not be reported herein, but we refer the reader to 
the aforementioned paper. In this current analysis, we will 
use the same data to relate to weed AMF diversity, maize 
AM fungal colonisation and weed AM fungal colonisation.

Structural equation modelling resulted in an overall signifi-
cant fit (Fig. 5) (Fisher’s C = 30.63; P-value = 0.242; DF = 26). 
The cropping system had a significant and positive influence 
on weed AMF diversity (J′), weed AMF richness (J′), maize 
AMF root colonisation and colonisation of BIDPI and RCHSC 
(Fig. 5) (Table 4). All the investigated factors did not have a sig-
nificant influence on maize grain yield. The cropping system 
NT + M resulted in the highest path coefficient estimates for H, 
S, and RCHSC, whilst CT + M had the highest coefficient for 
BIDPI AMF root colonisation (Table 4). The cropping system 
NT + M + R had the highest maize AMF root colonisation and 
grain yield path coefficients, whilst the CT systems had the least 
grain yield coefficient. Weed AMF diversity showed a positive 
correlation with weed AMF evenness (λ = 0.74) and weed AMF 
richness (λ = 0.93).

Table 2  Effect of weed identity on arbuscular mycorrhizal fungal 
(AMF) species Margalef richness (S), Shannon’s diversity (H′), and 
Pielou evenness (J′) within roots of plants collected at the Dom-
boshawa Training Centre (DTC; sandy location) and the University 
of Zimbabwe (UZ; clay location) along the experiment borders (off-
season: called ‘pre-season’) and within the UZ plots at maize anthesis 
(in-season: called ‘anthesis’)

Effect of cropping system on S, H′, and J′ within the roots of weed 
sampled at maize anthesis in the UZ location. F-values and degrees 
of freedom (DF) were derived from linear mixed-effect models
a F-values in bold were significantly different: **P < 0.01, *P < 0.05
b Five mycorrhizal weed species: Bidens pilosa (BIDPI), Cynodon 
nlemfuensis (CYNNL), Erigeron sumatrensis (ERISU), Melinis 
repens (RHYRE) and Richardia scabra (RCHSC)
c Two weed species: Bidens pilosa and Richardia scabra (plant spe-
cies belonging to the list of weeds collected in the pre-season and 
present in all experimental plots at maize anthesis; this occurred only 
at the UZ location)
d One season (2019) and eight cropping systems

Location and period Source DF H′a J′ S

DTC at pre-season Weed  identityb 4 10.7** 4.6* 2.3
UZ at pre-season Weed  identityb 4 6.8** 3.4* 2.3
UZ at anthesis Weed  identityc 1 1.8 0.2 1.9
UZ at anthesis Systemd 7 2.5* 1.1 2.9*
UZ at anthesis Weed identity × sys-

tem
7 – – –
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Discussion

Host species identity and cropping system 
determine AM fungal colonisation, diversity 
and community structure within the roots of weeds

Despite the potential negative effect of weeds on crop pro-
ductivity and production costs, weeds can offer agroecosys-
tem services beneficial to crops (MacLaren et al. 2020; El 
Omari and El Ghachtouli 2021). One of the services that 
could be provided by weeds is hosting AMF and supporting 

AM fungal diversity during the off-season (pre-season) in 
an area surrounding the crop fields, when crops are absent, 
or during the season (anthesis) along with the crops. This 
can signify the abundance of AMF in the soil (Barceló et al. 
2020). The five mycorrhizal weeds collected during the off-
season differed in the percentage of AM fungal root coloni-
sation and of root length containing arbuscules and vesicles. 
Similarly, at anthesis, RCHSC showed a higher AM fungal 
root colonisation than BIDPI. These differences may be 
attributed to the host specificity of AMF, the selectivity or 
mycorrhizal dependency of the host weeds (Eom et al. 2000; 

Fig. 2  Effect of species 
identity on arbuscular mycor-
rhizal (AM) fungal community 
Shannon diversity (H′) and 
Pielou (J') evenness during the 
off-season (pre-season) at the 
Domboshawa Training Centre 
(DTC; sandy location) (a and 
b) and at the University of 
Zimbabwe (UZ; clay loca-
tion) (c and d), and effect of 
cropping system on AM fungal 
Shannon diversity index (H′) 
and taxonomic richness (S) at 
UZ in-season (anthesis) (e and 
f). Abbreviations of the weed 
species based on European and 
Mediterranean Plant Protec-
tion Organization coding are 
BIDPI, Bidens pilosa; CYNNL, 
Cynodon nlemfuensis; ERISU, 
Erigeron sumatrensis; RHYRE, 
Melinis repens; RCHSC, Rich-
ardia scabra. Abbreviations of 
the cropping systems are CT, 
conventional tillage; CT + M, 
CT plus mulch; CT + R, CT 
plus crop rotation; CT + M + R, 
CT plus mulch and rotation; 
NT, no-tillage; NT + M, NT 
plus mulch; NT + R, NT plus 
rotation; NT + M + R, NT plus 
mulch and rotation. Values are 
means ± SE of four replicates 
for each cropping system per 
season. Bars with different 
letters are significantly different 
from each other based on P 
values reported in Table 2
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Yang et al. 2012; Ciccolini et al. 2016; Säle et al. 2022). 
This specificity was also revealed by the different AM fun-
gal community compositions and diversity indices observed 
within the weed root systems at pre-season. However, the 
unexplained variance in the PCoA analyses highlights that 
other factors, in addition to host specificity, play a role in 
shaping AM fungal community composition. Glomus sp. 
VTX00280, explaining most of the AM fungal community 
differences, suggests for the first time that host specificity 
during dry periods is mainly driven by a unique VT. This 
indicates that under stress conditions (off-season), the differ-
ential supply of host C to the most functional VT promotes 
its prevalence in roots, improving plant tolerance against dry 
conditions (Kiers et al. 2011; Omirou et al. 2013). Accord-
ingly, it was previously demonstrated that some species of 
AMF are less sensitive to water stress than others (Baha-
dur et al. 2019). However, in the absence of drought stress, 
the host specificity observed in BIDPI and RCHSC at pre-
season was no longer detectable in terms of the AM fungal 
community composition during the cropping cycle.

Between the two species (BIDPI and RCHSC) that were 
sampled in the plots at anthesis, the highest AM fungal 
colonisation was observed in the CT-based systems, either 
with mulch alone or with mulch and rotation. Despite that 
intensive tillage was previously observed to reduce AM 
fungal root colonisation in different crops (Castillo et al. 
2006; van der Heyde et al. 2017; Mhlanga et al. 2022), our 
data suggest that mulching preserves soil moisture and 
promotes the proliferation of AMF, leading to increased 
root colonisation (Wilkes et al. 2021). Moreover, mulching 
added to NT increased AM fungal diversity and richness. 
This is in agreement with Lu et al. (2018) observing that 
NT with crop straw retention promoted soil AM fungal 
diversity with respect to CT. As previously reported, NT 

and mulching improved soil hydrothermal conditions (Lal 
2000) and positively affected fungal diversity (Brito et al. 
2012; Piazza et al. 2019; Pellegrino et al. 2020). Moreo-
ver, at anthesis, in our study, crop rotation reduced the AM 
fungal diversity within the roots of BIDPI and RCHSC. 
Earlier studies have demonstrated that crop rotation 
increased or did not modify AM fungal diversity (Oehl 
et al. 2003, Hijri et al. 2006). The positive effect on AMF 
diversity was found with an extensive crop rotation includ-
ing a perennial grass-clover mixture (Oehl et al. 2009). 
Thus, the decrease of AM fungal diversity we found in 
the systems with crop rotation compared to maize mono-
cropping could be linked to the cowpea selection for a few 
dominant AM fungal species compared to maize (John-
son et al. 2013; Alaux et al. 2021). Since different CA 
practices result in different weed communities (Mhlanga 
et al. unpublished results), this gives different AM fungal 
communities a higher chance of being promoted within a 
system. Indeed, tillage alters the seedbank and its vertical 
distribution, the germination, predation and viability and 
dispersal of weed seeds and the weed community com-
position and diversity (Nichols et al. 2015). Moreover, 
crop residues can affect seed germination via physical 
and chemical changes in the seed environment, whilst 
rotating crops change the selection pressures, precluding 
one weed from repeatedly establishing itself. Overall, the 
implementation of mulching either in NT or CT systems 
modified the AM fungal community composition as com-
pared to the other systems, despite the high percentage 
of the core AM fungal taxa. Thus, mulching also plays a 
crucial role in shaping AM fungal assemblages, as well 
as in improving AM fungal colonisation and diversity. In 
accordance, mulching has recently been highlighted as a 
major driver of improving the stability and resilience of 

Table 3  Permutational multivariate analysis of variance (PER-
MANOVA) results for the effect of weed identity on the arbuscular 
mycorrhizal fungal (AMF) community within roots of weed plants 
collected at the Domboshawa Training Centre (DTC; sandy loca-
tion) and the University of Zimbabwe (UZ; clay location) along 

experiment borders (off-season: called ‘pre-season’) and within the 
UZ plots at maize anthesis (in-season: called ‘anthesis’) and PER-
MANOVA results for the effect of cropping system on the AMF root 
community of weeds at maize anthesis in the UZ location

a P values based on Monte-Carlo permutational test, P(MC)
b Five weed species: Bidens pilosa (BIDPI), Melinis repens (RHYRE), Cynodon nlemfuensis (CYNNL), Erigeron sumatrensis (ERISU), and 
Richardia scabra (RCHSC)
c Two weed species: Bidens pilosa and Richardia scabra (plant species belonging to the list of mycorrhizal weeds collected in the pre-season and 
present in all experimental plots at maize anthesis; this occurred only at the UZ location)
d Eight cropping systems

Location Source DF Pseudo-F P(MC)a Explained 
variation (%)

DTC at pre-season Weed  identityb 4 4.848 0.001 56.19
UZ at pre-season Weed  identityb 4 3.713 0.001 47.49
UZ at anthesis Weed  identityc 1 0.943 0.469  − 0.42
UZ at anthesis Systemd 7 2.382 0.001 31.54
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maize-based rainfed systems in southern Africa (Kodzwa 
et al. 2020; Mhlanga et al. 2021). Most of the AM fun-
gal taxa retrieved from weed roots during the crop cycle 
belonged to Glomeraceae. Indeed, species of this family, 
such as Funneliformis mosseae, have a short life cycle that 
may reduce their sensitivity to discontinuous plant pres-
ence and disruption of the extraradical mycelia by frequent 
tillage (Oehl et al. 2003; Pellegrino et al. 2020). However, 
our data evidenced among the retrieved Glomus taxa a 

large variability of response to tillage. As an example, 
Glomus sp. VTX00112 was abundant under the NT-based 
systems and was rare under CT systems, whereas Glomus 
VTX00132 showed the opposite behaviour. These results 
support the high functional variability within the fam-
ily Glomeraceae, as previously reported in some studies 
(Avio et al. 2006; Munkvold et al. 2004). In contrast to 
previous studies that found Gigasporaceae propagating 
from intact mycelia to be abundant under NT systems but 

Fig. 3  Principal coordinates 
analysis (PCoA) based on Bray–
Curtis distance dissimilarity of 
fourth-root transformed AMF 
community relative abundances. 
Plots show the AM fungal dif-
ferences among weed species 
and cropping systems at the 
Domboshawa Training Centre 
(DTC; sandy location) (a) and 
at the University of Zimbabwe 
(UZ; clay location) (c and e) 
(see Table 2). Permutational dis-
persion (PERMDISP) tests on 
the same data matrices at DTC 
and UZ (b and d weed species; f 
cropping system) represented by 
the distances of the objects from 
the centroid and standard error 
(SE). Abbreviations of the weed 
species based on European and 
Mediterranean Plant Protec-
tion Organization coding are 
BIDPI, Bidens pilosa; CYNNL, 
Cynodon nlemfuensis; ERISU, 
Erigeron sumatrensis; RHYRE, 
Melinis repens; RCHSC, Rich-
ardia scabra. Abbreviations of 
the cropping systems are CT, 
conventional tillage; CT + M, 
CT plus mulch; CT + R, CT 
plus crop rotation; CT + M + R, 
CT plus mulch and rotation; 
NT, no-tillage; NT + M, NT 
plus mulch; NT + R, NT plus 
rotation; NT + M + R, NT plus 
mulch and rotation. Bars with 
different letters are significantly 
different based on the reported 
P-permutational values (Pperm)



928 Biology and Fertility of Soils (2022) 58:917–935

1 3



929Biology and Fertility of Soils (2022) 58:917–935 

1 3

scarce under intensive tillage (Daniell et al. 2001; Pel-
legrino et al. 2020), Gigaspora sp. VTX00039 largely 
occurred under conventionally tilled systems. Our results 
can be supported by some studies (Schalamuk and Cabello 
2010; Hart and Reader 2004) stating that Gigasporaceae 
is less sensitive to soil disturbance than Glomeraceae 
because after disturbance, some hyphal fragments lose 
viability due to cytoplasmatic leakage, whereas spores 
are not greatly affected, and Gigasporaceae colonise roots 
primary from spores. Thus, there is still conflicting evi-
dence on the ability of Glomeromycota families to use 
propagules type and to reconnect once they are disrupted 
by tillage (De La Providencia et al. 2005).

Our study applied a nested PCR approach using the 
primer pair AML1/AML2 and the primer pair WANDA-
ill/AML2-ill (Lee et  al. 2008). Recently, Suzuki et  al. 
(2020) evaluated primer pairs’ suitability for AM fungal 
community assessment by comparing five approaches, 
three targeting the 18S rRNA gene (one using the AM 
fungal-specific primer pair AMV5.4NF/AMDGR (Sato 
et al. 2005); a nested PCR approach using the AM fungal-
specific primer pair AML1/AML2 (Lee et al. 2008) and 
the N-AMV5.4NF/AMDGR primer set; a nested PCR 
approach using the AM fungal-specific primer pair AML1/
AML2 and the NS31/AML2 primer set (Simon et al. 1992; 
Lee et al. 2008)), one targeting the 28S rRNA gene (using 
the AMF-specific primer pair Glo454/NDL22 (van Tuinen 
et al. 1998)) and one targeting the ITS region (using the 
fungal universal primer pair ITS1-F KYO1/ITS2-KYO1 
(Toju et al. 2012)). AM fungal detection rate ranged from 
98% with nested AMV5.4NF/AMDGR to 0.04% with ITS1-
F KYO1/ITS2-KYO1 (Suzuki et al. 2020). For the NS31/
AML2 approach, similar to the one applied in this study, the 
AM fungal detection rate was high (87%) and gave a high 
number of unique sequences, great phylogenetic diversity 
and low evenness. Moreover, AMF community composition 
detected by single AMV5.4NF/AMDGR and NS31/AML2 
was relatively similar at the genus level (Suzuki et al. 2020), 
although nested PCR has been shown to affect AMF com-
munity analysis (Yu et al. 2015).

Since the off-season and in-season AM fungal compo-
sition of the two weeds occurring in all cropping systems 
were similar, this finding supports the fact that weeds 
functionally host AMF during the dry periods, playing 
key roles in the proliferation of AMF during the cropping 
cycle. Thus, weeds could be crucial for the maintenance 
of an active pool of beneficial fungi able to colonise and 
connect plants in cropping systems, potentially stimulat-
ing crop defence pathways (Nerva et al. 2022) under the 
drought conditions characterising the study area. This 
evidence reinforces the ecological role played by weeds 
in the agroecosystem. In addition, the similarity in com-
position between off-season (sampled at the edge of the 
experimental field) and in-season weeds (sampled inside 
the plots) supports the fact that the common mycorrhiza 
network is able to connect plants and transfer nutrients 
and signals at a long distance (Barto et al. 2012; Bennett 
et al. 2016).

Since weeds inside plots were controlled by glyphosate 
at the beginning of the season, the residual effect of glyphosate 
may have had an effect on the weed community. Glyphosate 
in soil dissipates almost completely 30 days after application 
under high temperatures, which are normally recorded in our 
study area (Bento et al. 2016). However, the main metabolite of 
glyphosate, aminomethylphosphonic acid (AMPA), can persist 
in soil, as has been detected at 20% of the applied glyphosate 
rate after 30 days of glyphosate application (Bento et al. 2016; 
Guijarro et al. 2018). Following Guijarro et al. (2018), the 
glyphosate exposure history affected the rate of persistence as 
the herbicide was degraded rapidly with long-term exposure 
and slowly when glyphosate was never applied to the soil. 
Thus, in our experiment, the persistence of glyphosate is 
likely to be negligible at 60 days after maize sowing, when 
in-season weeds were sampled. In contrast, the metabolite 
AMPA can be detected in the soil after long-term glyphosate 
application, although its concentration at in-season sampling 
time can be hypothesised to be low (degradation time for 90% 
of the initial concentration (DT90) between 88 and 148 days), 
according to Bento et al. (2016) and Guijarro et al. (2018), 
and not affected by tillage treatments, as reported by Okada 
et al. (2019). Moreover, since AMF can sporulate already at 
the early plant growth stage by draining host C during the 
plant development (Harinikumar and Bagyaraj 1989), the 
manual removal of weeds inside the plots at the vegetative 
phase that does not involve the complete elimination of all 
mycorrhizal roots is not likely to affect weed-mediated AM 
fungal propagule abundance in soil. This is also confirmed 
by a study comparing the effect of different methods of weed 
control, including manual weeding, on spore number and AMF 
root colonisation of several weeds, including B. pilosa and 
maize (Ramos-Zapata et al. 2012).

Fig. 4  Similarity percentages analysis (SIMPER) identifying the 
arbuscular mycorrhizal (AM) fungal taxa that were responsible for 
the AM fungal community differences among weed species at the 
Domboshawa Training Centre (DTC; sandy location) (a) and the Uni-
versity of Zimbabwe (UZ; clay location) (b) and among cropping sys-
tems at UZ (c). The listed species explain approximately 70% of the 
contribution. Abbreviations of the weed species based on European 
and Mediterranean Plant Protection Organization coding are BIDPI, 
Bidens Pilosa; CYNNL, Cynodon nlemfuensis; ERISU, Erigeron 
sumatrensis; RHYRE, Melinis repens; RCHSC, Richardia scabra. 
Abbreviations of the cropping systems are CT, conventional tillage; 
CT + M, CT plus mulch; CT + R, CT plus crop rotation; CT + M + R, 
CT plus mulch and rotation; NT, no-tillage; NT + M, NT plus mulch; 
NT + R, NT plus rotation; NT + M + R, NT plus mulch and rotation

◂
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Relationship between cropping systems, weed AMF 
diversity, maize AM fungal colonisation weed AM 
fungal colonisation and maize grain yield

As expected, weed AMF diversity showed a positive cor-
relation with weed AMF evenness and weed AMF richness 
(van der Heijden et al. 1998). However, although the crop-
ping system directly affected all AMF traits in weeds (i.e. 

diversity, evenness, richness and AM fungal colonisation) 
and maize AM fungal root colonisation, contrary to our 
hypothesis, all these traits did not significantly influence 
maize grain yield. Although we expected that the diversity 
of AMF in weed roots would result in the improvement of 
the yield of associated maize plants through the improve-
ment of AMF-mediated traits, this effect may have been 
masked by other factors. Mycorrhizal weeds also benefit 

Fig. 5  Structural equation 
model (SEM) (path analysis) 
showing the effect of cropping 
systems on AMF diversity 
(Shannon diversity (H′)), AMF 
evenness (Pielou evenness (J′)) 
and AMF richness (Margalef 
richness (S) in weed roots and 
maize, Bidens pilosa (BIDPI) 
and Richardia scabra (RCHSC) 
AM fungal root colonisation 
on grain yield at the University 
of Zimbabwe (UZ; clay loca-
tion). The black lines represent 
positive influence, whilst the red 
lines represent negative influ-
ence. Solid lines and dashed 
lines represent significant 
(P < 0.05) and non-significant 
(P > 0.05) influences, respec-
tively. Standardised path coef-
ficients are reported for each 
effect pathway

Table 4  Standardised path coefficients of cropping system effect on 
weed AMF diversity (H′), weed AMF evenness (J′), weed AMF rich-
ness (S), maize AMF root colonisation, Richardia scabra AMF root 

colonisation, Bidens pilosa AMF root colonisation, and maize grain 
yield at University of Zimbabwe (UZ; clay location)

a Standardised coefficient estimates with different letters are significantly different from each other based on Tukey’s post hoc tests
Abbreviations of the cropping systems are: CT conventional tillage, CT + M CT plus mulch CT + R CT plus crop rotation, CT + M + R CT plus 
mulch and rotation, NT no-tillage, NT + M NT plus mulch, NT + R NT plus rotation, NT + M + R NT plus mulch and rotation

Cropping system Standardised  coefficientsa

Weed AMF 
diversity (H′)

Weed AMF 
evenness (J′)

Weed AMF 
richness (S)

Maize AMF root 
colonisation (%)

Richardia scabra 
AMF root colonisa-
tion (%)

Bidens pilosa AMF 
root colonisation (%)

Maize grain 
yield (kg 
 ha−1)

CT 2.88 bc 0.91 a 24.33 bc 41.98 b 30.81 c 36.02 ab 2314.85 c
CT + M 3.08 abc 0.91 a 30.33 abc 43.16 b 49.60 ab 51.00 a 2643.66 b
CT + R 2.75 c 0.90 a 21.33 c 51.61 ab 37.00 c 22.38 b 3329.46 ab
CT + M + R 3.30 ab 0.93 a 34.67 ab 55.09 ab 54.36 a 44.61 ab 3211.39 ab
NT 3.14 abc 0.94 a 28.33 abc 49.31 ab 42.54 b 31.31 b 2813.91 b
NT + M 3.35 a 0.94 a 36.00 a 47.21 b 55.65 a 35.60 ab 2552.71 b
NT + R 2.94 abc 0.93 a 24.00 c 68.13 a 40.08 b 28.68 b 3615.74 ab
NT + M + R 2.71 c 0.90 a 20.33 c 56.16 a 45.34 ab 38.06 ab 3935.50 a
P value P < 0.001 ns P < 0.001 P < 0.001 P < 0.001 P < 0.01 P < 0.01
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from the mutual association with AMF, and these under-
ground interactions may improve the invasiveness and com-
petitiveness of weeds against maize plants; thus, this com-
petition may have neutralised the AMF-mediated benefits 
on crops (Massenssini et al. 2014; Callaway et al. 2004). On 
the other hand, since we only identified two weed species 
that were common to all cropping systems and used these 
to assess AMF community response, this may have limited 
the resolution at which we dissected the relationship. This 
would mean that it is necessary to molecularly characterise 
the AM fungal community in maize roots and relate these to 
communities in the roots of more weed species.

Conclusion

Arbuscular mycorrhizal fungi are important in agricul-
tural systems as they assist their host plants in taking 
up nutrients through the extraradical mycelium whilst 
obtaining photosynthetic assimilates from the host plant. 
Since AMF are obligate mutualistic symbionts, they 
require a host for their proliferation. In southern Africa, 
where short crop growing seasons are experienced, under-
standing how weed communities host AMF as alternative 
hosts is important in agroecosystem management since 
this symbiosis determines the promotion of biodiversity 
and hence ecosystem services. Here, for the first time, we 
assessed if mycorrhizal weeds surrounding the experi-
mental fields and, among these weeds, those commonly 
found in all experimental plots would act as hosts of AMF 
during the off-season and during the season, respectively, 
and if AM fungal assemblages would be affected by host 
identity and the different combinations of CA compo-
nents. In this work, we have also shown that weeds grow-
ing during the dry off-season can host AMF, and that, 
although the AM fungal community composition in the 
dry winter period was not predictive of the composition 
at anthesis, a large proportion of AM fungal taxa were 
shared between sampling stages. This is a novel finding 
indicating that weeds in off-season can exert a functional 
role during the dry periods since they represent the pool 
for later AM fungal colonisation of crops. Moreover, 
we demonstrated for the first time that host specificity 
is modulated by drought conditions, usually occurring 
at our site in the off-season period, inducing the plants 
under severe stress to select the most functional AMF. 
Finally, the models describing the response of maize 
yield to weed AMF traits and maize AM fungal coloni-
sation showed no significant influence. This absence of 
influence may reflect that the competitive ability of the 
weeds was improved, hence overshadowing the antici-
pated AMF-mediated benefits to maize productivity. It 
may also reflect the absence of a link between the AMF 

that colonised the weeds and that colonised the maize 
crops. Overall, our findings suggest that drought-resistant 
weeds, growing off-season along the field borders, can 
act as AMF hosts during the dry season when there are 
no crops in the field, and part of this AMF community is 
carried over into the fields. These new insights support 
the need to find an equilibrium between the control of 
weeds and the maintenance of their diversity to guaran-
tee crop yield and AMF-mediated ecosystem services. 
For example, farmers could consider adopting cropping 
systems that result in less competitive and diverse weed 
communities instead of complete eradication of weeds to 
conserve biodiversity and improve ecosystem services. 
However, further research needs to focus on the assess-
ment of the effect of weeds on maintaining or increasing 
the AM fungal propagules in the soil during the non-
cropping period and on the AMF shared among in-season 
and off-season weeds and crops. Finally, the AM fungal 
community composition should be studied by applying 
innovative sequencing methods (i.e. the third-generation 
long-read sequencing technology) that allow for improved 
specificity and enhanced resolution compared to Illumina 
sequencing. This, together with the assessment of other 
weed AMF-mediated services (i.e. soil structure and 
nutrient retention), would allow us to understand the link 
between AMF, weeds, crop growth and nutrient uptake.
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