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Abstract
The fertiliser growth response of planted forests can vary due to differences in site-specific factors like climate and soil 
fertility. We identified when forest stands responded to a standard, single application of nitrogen (N) fertiliser and employed 
a machine learning random forest model to test the use of natural abundance stable isotopic N (δ15N) to predict site response. 
Pinus radiata growth response was calculated as the change in periodic annual increment of basal area (PAI BA) from 
replicated control and treatment (~ 200 kg N  ha−1) plots within trials across New Zealand. Variables in the analysis were 
climate, silviculture, soil, and foliage chemical properties, including natural abundance δ15N values as integrators of historical 
patterns in N cycling. Our Random Forest model explained 78% of the variation in growth with tree age and the δ15N 
enrichment factor (δ15Nfoliage − δ15Nsoil) showing more than 50% relative importance to the model. Tree growth rates generally 
decreased with more negative δ15N enrichment factors. Growth response to N fertiliser was highly variable. If a response was 
going to occur, it was most likely within 1–3 years after fertiliser addition. The Random Forest model predicts that younger 
stands (< 15 years old) with the freedom to grow and sites with more negative δ15N isotopic enrichment factors will exhibit 
the biggest growth response to N fertiliser. Supporting the challenge of forest nutrient management, these findings provide 
a novel decision-support tool to guide the intensification of nutrient additions.
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Introduction

As the global demand for wood and fibre increases, produc-
tion forests have a key role to play in the growing bioec-
onomy (Marchetti et al. 2014; Payn et al. 2015). Increasing 
production to meet that demand can be achieved through 
a number of forest management options, including the 
use of mineral fertiliser to improve site nutrition and for-
est growth (Clinton 2018; Powers 1999). The addition of 
mineral fertiliser, in particular N, which is often limiting 
for forest growth (Davis et al. 2015; Fox et al. 2007; Littke 
et al. 2014), has been used to increase forest productiv-
ity at an operational scale (Chappell et al. 1991; Fox et al. 
2007). However, the response of a forest stand to N fertiliser 

addition can be highly variable, resulting in low confidence 
in N fertiliser as a forest management option to increase 
production (Smaill and Clinton 2016; Sucre et al. 2008). 
The consequences of such a challenge are both economic 
inefficiency and potential ecological harm by facilitating N 
leaching. Thus, there is a growing call for improved preci-
sion silvicultural techniques, particularly around nutrient 
management (Rubilar et al. 2018).

Planted forests are an important mechanism for New Zea-
land to achieve their climate goals and desire to transition to 
a bioeconomy (Clinton 2018; NZFOA 2019). These forests 
are dominated by Pinus radiata D. Don (90% planted forest 
land area) and have a range in site fertility from low fertility 
sand dunes through to very fertile intensively developed pas-
toral soils (Beets et al. 2019; Garrett et al. 2022; Ross et al. 
2009; Watt et al. 2008). The New Zealand forestry sector has 
traditionally managed forest nutrition exclusively to reduce 
nutrient deficiency (Davis et al. 2015; Mead and Gadgil 
1978); however, there is now a greater interest in managing 
soil nutrition to achieve productivity gains (Clinton 2018; 
NZFOA 2019). The New Zealand forest industry currently 
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predicts a productivity response with N fertiliser addition 
using a basic grid of foliage N concentration deficiency and 
stand thinning or openness (Hunter 1982). An approach with 
soil variables is available, however is limited to expecting a 
productivity response at only 4 years post fertiliser addition 
and includes only a small sub-set of variables (Hunter et al. 
1986). Both approaches presented (Hunter 1982; Hunter 
et al. 1986) are basic and limited by the data available at 
the time. Novel approaches are emerging that can transform 
decision-support tools, such as machine learning algorithms 
that can deal with the multiple variables and their complex 
nonlinear relationships (Morellos et al. 2016). Ability to pre-
dict a productivity response with the addition of N fertiliser 
at any site in any given year post fertiliser application is an 
important priority for the New Zealand forest industry to 
meet their aspirations to improve forest productivity sustain-
ably (Smaill and Clinton 2016).

Though many studies have attempted to predict the 
response of forest stand productivity after N fertiliser (Hart 
et al. 1986; Hunter 1982; Hunter et al. 1986; Lea and Bal-
lard 1982; Lim et al. 2015; Littke et al. 2014, 2017; McNeil 
et al. 1988; Miller et al. 1989; Sucre et al. 2008; Turner 
et al. 1977), they are continually challenged by a lack of 
success, results that are too site-specific as to be extensible, 
or too demanding of complex parameterisation data to be 
useful. Thus, the “holy grail” in nutrient management deci-
sion support is something that is easy to measure, broadly 
transferable, and strongly predictive. We believe that natu-
ral abundance N isotopic signatures (δ15N) hold just such 
promise. Natural abundance δ15N values in soil and foliage 
are long-term integrators of ecosystem N cycling processes 
(Robinson 2001; Amundson et al. 2003; Craine et al. 2009). 
For example, plant δ15N has successfully been used to char-
acterise forest ecosystem N cycle responses to global change 
drivers (BassiriRad et al. 2003; McLauchlan et al. 2007). 
Moreover, use of plant δ15N and the δ15N enrichment factor 
(EF), which is relative enrichment of foliage to soil (δ15N 
EF = δ15NFoliage − δ15NSoil), have been shown to positively 
correlate with soil N transformations like net N mineralisa-
tion and net nitrification, connecting such patterns to specific 
N cycling processes with direct relevance to plant fertility 
and ecosystem N loss (Garten Jr and van Miegroet 1994). 
Additionally, the δ15N EF gives an insight into site-level N 
dynamics by integrating N cycling processes between soil 
and plant (Amundson et al. 2003; Cheng et al. 2010; Craine 
et al. 2009; Emmett et al. 1998; Fang et al. 2011; Garten 
Jr and van Miegroet 1994). Though the application of this 
characteristic to predicting plant or ecosystem response to 
N fertiliser addition has never been attempted, the observa-
tions referenced above suggest that δ15N profiling should be 
precisely the type of integrative ecosystem characteristic that 
predicts how a forest will deal with added N. In fact, pre-
liminary results have demonstrated that the δ15N EF is useful 

at predicting productivity response to N fertiliser addition 
across multiple species (e.g., Douglas-fir and loblolly pine; 
(Lorentz 2013)). Thus, our goal here is explore the potential 
of site-level measures of δ15N signatures to similarly predict 
the response of P. radiata, the predominant planted forest 
species in New Zealand, a system in which the technique has 
never been employed, but where such approaches at assess-
ing plant-soil fertility relationships are increasingly called for 
(Smaill and Clinton 2016).

The objective of this study was to explore predicting a 
growth response in planted P. radiata forest stands, in New 
Zealand, after the addition of N fertiliser. We will explicitly 
test the hypothesis that sites with more negative δ15N EF 
signatures will have a larger tree growth response to N ferti-
liser. To test this hypothesis, we used non-parametric Ran-
dom Forest (RF) machine learning modelling to evaluate the 
relative importance of foliage and soil δ15N values against 
other, more commonly measured ecosystem characteristics.

Methods

Study sites

Historical and current N fertiliser trials in New Zealand were 
used in this study. Criteria required for the inclusion in the 
study were: tree species was P. radiata, replicated trial design 
with a control and N fertiliser treatment, tree age over 3 years 
old when fertiliser applied, N fertiliser addition of a known 
amount and year of application, tree measurements of diameter 
at breast height (DBH; 1.4-m stem height) and tree height post 
fertiliser application, an archived soil sample (0–10 cm) and 
foliage sample (1-year-old foliage) collected before fertiliser 
application or from the control treatment. These criteria were 
used to ensure enough data from each site to properly reflect 
the site conditions. A total of 18 sites were identified (Fig. 1). 
Twelve sites from Scion’s (New Zealand Forest Research Insti-
tute Ltd) historical and current experimental trials fulfilled all 
criteria: 5 sites within the FR467 trial series, 5 sites within the 
FR561 trial series, and 2 sites RO1843 and WN379 (Fig. 1). 
An additional 6 sites were identified that matched the criteria 
except for an archived soil sample (trial ID = AK976 (2 sites), 
RO1889, RO1083 (2 sites), and RO1818).

All 18 sites were used to test when a forest stand 
will respond to a single application of N fertiliser (150 
– 207 kg N  ha−1). Eight of the trial sites (AK976 (2 sites), 
FR467 (5 sites), and RO1889) also had plots with an N + P 
(mixed range of 80 – 400 kg N  ha−1 and 40 – 200 kg P 
 ha−1) and P (75 kg P  ha−1) single fertiliser additions, and 
these two treatments were also included in the analysis of 
when a forest stand will respond to a single application of 
fertiliser. Only the 12 sites that matched all criteria were 
used in the analysis of predicting a growth response after 
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a single application of N fertiliser (200 – 207 kg N  ha−1). 
The range in site soil and foliage properties, plus tree age 
at the time of N fertiliser addition for the data sub-set 
used to predict a growth response, are listed in Table 1 
(additional detail in Supplementary Table S1).

Sample preparation and analysis

Foliage samples were previously oven dried at 70 °C to 
constant weight and ground to < 1 mm prior to chemical 
analysis. Mineral soil samples were previously air-dried 
(< 40 °C) and then sieved to retain the < 2-mm fraction for 

Fig. 1  Distribution of trials 
included in the analysis of 1) 
testing when a forest stand will 
respond to a single application 
of fertiliser (using all trials 
shown), and 2) predicting a 
growth response (using RO1843 
[1 site], WN379 [1 site], FR467 
[5 sites], and FR561 [5 sites])
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chemical analysis. Results from past chemical analysis were 
used, which included total carbon (C) and total N (measured 
by LECO Trumac CN (modified Dumas)), soil acidity pH 
(measured by electronic probe, 1:2.5 dH2O), foliage total 
phosphorus (P) using wet digestion (Nicholson 1984) for 
historic sites (RO1843 and WN379), and foliage total P 
measured by ICP-MS at all other sites. All chemical analy-
ses are reported at 104 °C oven dry basis. New chemical 
analysis was undertaken for any samples without total C 
and total N, and all samples were analysed for δ15N natural 
abundance using a continuous flow isotope ratio mass spec-
trometer (IsoPrime 100 EA-IRMS,  Isoprime© Ltd., Man-
chester, UK). Soil C/N ratio (total C / total N) and site δ15N 
enrichment factor (δ15Nfoliage − δ15Nsoil) were calculated.

Data and statistical analysis

Published studies that have modelled a productivity response 
with fertiliser addition in production forests have used tree 
growth metrics like basal area, volume, periodic annual 
increment, and/or site index, and fit these to a regression 
model (Carter et al. 1998; Hunter 1982; Hunter et al. 1986; 
Littke et al. 2014, 2017; McNeil et al. 1988; Sucre et al. 
2008); however, they are ultimately constrained because 
the number of predictor variable can vastly outnumber 
observations. Machine learning algorithms, such as the 
widely used RF modelling (Breiman 2001), can overcome 
this limitation by enabling a larger number of covariates 
to be used as they are able to deal with complex nonlinear 
relationships between the predictor and response variables 
(Morellos et  al. 2016). There have been increasing 
applications of machine learning approaches in forest 

research, including tree species and patch distributions 
(Iverson et al. 2008; Veldhuis et al. 2017), tree species 
richness and C storage (Lautenbach et  al. 2017), forest 
allometric scaling relationships (Duncanson et al. 2015), 
and wind damage (Moore and Lin 2019). Thus, following 
other contemporary studies on forest responses to fertiliser 
addition (Littke et al. 2014, 2017), we will employ these 
techniques as discussed below.

Predicting a growth response

Predicting a growth response after N fertiliser addition 
was investigated using a sub-set of the data that included 
all criteria (12 sites). Only the N fertiliser addition 
treatment was selected as this treatment had a good level 
of tree measurements post fertiliser addition for all 12 
sites compared to the N + P treatment which had limited 
data (only FR467 was available for N + P analysis). 
Tree growth was represented by the change in periodic 
annual increment of basal area (PAI BA  m2  ha−1  year−1) 
at the plot level. To quantitatively evaluate the growth 
response and the importance of different features (site, 
silvicultural, environmental, and geochemical) after the 
addition of fertiliser, we employed a non-parametric 
machine learning approach called Random Forest (RF). 
This approach was chosen because of the complexity of 
our data (different experimental designs, low number of 
replicates, asymmetrical experimental design, and variable 
environmental factors), which made traditional statistical 
models inadequate. RF is an ensemble method of machine 
learning, which is based on averaging the prediction or 
taking the majority vote of a large group of classification 
and regression trees (CART) learners (Breiman 2001). 
Each CART is a tree prediction model fitted using random 
samples and variables, drawn from same distribution, from 
the original dataset. Detailed methods behind the Random 
Forest model are held in the Supplementary.

Features used in our RF model as predictor variables 
were from four groups: site, silvicultural, climate, and geo-
chemical features (Table 2). Climate feature variables were 
sourced from the climate data of the nearest climate sta-
tion in NIWA’s Virtual Climate station Network (VCSN) 
(Tait and Turner 2005) to each plot with its location and 
time period. The VCSN data are estimates of several cli-
mate variables interpolated on a regular 5-km grid cover-
ing the whole of New Zealand from 1972 to present. The 
original data was recorded in a daily form, which did not 
fit our modelling purpose, so we restructured the data into 
monthly, seasonal, and annual forms. The annual climate 
dataset was used for modelling due to a balance between 
computational economy and model performance. There 
were 24 climate-related predictor variables. For those plots 

Table 1  Range and mean in selected soil and foliage properties and 
tree age at time of fertiliser application for the data sub-set used to 
predict a growth response

Variable Mean Min Max

Soil (0–10 cm) and foliage (1-year needle)
  Soil Total C (g  kg−1) 61.3 23.3 123.9
  Soil Total N (g  kg−1) 3.3 0.8 9.7
  Soil C/N ratio 21 12 33
  Soil pH 4.8 3.9 5.8
  Soil δ15N (‰) 3.7 0.8 7.9
  Foliage Total C (g  kg−1) 512.6 498.0 538.0
  Foliage Total N (g  kg−1) 14.4 10.6 18.1
  Foliage C/N ratio 36 29 48
  Foliage Total P (g  kg−1) 1.6 0.8 2.8
  Foliage δ15N (‰)  − 0.3  − 2.6 4.5
  Enrichment factor (15Nfoliage − δ15Nsoil) (‰)  − 3.9  − 8.4  − 0.8
Stand details
  Tree age (years) at time of fertiliser addition 15 9 22
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planted and measured before 1972, we used 5-year climate 
data from 1972 to 1976 as a proxy.

To evaluate and select candidate predictor variables 
used in the RF model, we employed the Boruta algorithm 
(Kursa and Rudnicki 2010). The Boruta algorithm is a 
wrapper built around the RF algorithm, which provides 
a statistically grounded way for automatically selecting 
variables on a given dataset. According to Boruta 
evaluations, all the forty-eight candidate variables 
were significant for model improvement based on their 
importance (Supplementary Fig. S1) and were used in our 
RF model as predictor variables. All analyses and machine 
learning models were implemented in the R 3.5.3 platform 
(R Core Team 2017). The RF models were implemented, 
trained, and validated by using R package randomForest 
(Liaw and Wiener 2002) and caret (Kuhn 2008). Variables 
most associated with tree growth PAI BA were determined 
by > 50% relative importance in the RF model (Duncanson 
et al. 2015). Partial dependence plots for each predictor 
variable were also generated to support interpretation of 
the model predictions.

Growth response

Duration of tree growth response to N fertiliser was 
investigated using the full dataset (18 trial sites) and all 
treatments: control treatment and N addition at all sites, and 
N + P and P addition at 8 sites. Tree growth was represented 
by the change in periodic annual increment of basal area 
(PAI BA  m2  ha−1  year−1), a representation of the annual 
growth rate for the year in question, at the plot level, and 
was determined using measured plot area and tree stocking.

(1)PAI BA = (BAlast − BAcurrent)∕Time interval (years)

There was a large variation among trial sites and plots 
(i.e., climate, soil, experimental design, replication, and sil-
vicultural management). Therefore, to test for a significant 
response, we used a relative response index (RRI) to meas-
ure the growth response (PAI BA) of each plot at different 
years after fertiliser addition.

where X0 is the mean performance (PAI BA) of control 
plots (no fertiliser addition) within a site and X1 is the 
performance of treated plots (with fertiliser addition). 
RRI is symmetric and ranges from − 1 to 1. RRI > 0, 
positive response; RRI = 0, no response; RRI < 0, negative 
response. For each treatment, one tailed t tests were used 
to determine if plots’ response (RRIs) is larger than 0 (i.e., 
only positive responses were counted). In the analysis, trials 
and treatments are considered independent experiments. We 
used Fisher’s combined probability test on p values of RRI 
for each year post fertiliser addition.

Results

The twelve trial sites included in our RF model covered a 
large range in the on-site variables measured including δ15N 
EF which ranged from − 0.8 to − 8.4 (Table 1). The tree age 
at the time of fertiliser addition averaged 15 years with a 
range between 9 and 22 years of age (Table 1).

Overall, the best trained RF model was able to explain 
78% of the variation in the productivity using PAI BA 
(R2 = 0.778), showing a reasonable prediction performance 
according to the repeated cross-validation. Based on the 
RMSE value, this best trained RF model performs consist-
ently well and has the smallest RMSE (0.479). In the RF 

(2)RRI = (X
1
− X

0
)∕(X

1
+ X

0
)

Table 2  Predictor variables of four feature groups used in RF model

Group Predictor variables

Site features
(7 predictor variables)

AGE-YEAR (age of the tree at time measurement), SPH-LIVE (live stems per hectare), LATITUDE-T (latitude of the plot transformed from 
NZTM system), LONGITUDE-T (longitude of the plot transformed from NZTM system), ALTITUDE (elevation above sea level), SLOPE 
(mean plot slope), and ASPECT (plot aspect)

Silvicultural features
(6 predictor variables)

THIN-COUNT (thinning applied at time measurement), PRUNE-COUNT (pruning applied at time of measurement), FERT-AGE (age when 
fertiliser applied), YEAR-AFTER-FERT (Year after fertiliser addition), N (N applied), Treatment (Control or N applied)

Climate features
(24 predictor variables)

T-mean (mean annual temperature), T-min (minimal annual temperature), T-max (maximal annual temperature),
Rain-mean (mean annual precipitation), Rain-min (minimal annual precipitation), Rain-max (maximal annual precipitation),
Rad-mean (mean annual solar radiation), Rad-min (minimal annual solar radiation), Rad-max (maximal annual solar radiation),
PET-mean (mean annual potential evapotranspiration), PET-min (minimal annual potential evapotranspiration), PET-max (maximal annual 

potential evapotranspiration),
RH-mean (mean annual relative humidity), RH-min (minimal annual relative humidity), RH-max (maximal annual relative humidity),
SoilM-mean (estimated mean annual soil moisture), SoilM-min (estimated minimal annual soil moisture), SoilM-max (estimated maximal 

annual soil moisture),
VP-mean (mean annual water vapour pressure), VP-min (minimal annual water vapour pressure), VP-max (maximal annual water vapour 

pressure),
Frost-mean (mean annual frost days), Frost-min (minimal annual frost days), Frost-max (maximal annual frost days)

Geochemical features
(11 predictor variables)

Soil-Delta-15N, Soil-pH, Soil-Total-C, Soil-Total-N, Soil-C-N, Foliage-Delta-15N, Foliage-Total-C, Foliage-Total-N, Foliage-C-N, Foliage-
Total-Phosphorus, and Enrichment-Factor (Foliage-Delta-15N—Soil-Delta-15N)
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model, tree age at the time of measurement (AGE-YEAR) 
and the enrichment factor (EF = δ15NFoliage − δ15NSoil) were 
the two most important variables (> 50% relative impor-
tance) associated with tree growth PAI BA (Fig. 2).

Partial dependence plots were used to illustrate mar-
ginal effect of the important predictor variables and the 
temporal changes of tree growth in response to the control 
and N fertiliser treatment (Fig. 3 and single plots Supple-
mentary Fig. S2). According to the RF model, P. radiata 
PAI BA was greater in younger stands < 15 years of age 

(Fig. 3a) and greater where the δ15N EF was less nega-
tive and increasing sharply in a step change when δ15N EF 
was greater than − 2‰ (Fig. 3b). Partial plots showed PAI 
BA increased with N fertiliser treatment compared to the 
control (Fig. 3, and Supplementary Fig. S2). A response 
in PAI BA after fertiliser application was observed in trees 
younger than 20 years (Fig. 3a). Application of N fertiliser 
increased the PAI BA across the range of δ15N EF values 
(Figs. 3b and 4a). A fertiliser application of 200 kg N  ha−1 
showed greater growth response when the δ15N EF was more 
negative (Fig. 4b).

Results from the RF model showed greater growth 
responses within the first 3 years after N fertiliser addi-
tion (Fig. 3c). This finding is supported by the significant 
(P < 0.05) PAI BA growth responses in P. radiata that were 
observed within the first 3 years after N fertiliser addi-
tion using the full dataset (18 sites) (Fig. 5). Tree growth 
response to the N fertiliser addition for these 18 sites varied 
largely, with both positive and negative relative responses 
in PAI BA (Fig. 5). The addition of N + P fertiliser resulted 
in a longer period of growth response out to 4 years and 
8 years after fertiliser addition (Fig. 5), while the addition of 
only P fertiliser resulted in no significant (P > 0.05) growth 
response (data not shown).

Discussion

When will Pinus radiata respond to N fertiliser 
addition?

One of the challenges in managing the fertility of a production 
forest is evaluating the time course and duration of response 
to fertiliser addition. Previous research in New Zealand on 
predicting the growth response of P. radiata after N fertiliser 
addition of 200 kg N  ha−1 had been limited by only reporting 
at 4 years post fertiliser addition (Hunter et al. 1986). The 
time period of 4 years selected by Hunter et al. (1986) was 
informed by the growth response from only N deficient sites 
(e.g., sand dune forests) where a response to N fertiliser was 
previously reported (Hunter 1982; Hunter and Hoy 1983). Our 
study demonstrated that fertiliser application rates of approxi-
mately 200 kg N  ha−1 are more likely to result in a positive 
growth response in the first 3 years following application 
(Figs. 4c and 5). However, our results also showed that the 
addition of N + P fertiliser to a site may extend the time frame 
for a positive response (Fig. 5), highlighting the importance of 
considering other possible co-limiting nutrients, rather than 
focusing exclusively on N (Carter et al. 1998; Hunter et al. 
1986; Sucre et al. 2008; Vadeboncoeur 2010).

In addition to the duration of the N fertiliser growth 
response, the RF model demonstrated that tree age was 
the most important variable for predicting a productivity 

Fig. 2  Relative importance of predictor variables in RF model for 
PAI BA. The importance of predictor variables was normalised by the 
maximum variable importance for the RF model to produce standard-
ised measures of variable importance. YAF stands for year after ferti-
liser addition
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response with N fertiliser addition. Our RF model showed 
that trees less than 15 years of age (mid-rotation age; 29-year 
average rotation length (MPI 2019)) have the greatest PAI 
BA regardless of treatment (Fig. 3a). Experimental trials 
included in our RF study were between 9 and 22 years of 
age when fertiliser was applied (Table 1), and a marginally 
greater growth rate in N-application stands was visible up to 
20 years of age (Fig. 3a). Therefore, as there was less growth 
response of trees older than 15 years of age to N fertiliser 
addition, the addition of fertiliser may not be economically 
efficient. Studies have identified that the best response from 
fertiliser addition is when the trees have “free-to-grow” con-
ditions, which are created through stand thinning (Carter 
et al. 1998; Sucre et al. 2008). For example, Hunter et al. 
(1986) observed that large basal area responses to N fer-
tiliser addition in New Zealand P. radiata occurred where 
stands were less than 10 years old and soils were N-poor. 

However, overall there are inconsistent results from research 
on P. radiata stand growth response to N fertiliser in New 
Zealand (Hunter et al. 1986; West 1998; Woollons and Will 
1975). The dataset used for our RF model had a range of 
silvicultural treatments, including thinning and no thinning, 
and to test the effects of thinning and fertiliser application 
on growth response would require more sufficient datasets 
from rigorous experiments. However, our results confirm 
that there was a decline in PA BAI after age 15 years and 
support fertiliser application aimed at boosting tree growth 
during rapid-growth-rate “free-to-grow” periods.

Use of N stable isotopes predicting a productivity 
response with N fertiliser addition

In this study, δ15N EF was the second most important 
variable in the RF model for predicting a productivity 

Fig. 3  Partial plot of PAI BA  (m2  ha−1   year−1) for three predictor variables AGE-YEAR, Enrichment-Factor and Year-After-Fert with control 
treatment and N fertiliser addition treatment in the RF model

Fig. 4  a) Partial plot of average PAI BA  (m2  ha−1  year−1) of sites within the RF model against enrichment factor and N fertiliser addition of N 0, 
and N 200 kg  ha−1 and b) difference in the PAI BA  (m2  ha−1  year−1) between the control and treatment with N addition of 200 kg ha.−1
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response with N fertiliser addition. Our hypothesis was 
shown to be correct, that a tree growth response to N 
fertiliser addition is more likely on sites with a more 
negative δ15N EF. The δ15N EF provides a single value of 
site N status that integrates historical climate and N cycling 
activity (Garten Jr and van Miegroet 1994) and combined 
with non-parametric RF machine learning modelling has 
proven to be a strong variable to include in New Zealand 
P. radiata nutrition analysis. Moreover, there is merit in the 
further exploration of the utility of the δ15N EF in forest 
nutrient management with thesis research by Lorentz (2013) 
showing that the δ15N EF was a useful metric in predicting 
Douglas-fir and loblolly pine productivity response to N 
fertiliser addition in the Pacific Northwest and southeastern 
USA, respectively. Other studies also found site fertility 
variables important in predicting a productivity response 
such as surface soil and forest floor C/N ratios (Littke et al. 
2014), soil C and N concentrations (Sucre et al. 2008), soil 
total N and available phosphorus (Hunter et al. 1986), and 
soil mineralisable-N (Carter et al. 1998). Our results further 
emphasise the importance of considering site fertility, 
including some metric of N cycling (i.e., δ15N) to predict N 
fertiliser growth responses.

Soil and foliage enrichment factors in forests have been 
shown to be related to overall rates of soil N dynamics, 
cycling, and N loss (Cheng et al. 2010; Emmett et al. 1998; 
Fang et al. 2011; Garten Jr and van Miegroet 1994). It could 
be expected that sites with a more negative δ15N EF would 
have lower rates of net N mineralisation and net nitrification 
(Garten Jr and van Miegroet 1994) and therefore be more 
N limited and conservative with their N cycle. We found 
that along the gradient of δ15N EF, growth rates generally 
decreased with more negative enrichment factors, in both 

the control and fertiliser addition treatments (Fig. 3b). 
With the addition of 200 kg N  ha−1 fertiliser, our results 
showed the growth response was greatest at sites with a more 
negative δ15N EF (Fig. 4b). Both of these observations are 
consistent with the conceptual model described by Gurmesa 
et al. (2022), in which N-limited sites would have the most 
negative enrichment factors.

Where sites have low rates of N mineralisation and net 
nitrification N can be supplied by mycorrhizal fungi, which 
may transfer strongly δ15N-depleted N to the trees. Such 
N-limited sites would then be expected to exhibit strong 
growth responses to added N (as seen in this study; Fig. 4). 
As N availability increases, and dependence on mycorrhizal 
fungi decreases, enrichment factors become less negative, 
as trees shift to direct uptake of soil mineral N (Gurmesa 
et al. 2022). Nitrogen inputs and exports from other sources 
are also important to consider in understanding a site’s δ15N 
dynamics (Högberg 1997). Inputs of N from atmospheric 
deposition in New Zealand are relatively low with values 
ranging from 3 to 9 kg N  ha−1  year−1 (Parfitt et al. 2006) and 
therefore unlikely to have a strong impact on the soil and 
foliage δ15N at our sites. Inputs of N from N-fixing weeds 
or understory species may also be possible, with on average 
30 kg N  ha−1  year−1 reported where N-fixing species are pre-
sent in New Zealand planted forests (Parfitt et al. 2006). Fires 
which can reduce soil N were used in historical forest clear-
ance in New Zealand, although, fires in planted forests have 
been low with only 2% of planted forest land area impacted 
(McIntosh et al. 2005; Pearce et al. 2008). We are uncertain 
of any past fire events or presence of N-fixing plants at our 
sites used in the RF model; therefore, N input from fixation 
or loss of N through fire, and their resulting impacts on soil 
and foliage δ15N are unknown (Högberg 1997).

Fig. 5  Frequency of rela-
tive response of PAI BA (in 
percentage) with different 
fertiliser addition treatments, 
N and N + P. Years with no 
data indicate years when tree 
measurements were not taken; 
stars show years with signifi-
cant positive growth responses 
(P; < 0.1; * < 0.05; ** < 0.01; 
*** < 0.001)
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We observed a step change increase in productivity as 
the enrichment factor increased beyond − 2‰ (Fig. 4a); 
moreover, the growth response to fertiliser also increased in 
contrast to the general decrease in fertiliser response seen up 
until that point (Fig. 4b). It is possible that this step change 
in δ15N EF at − 2‰ may be a threshold indicating a different 
mechanistic shift in N acquisition strategy. For example, it 
could indicate a different degree of mycorrhizal association 
or it could be an integration of multiple factors including 
ecosystem-scale additions and losses. However, more data 
is required to explore this possible threshold and its mecha-
nistic underpinnings. We also observed that for enrichment 
factors more negative than − 5‰ there appears to be no 
change in the gain in productivity with 200 kg N  ha−1 ferti-
liser addition (Fig. 4b). This indicates that there was a cutoff 
in expected growth when sites have very negative enrich-
ment factors, possibly because these very negative δ15N EF 
sites require more than a single addition of 200 kg N  ha−1 
fertiliser to meet tree N demand (e.g., Smaill et al. (2011)). 
This threshold may alternately be reflecting other nutrient 
limitations that are constraining any further growth response 
to the added N (Vadeboncoeur 2010). Overall, the δ15N EF 
moves us towards a quantifiable decision support tool for 
forest nutrient management decisions. However, beyond 
the thresholds described above the δ15N EF was sufficiently 
vague with regard to the mechanistic drivers behind the 
result to allow for the rationalisation of alternative nutrient 
management strategies.

Implication for New Zealand forestry

In New Zealand, planted forests are located on sites with 
a wide range in fertility, derived from differences in soil 
parent material and past land-use, such as pastoral farming 
history and fertility enhancement through fertiliser addition 
(Beets et al. 2019; Garrett et al. 2022; Ross et al. 2009; 
Watt et al. 2008). Currently, the New Zealand P. radiata 
forest industry relies on the use of foliage N concentra-
tion and target ranges to identify N deficient stands, which 
would benefit from N fertiliser application (Hunter 1982). 
However, this strategy results in highly variable growth 
responses (Smaill and Clinton 2016). The 4-year basal area 
response model by Hunter et al. (1986) was an advance-
ment on using foliar N concentration and also includes soil 
nutrient variables (total soil N and available phosphorus), 
soil clay percent, tree age, and simple silviculture variables 
(pruning and thinning), which together explained 66% of 
the variation in growth response.

Our RF model is a novel approach towards modelling the 
complexity of forest ecosystems and explains 78% of the 
variation in forest stand growth variation as a result of N 
fertiliser addition. Our model predicts annual incremental 
growth metrics of the forest stand basal area (PAI BA) which 

allows for forest management on a more detailed scale to 
understand if a forest stand will respond more in year one 
compared to another year. Moreover, in developing the RF 
model we were able to include more complex data to inform 
the prediction, for example, detailed climate variables were 
included that were both site and time specific. Moreover, we 
have demonstrated that the pre-fertiliser δ15N EF was a strong 
variable in predicting if a site will respond to N fertiliser. 
Our RF model’s performance was good (R2 = 0.778), with 
a dataset from 12 sites, which is a relatively small training 
dataset for machine learning modelling. The RF model could 
be improved with more training data and should be validated 
with further independent datasets. Models that can predict 
a productivity response of a stand with pre-fertiliser site 
variables will enable focused fertiliser applications, targeted 
at achieving the greatest overall boost in productivity within 
a forest or a set of forests, to support forest productivity 
enhancement.

Our RF model predicts a productivity response in PAI 
BA, which can be used to support site-specific nutrient 
models in predicting a growth response with N fertiliser 
addition. An example is the New Zealand Nutrient Balance 
Model (NuBalM) (Smaill et al. 2011), which describes the 
annual N demand and supply within a forest stand. This 
model is currently unable to predict a growth response with 
N fertiliser addition. Linking growth response predictions of 
the RF model to NuBalM would enable increasingly accurate 
N balance and cycling predictions over multiple rotations. 
Furthermore, this approach will provide a basis for site-
specific recommendations of mineral N fertiliser necessary 
to improve New Zealand planted forest productivity.

Conclusion

Measurement of the soil and foliage δ15N and use in a site-
specific δ15N EF has been shown in our study to be a strong 
variable in understanding forest N dynamics in response 
to newly added N. Using a machine learning RF model to 
deal with complex site-specific data, the model showed 
tree age and the N isotopic EF to be the most important 
variables affecting P. radiata growth in New Zealand. Our 
RF model can be used to predict site-specific annual tree 
growth response with the addition of 200 kg   ha−1 of N 
fertiliser. A growth response of P. radiata to 200 kg  ha−1 
of N would be expected to occur within the first 3 years 
after fertiliser addition; however, our study showed both 
positive and negative growth responses within those first 
3 years can also occur. Tree growth rates can be expected to 
be lower where a site δ15N EF is more negative, and with the 
addition of N fertiliser, these sites, with more negative δ15N 
EF, are more likely to have a growth response. The ability to 
make site-specific predictions will enable forest managers to 
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selectively target sites for productivity improvement. Future 
development of the RF model through more observations 
could significantly improve the model’s ability to predict 
a productivity response with N fertiliser addition across a 
larger range of climate and soils. Further studies should 
then include validation of the model with an independent 
dataset to ensure the robustness of predictions. There is 
also potential for the wider application of a site’s δ15N EF 
in predicting a forest productivity response to N fertiliser 
addition in range of forestry systems.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00374- 022- 01671-8.
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